Abstract

We present a conformal metamaterial with simultaneous optical transparency and broadband millimeter-wave absorption for a curved surface. By tailoring the reflection response of meta-atoms at oblique angles, it is possible to achieve excellent absorption performance from 26.5 to 40.0 GHz within a wide angular range from 0° to 60° for transverse-electric and transverse-magnetic waves. In the meantime, by employing transparent substrates, including polyvinyl chloride and polyethylene terephthalate, good optical transmittance (80.1%) and flexibility are obtained simultaneously. The reflectivity of a curved metallic surface coated with the proposed curved metamaterial is simulated and measured experimentally. Both results demonstrate excellent absorption performance of the metamaterial, which is highly favored for practical applications.

© 2019 Chinese Laser Press

1. INTRODUCTION

In the past few years, millimeter wave technology has become a new research hotspot for scientists and engineers; it is essential for many applications such as radar, imaging, and wireless communications. However, ubiquitous electromagnetic interferences and noises pose significant challenges to the quality of high-speed voice and data transmission. As important means of electromagnetic protection, millimeter-wave absorbers are widely employed to dissipate jamming signals, thereby greatly improving the overall performance of the systems [1,2]. A major drawback of traditional millimeter-wave absorbers [35] is low light transmittance, implying they cannot be applied as transparent shielding windows in some practical scenarios. In addition, due to the physical characteristics of the constituent materials, they are usually unable to offer enough flexibility in conformal applications with a low profile and a wide bandwidth.

As alternatives, metamaterials (MMs) [6,7] that can independently tailor electric and magnetic responses [8] have been proposed for resonant absorption, offering a new approach to realize conformal transparent millimeter-wave absorbers [911]. For instance, great efforts have been made to implement conformal metamaterial absorbers (MMAs) at terahertz and infrared spectra, but most of them suffer from the limitation of a narrow absorption bandwidth [1218]. In addition, transparent-semiconductor-based broadband MMAs with large light transmittances have been developed at microwave frequencies, but lack of angular stability hinders their practical applications on curved surfaces [1927].

To date, various approaches have been proposed to broaden the bandwidths of MMAs. An extremely wideband MMA based on destructive interference of the elements was built with multilayer structures containing split-ring resonators; it can induce successive anti-reflection in a large frequency range [28]. A comprehensive scheme based on the dispersion engineering of a spoof surface plasmon polariton was proposed to merge the absorption bands of a plasmonic structure into a continuous one [29]. In addition, by stacking metallic bars of varying lengths on three polyimide layers, a wide absorption spectrum in the THz region was formed by merging multiple successive resonances [30].

Here, we report a new strategy to design conformal and transparent MMAs, which can realize excellent absorption of millimeter waves over a Ka band from 26.5 to 40.0 GHz. A ring-shaped structure is employed as the basic element. It is a well-defined sandwich structure composed of indium tin oxide (ITO) patterns and transparent substrates including polyvinyl chloride (PVC) and polyethylene terephthalate (PET). Full-wave numerical simulations reveal that the absorption phenomenon originates from the resonant modes confined in the structure, with the resonances slightly influenced by the incident angle. It is found that for a curved metallic surface with an MMA coating, average radar cross-section (RCS) reduction of more than 10 dB is achieved within the bandwidth for both transverse-electric (TE) and transverse-magnetic (TM) waves, as validated by simulation and experimental results. This work represents a significant step toward conformal transparent absorbers to suppress backward reflections from curved surfaces.

2. THEORY AND DESIGN

The schematic of the curved and transparent MMA is depicted in Fig. 1(a). A typical unit cell, illustrated in Fig. 1(b), consists of a ring resonator on the top PET film, a ground layer on the bottom PET film, and a PVC spacer as the substrate. Both the patterns and the ground are made of ITO film due to its good electrical conductivity. The top ITO layer has a thickness of 150 nm and a sheet resistance of 140Ω/, whereas the bottom ITO layer has a thickness of 200 nm and a sheet resistance of 15Ω/. All constituent materials employed in the proposed structure have outstanding flexibility and large optical transparency. The dielectric constants of PET and PVC are εPET=3.0(1j0.006) and εPVC=2.4(1j0.06), respectively. The dimensions of the unit cell in Fig. 1(b) are dPET=0.175mm, dPVC=1.3mm, h=1.65mm, a=4.8mm, g=0.7mm, and P=5.0mm.

 

Fig. 1. (a) Schematic of the flexible and transparent MMA at millimeter frequencies. (b) Geometry of a unit cell.

Download Full Size | PPT Slide | PDF

The reason to choose a ring structure as the unit cell is two-fold. On one hand, it is a classic meta-atom with simple geometry, a broad bandwidth, and satisfactory absorptivity [31,32]. On the other hand, owing to the symmetry of the element, the absorption performance is insensitive to the incidence polarization. To demonstrate these merits, Fig. 2(a) shows the simulated absorptivity spectra of the meta-atom under normal incidence based on a commercial electromagnetic solver (CST Microwave Studio 2014). It is noted that a broadband absorption band from 25.0 to 37.5 GHz (absorptivity>0.9) emerges under normal illumination of a plane wave [Fig. 2(a)]. Such strong absorption originates from magnetic resonance driven by the incident wave, where antiparallel currents are induced between the pattern and the ground [Fig. 2(c)]. As a result, the excited magnetic fields are strongly concentrated between the currents [Fig. 2(b)], giving rise to a large energy dissipation by sheet resistance of the ring resonators. This makes a great difference from a conventional MMA, since the latter is based on the dielectric loss of the substrate in a narrow frequency band near the resonance of the metallic elements [3336]. In contrast, the proposed element can operate in a wide bandwidth without the introduction of multi-resonances [37,38], since the lossy pattern will greatly lower the quality factor of the whole structure. In order to gain more physical insights into the absorption performance of the proposed MMA, the normalized input impedance of the absorber is also illustrated in Fig. 2(a), which is calculated from the S-parameters of the unit cell according to the effective medium theory [39,40]. It is clear that the impedance of the MMA [Fig. 2(a)] is well matched to that of free space in the spectrum of interest, resulting in satisfactory reduction of backward reflections at the interface.

 

Fig. 2. (a) Simulated absorptivity spectra of the proposed MMA under normal incidence. (b), (c) Simulated magnetic field distribution and surface current distribution of the meta-atom at 32.0 GHz under normal incidence.

Download Full Size | PPT Slide | PDF

Once the absorber is coated on a curved surface, it is important to inspect its absorption capability at oblique incidence, namely, the angular stability in the millimeter band. In fact, the equivalent transmission line (TL) model of the MMA can be seen in Fig. 3(a), in which Z0 and Zd are the wave impedances of free space and the substrate, respectively. ZS and YS=1/ZS are the equivalent surface impedance and admittance of the top ITO pattern layer. From the TL theory [41], the reflection coefficient from the MMA can be calculated as

R=ZinZ0TE/TMZin+Z0TE/TM,
where Z0TE=Z0/cosθ and Z0TM=Z0cosθ represent the wave impedances for TE and TM polarizations, respectively. θ is the incident angle. Zin is the input impedance of the parallel circuit composed of ZS and the grounded TL:
1Zin=1ZS+1jZdtanβrd,
where βr is the propagation constant of the substrate and d is the thickness of the substrate. It is clear that resonance occurs when
βrd=π/2.
In this case, the grounded TL has infinite impedance, so that the reflection coefficient in Eq. (1) is only dependent on the matching degree between ZS and Z0. Under oblique incidence, the propagation constant within the substrate can be given by βr=k0εrsin2θ, where k0=2πfr/c is the free-space wavenumber. fr is the resonance frequency, c is the speed of light, and εr is the relative permittivity of the substrate. From Eq. (3), the relationship between θ and fr can be given by
fr=c4dεrsin2θ.
Since Zin=ZS at the resonance frequency, the reflection coefficients for both polarizations in Eq. (1) can be further simplified as [42]
RTE=ZScosθZ0ZScosθ+Z0,
RTM=ZSZ0cosθZS+Z0cosθ.
To determine the equivalent impedance of the ITO pattern layer, we can write the ABCD matrix of the ITO pattern layer as [101/ZS1]. For a typical two-port network, ZS can be expressed as
ZS=Z0S2122S21,
where S21 is the forward transmission coefficient extracted from the TL model in Fig. 3(b), as can be simulated based on commercial electromagnetic solvers. From Eqs. (5)–(7), we can predict the location of the resonance frequency as well as the reflection coefficient of the meta-atom for dual polarizations, with respect to different incident angles and ITO patterns. Due to the small surface resistance of the ITO ground, it is reasonable to neglect the transmitted wave, and the absorption rate can be simplified as A=1|R|2.

 

Fig. 3. (a) Schematic of the equivalent TL of the MMA. (b) TL model to retrieve the surface impedance of the ITO pattern. (c), (d) Calculated and simulated fr as well as absorptivity with change of incident angle. (e), (f) Dependence of the simulated absorptivity spectra on side length a and line width g. (g), (h) Simulated absorptivity spectra of the proposed MMA at incident angles from 0° to 70° for TE and TM waves.

Download Full Size | PPT Slide | PDF

When the thickness of the proposed MMA (dPET+dPVC) is close to λ/4 at 32.0 GHz, resonant frequency as a function of incident angle θ under TE and TM incidences is as demonstrated by stars and dots in Fig. 3(c), in which the theoretical values from Eq. (4) are also provided by way of contrast. Here, the polarization directions of the TE and TM waves are parallel to y- and x-directions, respectively [see Figs. 3(g) and 3(h)]. Accordance between the two results reveals that our model provides a good tool to predict a shift of the resonance peak with change of incident angle. Figure 3(c) also illustrates the dependence of the calculated resonance frequency on the substrate permittivity εr as θ grows up to 60°. Olive, orange, and blue lines represent the variance curves of fr with εr=2.0, 2.4, and 3.6, respectively. The resonance position fr experiences a blue shift with increase of incident angle. Besides, it is worth noting that the initial value and the slope of the curve are highly associated with the permittivity of the substrate. Specifically, for a substrate with a low dielectric constant (εr=2.0), the resonance frequency shifts to a high-frequency area rapidly at large θ; this affects the bandwidth of the MMA adversely. However, in the case of a substrate with large permittivity (εr=3.6), the resonance frequency falls below 27.0 GHz at normal incidence, making it hard to operate within the target band effectively. It is therefore essential to choose εr properly when both the absorption bandwidth and frequency shift are taken into account. Fortunately, it seems that PVC with εr=2.4(1j0.06) is a good candidate to meet all these criteria, as found in Fig. 3(c).

To further verify the theoretical model, the absorptivity spectra of the MMA at fr, as calculated from Eqs. (5)–(7), are provided in Fig. 3(d), with incident angle up to 60°. In the TE case, the simulated absorptivity (stars) coincides with the theoretical one (green line) very well. However, in the TM case, little discrepancy emerges at large angles, which is likely related to the induced high-order modes between the pattern and ground. Accuracy may improve if a multi-mode TL is employed [43]. In general, this model plays an important role in estimating the performance of the absorber in advance.

It is also important to adjust the element geometry for optimal absorption bandwidth and intensity. Two parameters, namely, the ring length a and the line width g in Fig. 1, are varied in Figs. 3(e) and 3(f) to observe the trend of absorptivity. Here g is fixed at 0.7 mm in Fig. 3(e) and a is fixed at 4.8 mm in Fig. 3(f). From the parameter scan analysis, a combination of g=0.7mm and a=4.8mm is eventually selected to achieve satisfactory absorption performance. The angular dependences of absorptivity for dual polarizations are illustrated in Figs. 3(g) and 3(h). Obviously the proposed MMA still offers excellent polarization-independent absorption rate from 25.5 to 40.0 GHz in a large angular range from 0° to 60°, and so it is feasible to use it as a conformal absorber in the millimeter band. Due to the existence of high-order resonant modes at large incident angles, some abrupt jumps in absorption rate for both TE and TM cases are observed at corresponding frequencies, although it has little effect on the whole absorption performance of the proposed MMA.

To confirm the absorption properties of the proposed MMA in the conformal case, full-wave simulations are performed when it is coated on a cylindrical metallic surface. Figures 4(a) and 4(b) show, respectively, the scenarios of TE and TM illumination toward the surface at the angles of θ=90° and φ=0°. The far-field scattering patterns on the xoz plane for the surface with the MMA coat are compared from Figs. 4(c) to 4(h) at 32.0 GHz, where different target radii of curvature of r=75, 150, and 500 mm are considered with the same cylinder height of H=150mm. The scattering patterns of a same-size surface without coating are also provided in Fig. 4 for better observation of the scattering suppression. The directivity of the scattered beam improves significantly with increase of radius, as can be easily understood since a larger effective aperture size is achieved for wider cylinders. The conformal absorber is insensitive to the wave polarizations as we can tell in Figs. 4(c)4(h); this can be ascribed to the symmetry of the meta-atom. Considerable RCS reductions are shown for the curved surfaces with the aid of the MMA for dual polarizations, with an average value of more than 10 dB when r is larger than 75 mm. The growth of the radius r leads to a decreased curvature of the surface. In consequence, a larger RCS reduction can be obtained for the conformal MMA coating when r grows to 150 and 500 mm, as shown in Figs. 4(i) and 4(j), respectively.

 

Fig. 4. (a), (b) Schematic of the conformal MMA backed by a conducting cylindrical surface under normal incidence of TE and TM waves. (c)–(h) Scattering patterns on the xoz plane at 32.0 GHz for TE and TM waves with r=75, 150, and 500 mm. (i), (j) Simulated RCS reduction of the MMA coating compared with the control conducting surface of the same size for TE and TM waves with r=75, 150, and 500 mm.

Download Full Size | PPT Slide | PDF

Note that the reflection from the conformal MMA is significantly suppressed in all directions at 32.0 GHz for TE [Figs. 4(c)4(e)] and TM [Figs. 4(f)4(h)] waves. Furthermore, RCS reduction of more than 7.5 dB (equal to absorptivity of 0.82) of the curved MMA is observed from 26.0 to 40.0 GHz for dual polarizations as r increases from 75 to 500 mm; this is consistent with the simulated absorptivity at oblique incidence in Figs. 3(g) and 3(h).

Finally, since the angular performance of the curved surface is also very important for practical applications, the simulated RCS reduction of the MMA-coated curved metal surface is presented in Figs. 5(a) and 5(b), where the radius of curvature r=75mm. Different incident angles and polarization states are taken into account from 20.0 to 40.0 GHz. Considerable RCS reduction from the MMA coating is achieved at oblique incidence within the frequency range of interest. However, the growth of the incident angle will highlight the problem of impedance mismatch, and therefore lead to worsened performance at some frequencies, as shown in Fig. 5.

 

Fig. 5. Simulated angular stability of the MMA coating compared with the control conducting surface of the same size for (a) TE and (b) TM waves with r=75mm.

Download Full Size | PPT Slide | PDF

3. FABRICATION AND MEASUREMENT

The fabricated sample is illustrated in Fig. 6(a). The periodic rings on the top ITO film are produced via laser etching, in which the processing accuracy is 10 μm. An ultrathin layer of optically clear adhesive is used for interlayer adhesion with excellent light transmittance performance. The sample has a size of 155mm×150mm×1.65mm in total. The cylindrical surface is made of 304 stainless steel (electric conductivity 1.37×106S/m and thickness 1.5 mm) using Computer Numerical Control Machine Tools (CNC).

 

Fig. 6. (a) Photograph of the fabricated sample, where the inset shows the measured light transmittance. (b) The whole experimental setup in a microwave chamber. (c), (d) Measured absorptivity spectra of the proposed MMA from 20.0 to 40.0 GHz at angles of 0°, 15°, 30°, and 45° for TE and TM waves. (e), (f) Measured RCS reduction of the MMA coating compared with the control conducting surface of the same size with r=75mm under normal incidence of TE and TM waves.

Download Full Size | PPT Slide | PDF

The electromagnetic performance of the sample is characterized through the free-space method to measure the backward reflectivity as shown in Fig. 6(b). Swept sinusoidal signals from 20.0 to 40.0 GHz are transmitted and received through a pair of broadband antennas. A vector network analyzer (Agilent N5230C) is connected with the two antennas with phase-stable cables to determine the reflection and transmission coefficients from the sample. The sample is mounted on a platform opposite to the antennas as shown by a dashed line in Fig. 6(b). Since the transmitted energy is almost totally blocked by the ITO ground, the absorptivity can be written as A=1|S112|. Three rounds of measurement are performed in the experiment for calibration and normalization of reflectivity for the planar and curved MMAs; in these measurements, the sample, a control conducting plate, and a control conducting curved surface are measured separately for comparison. Optical transmittance measurement is carried out with a light transmittance meter (LS116; Shenzhen Linshang Technology Co., Ltd) with accuracy smaller than ±1%.

4. RESULTS AND DISCUSSION

Figures 6(c) and 6(d) demonstrate the measured absorptivity of the planar MMA from 20.0 to 40.0 GHz. In accordance with the simulation predictions, the experimental results exhibit the advantages of polarization insensitivity, a wide bandwidth, and angular stability. Large absorptivity is obtained from 24.7 to 38.8 GHz, which is greater than 90% under normal incidence. The minor deviation between the simulated and measured absorption bandwidths is primarily due to the fabrication and assembly tolerances, measurement errors, and the variance of permittivity of the substrates. Absorptivity remains stable when the incident angle is below 45°, remaining above 80% in the whole Ka band. In addition, the measured light transmittance of the sample is about 80.1% in Fig. 6(a), making it suitable for window applications in practice. The measured backward RCS reduction of the MMA-coated curved surface (r=75mm) under normal incidence of TE and TM waves is plotted in Figs. 6(e) and 6(f), respectively. Although the measured RCS reduction traces are red-shifted, the experimental results [Figs. 6(e) and 6(f)] show good agreement with the simulated ones [Figs. 3(e) and 3(f), respectively], proving that the proposed absorber can indeed reduce backward reflection with high efficiency, and showing the potentials of the proposed MMA for conformal applications.

5. CONCLUSION

We have demonstrated designs and experimental characterizations of a conformal broadband MMA with good optical transparency. A ring-shaped unit cell is employed to achieve broadband absorption from 24.7 to 38.8 GHz, with measured optical transmittance of 80.1%, owing to the magnetic resonance driven by the incident waves. When coated on a curved cylindrical surface, the MMA still operates well from 25.5 to 40.0 GHz in a large angular range up to 60°. Moreover, by using soft substrates like PET and PVC, the proposed MM is made especially suitable for flexible absorbers in the microwave and for THz engineering.

Funding

National Key Research and Development Program of China (2017YFA0700201, 2017YFA0700202, 2017YFA0700203); National Natural Science Foundation of China (NSFC) (11227904, 61138001, 61371035, 61501112, 61501117, 61522106, 61571117, 61631007, 61701107, 61701108, 61722106, 61731010); 111 Project (111-2-05); Natural Science Foundation of Jiangsu Province (BK20150020); Fundamental Research Funds for the Central Universities (KYCX17_0091); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17_0091); Scientific Research Foundation of Graduate School of Southeast University (YBJJ1812).

REFERENCES

1. Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971). [CrossRef]  

2. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007). [CrossRef]  

3. A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010). [CrossRef]  

4. L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013). [CrossRef]  

5. H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017). [CrossRef]  

6. T. J. Cui, “Microwave metamaterials,” Nat. Sci. Rev. 5, 134–136 (2017). [CrossRef]  

7. T. J. Cui, “Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017). [CrossRef]  

8. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006). [CrossRef]  

9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]  

10. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010). [CrossRef]  

11. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012). [CrossRef]  

12. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011). [CrossRef]  

13. R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38, 4988–4990 (2013). [CrossRef]  

14. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008). [CrossRef]  

15. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012). [CrossRef]  

16. F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015). [CrossRef]  

17. Y. C. Fan, F. L. Zhang, Q. Zhao, Z. Y. Wei, and H. Q. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014). [CrossRef]  

18. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015). [CrossRef]  

19. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140 GHz,” Sci. Rep. 4, 4130 (2014). [CrossRef]  

20. Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012). [CrossRef]  

21. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017). [CrossRef]  

22. J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018). [CrossRef]  

23. D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017). [CrossRef]  

24. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014). [CrossRef]  

25. Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018). [CrossRef]  

26. Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018). [CrossRef]  

27. Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018). [CrossRef]  

28. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011). [CrossRef]  

29. Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018). [CrossRef]  

30. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015). [CrossRef]  

31. B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005). [CrossRef]  

32. D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015). [CrossRef]  

33. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010). [CrossRef]  

34. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011). [CrossRef]  

35. X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012). [CrossRef]  

36. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008). [CrossRef]  

37. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012). [CrossRef]  

38. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014). [CrossRef]  

39. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005). [CrossRef]  

40. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [CrossRef]  

41. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998).

42. B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007). [CrossRef]  

43. S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
    [Crossref]
  2. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
    [Crossref]
  3. A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
    [Crossref]
  4. L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
    [Crossref]
  5. H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
    [Crossref]
  6. T. J. Cui, “Microwave metamaterials,” Nat. Sci. Rev. 5, 134–136 (2017).
    [Crossref]
  7. T. J. Cui, “Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
    [Crossref]
  8. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).
    [Crossref]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  10. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
    [Crossref]
  11. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [Crossref]
  12. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
    [Crossref]
  13. R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38, 4988–4990 (2013).
    [Crossref]
  14. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
    [Crossref]
  15. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
    [Crossref]
  16. F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
    [Crossref]
  17. Y. C. Fan, F. L. Zhang, Q. Zhao, Z. Y. Wei, and H. Q. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
    [Crossref]
  18. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
    [Crossref]
  19. B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
    [Crossref]
  20. Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
    [Crossref]
  21. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
    [Crossref]
  22. J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
    [Crossref]
  23. D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
    [Crossref]
  24. T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
    [Crossref]
  25. Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
    [Crossref]
  26. Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
    [Crossref]
  27. Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
    [Crossref]
  28. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
    [Crossref]
  29. Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
    [Crossref]
  30. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
    [Crossref]
  31. B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
    [Crossref]
  32. D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
    [Crossref]
  33. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
    [Crossref]
  34. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
    [Crossref]
  35. X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
    [Crossref]
  36. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [Crossref]
  37. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
    [Crossref]
  38. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
    [Crossref]
  39. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
    [Crossref]
  40. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
    [Crossref]
  41. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998).
  42. B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
    [Crossref]
  43. S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
    [Crossref]

2018 (5)

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

2017 (5)

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

T. J. Cui, “Microwave metamaterials,” Nat. Sci. Rev. 5, 134–136 (2017).
[Crossref]

T. J. Cui, “Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
[Crossref]

2015 (4)

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

2014 (4)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Y. C. Fan, F. L. Zhang, Q. Zhao, Z. Y. Wei, and H. Q. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

2013 (2)

R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38, 4988–4990 (2013).
[Crossref]

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

2012 (5)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref]

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

2011 (3)

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
[Crossref]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

2010 (3)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

2008 (3)

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

2007 (2)

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

2006 (1)

2005 (3)

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

2004 (1)

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

1971 (1)

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
[Crossref]

Abshinova, M.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Afsar, M. N.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Averitt, R. D.

Azad, A. K.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Bingham, C. M.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Boreman, G. D.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Caiazzo, M.

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

Cao, J.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Casaletti, M.

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

Chen, H.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

Chen, H. B.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Chen, X.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Chen, Z. H.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Cheng, Q.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Cheng, Y.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Cole, M. T.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Cucini, A.

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

Cui, T. J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

T. J. Cui, “Microwave metamaterials,” Nat. Sci. Rev. 5, 134–136 (2017).
[Crossref]

T. J. Cui, “Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

de Miollis, F.

Deng, C. R.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Dong, D. S.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Dong, G.

Fan, K.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Fan, Y.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Fan, Y. C.

Fang, Z.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Feng, S.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Fu, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Gao, L. H.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Goto, Y.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

Grzegorczyk, T. M.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Gu, J.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Guan, J. G.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Guillet, J. P.

Guo, L. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Guo, Y. H.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Hachiya, H.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

Han, J.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Hao, Y.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

He, Q.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Hu, D. W.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Huang, R.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Ishikawa, K.

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

Iwaszczuk, K.

Jang, T.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Jepsen, P. U.

Ji, G. B.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Kong, J. A.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Kong, L. B.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Korolev, K. A.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Kotter, D.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Kurahashi, S.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

Kuroki, S.

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Landy, N. I.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Li, H.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Li, H. Q.

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Li, Q. F.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Li, W.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Li, Z. W.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Liu, L.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
[Crossref]

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Liu, W. W.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Lv, H. L.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Ma, H.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Ma, S. J.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Maci, S.

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

Matitsine, S.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Matsumoto, K.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Meng, Y. Y.

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Milne, W. I.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Monacelli, B.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Mounaix, P.

Munk, B. A.

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Munk, P.

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

Naeem, M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Naito, Y.

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
[Crossref]

Namai, A.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

O’Hara, J. F.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Ogino, S.

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

Ohkoshi, S.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Okano, Y.

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Pang, Y. Q.

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Pendry, J. B.

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998).

Pryor, J.

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

Pryor, J. B.

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

Qiu, K.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Qu, S. B.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sakurai, S.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Sasaki, S.

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Sato, K.

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Shen, L. H.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Shen, X. P.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Shen, Y.

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Shin, Y. J.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Shrekenhamer, C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Singh, P. K.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006).
[Crossref]

Sonkusale, S.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

Strikwerda, A. C.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20, 635–643 (2012).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

Suetake, K.

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
[Crossref]

Sui, S.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Sun, J.

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Tan, P. K.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Tang, C. B.

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[Crossref]

Tomita, K.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Tuncer, H. M.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Wang, J. F.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Wang, L. Y. P.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Wang, Y. L.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Wang, Z. L.

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Wei, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Wei, Z. Y.

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Wu, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Wu, B. I.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Wu, B.-I.

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

Wu, T. L.

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

Xu, Z. C. J.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Yahiaoui, R.

Yang, B.

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Yang, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Yang, Y.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Yang, Z. H.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

Youn, H.

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

Zang, Y.

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Zhang, B. S.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Zhang, C.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

Zhang, F.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Zhang, F. L.

Zhang, J. Q.

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26, 28363–28375 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent broadband metamaterial absorber enhanced by water–substrate incorporation,” Opt. Express 26, 15665–15674 (2018).
[Crossref]

Zhang, W.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

Zhang, X.

Zhao, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Zhao, Q.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

Y. C. Fan, F. L. Zhang, Q. Zhao, Z. Y. Wei, and H. Q. Li, “Tunable terahertz coherent perfect absorption in a monolayer graphene,” Opt. Lett. 39, 6269–6272 (2014).
[Crossref]

Zhao, Y.

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

Zhou, J.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19, 21155–21162 (2011).
[Crossref]

Zhou, L.

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

Zhu, J.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011).
[Crossref]

ACS Photon. (1)

T. Jang, H. Youn, Y. J. Shin, and L. J. Guo, “Transparent and flexible polarization-independent microwave broadband absorber,” ACS Photon. 1, 279–284 (2014).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[Crossref]

Adv. Opt. Mater. (2)

D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, and J. G. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5, 1700109 (2017).
[Crossref]

D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, and T. J. Cui, “Terahertz broadband low-reflection metasurface by controlling phase distributions,” Adv. Opt. Mater. 3, 1405–1410 (2015).
[Crossref]

Angew. Chem. Int. Ed. (1)

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki, “A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets,” Angew. Chem. Int. Ed. 46, 8392–8395 (2007).
[Crossref]

Appl. Phys. Lett. (9)

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106, 091907 (2015).
[Crossref]

Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112, 254103 (2018).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106, 151601 (2015).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105, 021102 (2014).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110, 143511 (2017).
[Crossref]

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112, 073504 (2018).
[Crossref]

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99, 264101 (2011).
[Crossref]

X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[Crossref]

IEEE Trans. Anntenas Propag. (1)

B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Anntenas Propag. 53, 745–752 (2005).
[Crossref]

IEEE Trans. Antennas Propag. (2)

B. A. Munk, P. Munk, and J. Pryor, “On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence,” IEEE Trans. Antennas Propag. 55, 186–193 (2007).
[Crossref]

S. Maci, M. Caiazzo, A. Cucini, and M. Casaletti, “A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag. 53, 70–81 (2005).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Y. Okano, S. Ogino, and K. Ishikawa, “Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system,” IEEE Trans. Microw. Theory Tech. 60, 2456–2464 (2012).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

Y. Naito and K. Suetake, “Application of ferrite to electromagnetic wave absorber and its characteristics,” IEEE Trans. Microwave Theory Tech. 19, 65–72 (1971).
[Crossref]

Int. Mater. Rev. (1)

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, “Recent progress in some composite materials and structures for specific electromagnetic applications,” Int. Mater. Rev. 58, 203–259 (2013).
[Crossref]

J. Appl. Phys. (1)

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107, 09A955 (2010).
[Crossref]

J. Mater. Chem. C (1)

H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, and G. B. Ji, “A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials,” J. Mater. Chem. C 5, 491–512 (2017).
[Crossref]

J. Opt. (1)

T. J. Cui, “Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves,” J. Opt. 19, 084004 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, and S. B. Qu, “Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction,” J. Phys. D 51, 485301 (2018).
[Crossref]

Nat. Sci. Rev. (1)

T. J. Cui, “Microwave metamaterials,” Nat. Sci. Rev. 5, 134–136 (2017).
[Crossref]

New J. Phys. (1)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (2)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization,” Phys. Rev. B 78, 241103 (2008).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82, 205117 (2010).
[Crossref]

Phys. Rev. E (2)

X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Sci. Rep. (2)

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref]

B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, and Y. Hao, “Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz,” Sci. Rep. 4, 4130 (2014).
[Crossref]

Other (1)

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the flexible and transparent MMA at millimeter frequencies. (b) Geometry of a unit cell.
Fig. 2.
Fig. 2. (a) Simulated absorptivity spectra of the proposed MMA under normal incidence. (b), (c) Simulated magnetic field distribution and surface current distribution of the meta-atom at 32.0 GHz under normal incidence.
Fig. 3.
Fig. 3. (a) Schematic of the equivalent TL of the MMA. (b) TL model to retrieve the surface impedance of the ITO pattern. (c), (d) Calculated and simulated f r as well as absorptivity with change of incident angle. (e), (f) Dependence of the simulated absorptivity spectra on side length a and line width g . (g), (h) Simulated absorptivity spectra of the proposed MMA at incident angles from 0° to 70° for TE and TM waves.
Fig. 4.
Fig. 4. (a), (b) Schematic of the conformal MMA backed by a conducting cylindrical surface under normal incidence of TE and TM waves. (c)–(h) Scattering patterns on the x o z plane at 32.0 GHz for TE and TM waves with r = 75 , 150, and 500 mm. (i), (j) Simulated RCS reduction of the MMA coating compared with the control conducting surface of the same size for TE and TM waves with r = 75 , 150, and 500 mm.
Fig. 5.
Fig. 5. Simulated angular stability of the MMA coating compared with the control conducting surface of the same size for (a) TE and (b) TM waves with r = 75 mm .
Fig. 6.
Fig. 6. (a) Photograph of the fabricated sample, where the inset shows the measured light transmittance. (b) The whole experimental setup in a microwave chamber. (c), (d) Measured absorptivity spectra of the proposed MMA from 20.0 to 40.0 GHz at angles of 0°, 15°, 30°, and 45° for TE and TM waves. (e), (f) Measured RCS reduction of the MMA coating compared with the control conducting surface of the same size with r = 75 mm under normal incidence of TE and TM waves.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R = Z in Z 0 TE / TM Z in + Z 0 TE / TM ,
1 Z in = 1 Z S + 1 j Z d tan β r d ,
β r d = π / 2 .
f r = c 4 d ε r sin 2 θ .
R TE = Z S cos θ Z 0 Z S cos θ + Z 0 ,
R TM = Z S Z 0 cos θ Z S + Z 0 cos θ .
Z S = Z 0 S 21 2 2 S 21 ,

Metrics