Abstract

We experimentally demonstrate an ultrafast mode-locker based on a CoSb3 skutterudite topological insulator for femtosecond mode-locking of a fiber laser. The mode-locker was implemented on a side-polished fiber platform by depositing a CoSb3/PVA composite. The measured modulation depth and saturation power for the transverse-electric mode input were 5% and 8.7  W, respectively, and 2.8% and 10.6  W for the transverse-magnetic mode input. By incorporating this mode-locker into an erbium-doped fiber-based ring cavity, we were able to readily generate mode-locked, soliton pulses having a pulse width of 833  fs at 1557.9 nm. The 3-dB bandwidth of the output pulses and time-bandwidth product were 3.44 and 0.353 nm, respectively. To the best of the authors’ knowledge, this is the first demonstration of the use of a skutterudite-based saturable absorber for femtosecond mode-locked pulse generation.

© 2018 Chinese Laser Press

Corrections

26 September 2018: A typographical correction was made to the title.

1. INTRODUCTION

Ultrafast pulsed lasers have served as a useful light source in many applications such as micromachining, spectroscopy, and laser surgery [1,2]. In particular, the usage of the optical-fiber-based laser technology has attracted considerable technical attention in recent years due to its range of advantages including the alignment-free operation, high beam quality, environmental stability, and compactness [3].

A commonly used method for the generation of ultrafast pulses from fiber-laser cavities is passive mode-locking. Passive mode-locking is usually realized within the fiberized cavities using either of the two nonlinear optical phenomena, nonlinear polarization rotation (NPR) or saturable absorption. Saturable absorption is a nonlinear optical phenomenon wherein the light absorption decreases with the increase of the light intensity. Saturable absorption allows for a more stable mode-locking operation compared with NPR under changing environmental conditions. Until now, saturable-absorption properties have been identified for a variety of optical materials; for example, III-V compound semiconductors [4], carbon nanotubes (CNTs) [59], graphene [1015], graphene oxide (GO) [1620], graphite [2123], topological insulators (TIs) [2132], transition metal dichalcogenides (TMDCs) [3347], gold nanoparticles [4853], black phosphorus (BP) [5457], MXene [58], antimonene [59], and bismuthene [60]. In particular, the authors’ group found that filled skutterudites (FSs) can also serve as an efficient saturable-absorption material and reported their potential as the base material for the implementation of a fast saturable absorber (SA) [61].

Skutterudites have been extensively investigated regarding their thermoelectric applications due to their low cost, high thermoelectric quality, wide operating-temperature range, long-term thermoelectric stability, and reasonably sound mechanical performance [6264]. The general chemical formula of the common binary skutterudites is TX3, where T is a group-9 transition metal such as cobalt (Co), rhodium (Rh), or iridium (Ir), and X is a pnicogen such as phosphorous (P), arsenic (As), or antimony (Sb). These compounds comprise a body-centered cubic structure composed of 32 unit-cell atoms, and its space group is Im3. Since the skutterudite thermal conductivity is too large, it typically needs to be reduced by filling the cage-like voids with an electropositive element, thereby forming a stabilized compound [65]; this compound is the filled skutterudite, the formula of which is MyT4X12. The commonly used filling elements are the atoms of the rare-earth, alkali-earth, and group-14 carbon-family elements; indium (In), cadmium (Cd), and silver (Ag) atoms have also been used for this purpose.

Recently, the authors’ group investigated the electric-band structures of the unfilled and filled skutterudites of cobalt antimonide (CoSb3) and In0.2Co4Sb12, respectively, using the density functional theory (DFT) calculation to calculate their ultimate potential regarding the base saturable-absorption materials [66]. Notably, the CoSb3 skutterudite with a small bandgap and a high carrier mobility [67] was identified as a TI [6870]. TIs exhibit the gapless metallic states on the surface with the insulating interior, due to the combination of strong spin-orbit coupling-induced band inversion and time-reversal symmetry. Such unique properties enable these new Dirac materials to exhibit extraordinary charge and spin properties at their edges and surfaces [71]. It should be noted that the TIs generally possess sound thermoelectric properties, while it is already known that the key ingredients of the thermoelectric materials and the topological insulators are the same. Sound thermoelectric materials require a high electrical conductivity and a low thermal conductivity, both of which can be achieved by the narrow electronic bandgap and the large atomic masses. The band inversion substantially increases with the atomic mass, and the prerequisite condition for the band inversion is a narrow bandgap.

In this work, the ultimate potential of the CoSb3 skutterudite as a fast mode-locker usable for femtosecond mode-locking is investigated as an ongoing study of the authors’ group [59]. More specifically, the proposed mode-locker was implemented by the deposition of a composite film of the CoSb3 skutterudite and polyvinyl alcohol (PVA) onto the flat side of the side-polished fiber. Its mode-locking performance was evaluated within the erbium-doped-fiber (EDF)-based ring cavity. To properly determine the material properties, a series of measurements including Raman spectroscopy, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), wideband linear absorption, and nonlinear absorption were conducted. Consequently, stable mode-locked pulses with a temporal width of 833  fs could readily be generated from the fiber laser at a wavelength of 1557.9 nm.

2. PREPARATION AND CHARACTERIZATION OF THE CoSb3-BASED SATURABLE ABSORBER

CoSb3 powder (99.9%; Toshima, Japan), which is a commercially available, low-cost powder, was used as the starting material. Raman spectroscopy, EDS, SEM, and XPS were conducted to determine the material properties of the prepared CoSb3 particles. For these measurements, a small amount of a water-dispersed CoSb3 particle was dropped and dried on top of the slide glass. First, the Raman spectrum was measured at 532 nm, and seven Raman peaks were observed, as shown in Fig. 1(a). Among them, the peaks at 83, 110, 136, 152, and 179  cm1 were identified as the skutterudite phonon modes [7274]. The peaks at 186.7  cm1 and 255  cm1 are the F2g mode and the A1g mode of Sb2O3, respectively [75,76]. Next, the EDS profile was measured, and the result is shown in Fig. 1(b). The spectrum shows strong peaks corresponding to cobalt (Co) and antimony (Sb), and the atomic ratio of the Co to the Sb is approximately 13 [77]. An SEM measurement for the detailed surface morphology of the CoSb3 powder has been performed, as shown in the inset of Fig. 1(b). The size of the CoSb3 particles is less than 75 μm. Then, the XPS particle measurement was performed. Figure 2(a) shows the high-resolution Co-2p spectrum, whereas the Sb-3d spectrum is shown in Fig. 2(b). The peak at 778  eV in the Co-2p region of Fig. 2(a) is consistent with the reported binding-energy value of the Co 2p3/2 [60], while the peaks at 527.4 and 536.8 eV in the Sb-3d region of Fig. 2(b) are consistent with those of the Sb 3d5/2 and the Sb 3d3/2 [78,79]. It should be noted that the additional peaks at 529.7 and 539.1  eV in the Sb-3d region correspond to antimony trioxide (Sb2O3) [79,80]. The Raman and XPS measurements clearly show that the used CoSb3 became substantially oxidized.

 

Fig. 1. Measured (a) Raman spectrum and (b) energy-dispersive X-ray spectroscopy (EDS) profile of the cobalt antimonide (CoSb3) particle. Inset: measured SEM image of the prepared CoSb3 powder.

Download Full Size | PPT Slide | PDF

 

Fig. 2. Measured X-ray photoelectron spectroscopy (XPS) profiles: (a) cobalt (Co) 2p spectrum and (b) antimony (Sb) 3d spectrum of the CoSb3 particle.

Download Full Size | PPT Slide | PDF

To implement an all-fiberized SA based on the prepared CoSb3/PVA composite, the side-polished fiber platform was employed. The cross-sectional structure of the prepared CoSb3/PVA-deposited side-polished fiber is shown in Fig. 3(a). For the preparation of the side-polished fiber, one side of the single-mode fiber, which was fixed onto the V-grooved slide glass, was polished. The distance between the flat side and the fiber core was measured at 10  μm using the microscope. As reported in Refs. [43,58], the optimum distance range between the edge of the core and the polished surface of the side-polished fiber was empirically found to be from 7 to 11  μm for the evanescent field interaction in the wavelength band of 1.5 μm. The interaction length between the evanescent field and the CoSb3 layer was 2  mm. The measured insertion loss and polarization-dependent loss (PDL) of the prepared side-polished fiber are 0.9  dB and 0.07  dB, respectively. The CoSb3/PVA solution was deposited on the flat side of the side-polished fiber using the solution-drop method and then dried at room temperature for 24 h.

 

Fig. 3. (a) Schematic of the cobalt antimonide (CoSb3)/polyvinyl alcohol (PVA)-deposited side-polished fiber. (b) Measured linear optical-absorption spectrum of the CoSb3/PVA composite.

Download Full Size | PPT Slide | PDF

Figure 3(b) shows the measured linear optical absorption of the CoSb3/PVA composite film over the spectral range of 1000–1800 nm. For the linear absorption measurement for the CoSb3/PVA composite, the CoSb3/PVA solution was deposited onto a slide glass and then dried. After that, the linear absorption measurement was conducted using a spectrophotometer (UV-3600PLUS, Shimadzu). The linear absorbance of the slide glass without the CoSb3/PVA composite was measured as a background reference. As shown in Fig. 3(b), a wide absorption range of light (1000–1800 nm) can be absorbed in the CoSb3/PVA film, while the clean slide glass exhibits negligible absorption. Note that it is impossible to measure the linear transmittance of the clean side-polished fiber with the spectrophotometer used in our laboratory. After the composite deposition, the insertion loss and the PDL of the prepared side-polished fiber were increased up to 3.4  dB and 2.9  dB, respectively. We then launched a 1550 nm continuous wave (CW) amplified laser beam of 1 W power into our prepared CoSb3-based SA to measure its damage threshold. We observed no damage of the prepared SA within the power level. Therefore, we believe that the damage threshold of the prepared CoSb3-based SA must be larger than 1 W. However, it was impossible to measure the precise damage threshold value due to the limited availability of a high-power laser in our laboratory.

Next, the measurement of the nonlinear transmission curve as a function of the input-optical-pulse peak power was performed to determine the nonlinear absorption performance of the prepared CoSb3/PVA-based SA. In order to measure the transmission curve of the prepared CoSb3/PVA-based SA, we used our built mode-locked, 1.56-μm Er-doped fiber laser with a temporal width of 730  fs at a repetition rate of 22.26  MHz, and the measurement setup is shown in Fig. 4(a). The variable optical attenuator (VOA) was used to adjust the optical power of the mode-locked pulses. A 5050 fiber-optic coupler was used to split the mode-locked pulses into two ports. One of the two ports was connected to the prepared CoSb3/PVA-based SA, while the other was directly connected to a power meter to monitor the input optical power of the prepared SA. Another power meter was used to monitor the output power from the CoSb3/PVA-based SA for its comparison with the input power. Since our SA had a non-negligible polarization-dependent loss of 2.9  dB, a polarization controller (PC) was incorporated into the measurement setup. The nonlinear transmission curves were measured for the transverse-electric (TE) mode and the transverse-magnetic (TM) mode, respectively. Figures 4(b) and 4(c) show the transmission curves for the input-beams of the TE and TM modes, respectively, together with their corresponding fitting curves [81]

T(I)=1ΔT·exp(IIsat)Tns,
where T(I) is the transmission, ΔT is the modulation depth, I is the input-pulse energy, Isat is the saturation energy, and Tns is the nonsaturable loss. The estimated modulation depth and saturation power for the TE-mode input are 5% and 8.7  W, respectively, while they are 2.8% and 10.6  W for the TM-mode input. It is believed the modulation depth values of the fabricated CoSb3/PVA-based SA are sufficiently high to induce mode-locking with the proper anomalous dispersion within the fiberized laser cavity [82]. It would be possible to increase the modulation depth by enlarging the interaction length and strength between the CoSb3 particles and the oscillating beam. The interaction length increase could be easily obtained by polishing a longer length, and the interaction strength increase would need a further reduction of the distance between the core and the polished area. However, the two processes might increase the insertion loss of an SA. This means that there must exist an optimum structure of the side-polished fiber. And, in order to reduce the non-saturable loss, special care must be taken to reduce the surface roughness of the side-polished fiber, as well.

 

Fig. 4. (a) Measurement setup for nonlinear transmission curves of the CoSb3/PVA-based SA. Measured nonlinear transmission curves of the CoSb3/PVA-deposited side-polished fiber: (b) transverse electric (TE) mode and (c) transverse magnetic (TM) mode.

Download Full Size | PPT Slide | PDF

3. MODE-LOCKING OF A FIBER LASER WITH A CoSb3/PVA-BASED SATURABLE ABSORBER

The experimental schematic of the proposed mode-locked EDF laser is shown in Fig. 5. The gain medium of the laser cavity is a 2.3-m-long EDF with a peak absorption of 20  dB/m at a wavelength of 1530 nm. A 980-nm semiconductor laser diode was used as the pumping source, and the pump beam was launched into the gain fiber using a 980/1550-nm wavelength division multiplexer (WDM). The polarization-independent isolator was used to force the unidirectional light propagation. The mode-locked laser output was extracted from the ring cavity using the 10% port of the 9010 coupler. A PC was used to optimize the polarization state within the laser cavity. The CoSb3/PVA-deposited side-polished fiber was placed after the PC.

 

Fig. 5. Mode-locked fiber laser configuration.

Download Full Size | PPT Slide | PDF

At a pump power of 68  mW, the fundamental mode-locking started with multiple pulses (6 pulses), while the PC was carefully adjusted. When the pump power was reduced to 21  mW, a single pulse stably appeared at the fundamental resonance frequency. The average output power was measured as 0.1  mW. The main factors limiting the output power of this fiber laser are the insertion loss of the prepared CoSb3-based SA and the coupling ratio of the output coupler. Furthermore, note that the insertion loss of the prepared SA is not a simple function of the material’s property. In order to control the insertion loss of the prepared SA, we need to optimize the side-polished fiber platform in terms of interaction length, polishing depth, and concentration of the CoSb3/PVA solution. Further investigations need to be conducted for the optimum performance of the laser.

Figure 6(a) shows the measured optical spectrum of the output mode-locked pulses. Kelly sidebands were clearly observed, indicating that the fiber laser operated in the soliton regime [83]. The center wavelength and the 3-dB bandwidth were measured as 1557.9  nm and 3.44  nm, respectively. Figure 6(b) shows the measured oscilloscope trace of the output pulses, while the inset of Fig. 6(b) shows the magnified view of the single output pulse. The pulse period is 69.06  ns, corresponding to the fundamental repetition rate of 14.48  MHz. For the oscilloscope measurements, a combination of the 16-GHz real-time oscilloscope and the 15-GHz photodetector was used.

 

Fig. 6. Measured (a) optical spectrum (resolution bandwidth: 0.05 nm) and (b) oscilloscope trace of the output pulses. Inset: oscilloscope trace over the narrow span.

Download Full Size | PPT Slide | PDF

Next, autocorrelation measurement was conducted using the two-photon absorption-based autocorrelator, and the measured autocorrelation trace is shown in Fig. 7(a) with the sech2() fitting curve. The estimated temporal width of the output pulses is 833  fs. Considering the 3-dB bandwidth of 3.44  nm, the estimated time-bandwidth product is 0.353, which is slightly higher than the 0.315 product of the transform-limited sech2() pulses, indicating that the output pulses are slightly chirped. The measured electrical spectrum of the output pulses is shown in Fig. 7(b). A sharp and strong peak with an electrical signal-to-background ratio of 57  dB was observed at the fundamental frequency of 14.48 MHz in the electrical spectrum. The noise floor in Fig. 7(b) is 122  dBm. The inset of Fig. 7(b) shows the electrical spectrum with a 1-GHz frequency span. Strong beat signals were clearly observed, indicating that the output pulses are stable mode-locked pulses.

 

Fig. 7. Measured (a) autocorrelation trace of the output pulses and (b) electrical spectrum of the output pulses. Inset: measured electrical spectrum over a span of 1 GHz.

Download Full Size | PPT Slide | PDF

We believe that the dominant mechanism for mode-locking in our laser is saturable absorption, even if nonlinear rotation could partly contribute to the mode-locking. Note that Bogusławki et al. mentioned that a 2.7-dB PDL is small enough to exclude the NPR effect [84].

Lastly, we have summarized the performance of the CoSb3-based SA in comparison with that of the SAs based on other saturable absorption materials, as shown in Table 1. Even if the CoSb3-based SA does not outperform the SAs based on other saturable absorption materials in terms of SA threshold and modulation depth, it appears that it exhibits performance comparable to the others. The output average power of the mode-locked pulses from our laser was only 0.1 mW, which is smallest compared to those of the lasers incorporating the other saturable absorption materials.

Tables Icon

Table 1. Performance Comparison Between the Present Work and the Previously Demonstrated Mode-Locked Erbium-Doped Fiber Lasers Incorporating Other Saturable Absorption Materials

4. CONCLUSION

It has been experimentally demonstrated in this study that the proposed CoSb3/PVA-based SA can be used as a fast mode-locker for the generation of femtosecond-mode-locked pulses from the fiber laser. The SA was fabricated using a side-polished-fiber platform that was deposited with a CoSb3/PVA composite. Stable mode-locked pulses with a temporal width of 833  fs could be readily obtained from the EDF ring cavity. The authors believe that this experimental demonstration reveals the significant potential of the CoSb3 TI in terms of ultrafast-laser technology.

Funding

National Research Foundation of Korea (NRF) (2018R1A2B6001641); Institute for Information and Communications Technology Promotion (IITP-2018-2015-0-00385).

REFERENCES

1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003). [CrossRef]  

2. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014). [CrossRef]  

3. M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009). [CrossRef]  

4. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). [CrossRef]  

5. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004). [CrossRef]  

6. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32, 148–150 (2007). [CrossRef]  

7. M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012). [CrossRef]  

8. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009). [CrossRef]  

9. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20, B124–B130 (2012). [CrossRef]  

10. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009). [CrossRef]  

11. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010). [CrossRef]  

12. Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010). [CrossRef]  

13. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013). [CrossRef]  

14. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2  μm wavelength,” Opt. Lett. 37, 2085–2087 (2012). [CrossRef]  

15. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013). [CrossRef]  

16. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012). [CrossRef]  

17. M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012). [CrossRef]  

18. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013). [CrossRef]  

19. J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013). [CrossRef]  

20. S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016). [CrossRef]  

21. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011). [CrossRef]  

22. Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012). [CrossRef]  

23. J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016). [CrossRef]  

24. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

25. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012). [CrossRef]  

26. Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013). [CrossRef]  

27. H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013). [CrossRef]  

28. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014). [CrossRef]  

29. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014). [CrossRef]  

30. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014). [CrossRef]  

31. H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014). [CrossRef]  

32. J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016). [CrossRef]  

33. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014). [CrossRef]  

34. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014). [CrossRef]  

35. K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015). [CrossRef]  

36. R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014). [CrossRef]  

37. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015). [CrossRef]  

38. M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015). [CrossRef]  

39. P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015). [CrossRef]  

40. J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016). [CrossRef]  

41. B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015). [CrossRef]  

42. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23, 20051–20061 (2015). [CrossRef]  

43. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016). [CrossRef]  

44. D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016). [CrossRef]  

45. J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017). [CrossRef]  

46. D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016). [CrossRef]  

47. J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016). [CrossRef]  

48. T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012). [CrossRef]  

49. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014). [CrossRef]  

50. X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014). [CrossRef]  

51. J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015). [CrossRef]  

52. Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015). [CrossRef]  

53. J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016). [CrossRef]  

54. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015). [CrossRef]  

55. Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015). [CrossRef]  

56. K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015). [CrossRef]  

57. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015). [CrossRef]  

58. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017). [CrossRef]  

59. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017). [CrossRef]  

60. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017). [CrossRef]  

61. J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017). [CrossRef]  

62. D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995). [CrossRef]  

63. J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002). [CrossRef]  

64. G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017). [CrossRef]  

65. V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998). [CrossRef]  

66. Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018). [CrossRef]  

67. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996). [CrossRef]  

68. V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012). [CrossRef]  

69. B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012). [CrossRef]  

70. M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014). [CrossRef]  

71. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010). [CrossRef]  

72. J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996). [CrossRef]  

73. X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011). [CrossRef]  

74. L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001). [CrossRef]  

75. M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015). [CrossRef]  

76. D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004). [CrossRef]  

77. O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016). [CrossRef]  

78. R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981). [CrossRef]  

79. M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017). [CrossRef]  

80. W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973). [CrossRef]  

81. K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018). [CrossRef]  

82. J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015). [CrossRef]  

83. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992). [CrossRef]  

84. J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23, 29014–29023 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  2. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
    [Crossref]
  3. M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
    [Crossref]
  4. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  5. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004).
    [Crossref]
  6. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32, 148–150 (2007).
    [Crossref]
  7. M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
    [Crossref]
  8. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
    [Crossref]
  9. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20, B124–B130 (2012).
    [Crossref]
  10. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  11. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  12. Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
    [Crossref]
  13. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [Crossref]
  14. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2  μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
    [Crossref]
  15. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
    [Crossref]
  16. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
    [Crossref]
  17. M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
    [Crossref]
  18. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
    [Crossref]
  19. J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
    [Crossref]
  20. S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
    [Crossref]
  21. G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
    [Crossref]
  22. Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
    [Crossref]
  23. J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
    [Crossref]
  24. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.
  25. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
    [Crossref]
  26. Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
    [Crossref]
  27. H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
    [Crossref]
  28. J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
    [Crossref]
  29. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
    [Crossref]
  30. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
    [Crossref]
  31. H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
    [Crossref]
  32. J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
    [Crossref]
  33. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
    [Crossref]
  34. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
    [Crossref]
  35. K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
    [Crossref]
  36. R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014).
    [Crossref]
  37. D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
    [Crossref]
  38. M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
    [Crossref]
  39. P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
    [Crossref]
  40. J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
    [Crossref]
  41. B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
    [Crossref]
  42. R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23, 20051–20061 (2015).
    [Crossref]
  43. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
    [Crossref]
  44. D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
    [Crossref]
  45. J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
    [Crossref]
  46. D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
    [Crossref]
  47. J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
    [Crossref]
  48. T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
    [Crossref]
  49. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
    [Crossref]
  50. X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
    [Crossref]
  51. J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
    [Crossref]
  52. Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
    [Crossref]
  53. J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
    [Crossref]
  54. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
    [Crossref]
  55. Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
    [Crossref]
  56. K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
    [Crossref]
  57. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
    [Crossref]
  58. Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
    [Crossref]
  59. Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
    [Crossref]
  60. L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
    [Crossref]
  61. J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
    [Crossref]
  62. D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
    [Crossref]
  63. J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
    [Crossref]
  64. G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
    [Crossref]
  65. V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
    [Crossref]
  66. Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
    [Crossref]
  67. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
    [Crossref]
  68. V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
    [Crossref]
  69. B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
    [Crossref]
  70. M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
    [Crossref]
  71. M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
    [Crossref]
  72. J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
    [Crossref]
  73. X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
    [Crossref]
  74. L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
    [Crossref]
  75. M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
    [Crossref]
  76. D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
    [Crossref]
  77. O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
    [Crossref]
  78. R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
    [Crossref]
  79. M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
    [Crossref]
  80. W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
    [Crossref]
  81. K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
    [Crossref]
  82. J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015).
    [Crossref]
  83. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
    [Crossref]
  84. J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23, 29014–29023 (2015).
    [Crossref]

2018 (2)

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

2017 (7)

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

2016 (10)

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

2015 (15)

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015).
[Crossref]

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23, 29014–29023 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40, 3885–3888 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23, 20051–20061 (2015).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
[Crossref]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

2014 (11)

M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4, 1–6 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

2013 (6)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

2012 (10)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
[Crossref]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2  μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20, B124–B130 (2012).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

2011 (2)

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

2010 (3)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

2009 (3)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

2007 (1)

2004 (2)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004).
[Crossref]

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

2002 (1)

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

2001 (1)

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

1998 (1)

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

1996 (3)

J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
[Crossref]

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

1995 (1)

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

1992 (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

1981 (1)

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

1973 (1)

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

Aasthi, D. K.

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Abramski, K. M.

Amrithapandian, S.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Anasori, B.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Arnache, O. L.

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

Arutyunyan, N. R.

Asokan, K.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Avasthi, D. K.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Badrinarayanan, S.

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

Bae, M.-K.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Bala, M.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Bao, Q.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Bennington, S.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Bernard, F.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Boguslawski, J.

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Borshchevsky, A.

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Caillat, T.

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Cao, G.

Chakoumakos, B. C.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Chang, Y. M.

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Chen, B.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Chen, C.-L.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Chen, H.

Chen, J.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

Chen, S.

Chen, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Cheng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Chernysheva, M. A.

Chi, H.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Choi, W.-K.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

Chung, H.

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

Coldea, R.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Cui, X.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Dai, P.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Debnath, P.

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

der Au, J. A.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Dhanabalan, S. C.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Dianov, E. M.

Dong, B.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Dong, C.-L.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Du, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Du, J.

Emplit, P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Endres, M. G.

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

Fan, D.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Feldman, J. L.

J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
[Crossref]

Felser, C.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Feng, Y.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Fermann, M.

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Fleurial, J.-P.

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Freeman, E. J.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Gajewski, D. A.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Gan, X.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Gao, W. L.

Gao, X. J.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Ge, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Gogotsi, Y.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Goh, C. S.

Gorza, S. P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Grodecki, K.

Gu, M.

Guo, C.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

P. Yan, A. Liu, Y. Chen, H. Chen, S. Ruan, C. Guo, S. Chen, I. L. Li, H. Yang, J. Hu, and G. Cao, “Microfiber-based WS2-film saturable absorber for ultra-fast photonics,” Opt. Mater. Express 5, 479–489 (2015).
[Crossref]

Guo, Z.

Guo, Z.-N.

Gupta, S.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Han, L.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Han, W.-S.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Hartl, I.

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

Hasan, M. Z.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Hasan, T.

Hegde, R. I.

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Howe, R. C. T.

Hu, G.

Hu, J.

Hu, X. B.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Hua, S.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Huang, H.

Huang, Q. J.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Jablonski, M.

Jang, S.-Y.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Jeon, J.

Jhon, Y. I.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Jhon, Y. M.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

Jia, Z. X.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Jiang, B.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Jiang, G.

Jiang, H. D.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Jiang, T.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Jiang, X.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Jiang, X.-F.

Joo, B. S.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Jung, M.

Kane, C. L.

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Kang, Z.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kelleher, E. J. R.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

Keppens, V.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Kieu, K.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

Kim, S. J.

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Ko, S.

Koo, J.

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Kowalczyk, M.

Krajewska, A.

Krylov, A. A.

Kryukov, P. G.

Lee, J.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

Lee, J. H.

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912  nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7, 2968–2979 (2017).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” J. Lightwave Technol. 34, 3776–3784 (2016).
[Crossref]

J. Lee, J. Lee, J. Koo, and J. H. Lee, “Graphite saturable absorber based on the pencil-sketching method for Q-switching of an erbium fiber laser,” Appl. Opt. 55, 303–309 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

J. Koo, J. Lee, W. Shin, and J. H. Lee, “Large energy, all-fiberized Q-switched pulse laser using a GNRs/PVA saturable absorber,” Opt. Mater. Express 5, 1859–1867 (2015).
[Crossref]

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode locking,” J. Opt. Soc. Am. B 32, 31–37 (2015).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Lee, K.

Lee, S.

Lee, Y. T.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

Li, C.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Li, H.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Li, I. L.

Li, N.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Li, Q.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Li, Z.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Li, Z. F.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Liang, Z.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Lin, G.-R.

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
[Crossref]

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

Lin, Y.-C.

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

Lin, Y.-H.

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
[Crossref]

Liu, A.

Liu, H.

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Liu, J.

Liu, L.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Liu, L. X.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Liu, M.

Liu, M. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Liu, W.-M.

M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
[Crossref]

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Lu, L.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Lu, S.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

Lu, S. B.

Luo, A.-P.

Luo, Z.-C.

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

Lv, P.

Ma, C.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Ma, J.

Macherzynski, W.

Mandrus, D.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Mao, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Maple, M. B.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Mars, K.

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Mei, T.

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Meisner, G. P.

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

Mikula, A.

Morelli, D. T.

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Morgan, W. E.

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

Müchler, L.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Obraztsova, E. D.

Paletko, P.

Pannu, C.

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Pardo, V.

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

Park, J.

Park, K.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

Pasternak, I.

Peng, T.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Pickett, W. E.

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

Pino, J.

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Popov, S. V.

Pozharov, A. S.

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Pronraj, J. S.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Qi, X.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Qi, X.-L.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Qian, L. J.

Qin, G.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Qin, G. S.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Qin, W.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Qin, W. P.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Rogl, G.

G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
[Crossref]

Rogl, P.

G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
[Crossref]

Ruan, S.

Runcorn, T. H.

Sainkar, S. R.

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

Sales, B. C.

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Sánchez, L. C.

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

Seo, M.

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

Set, S. Y.

She, X.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shin, W.

Singh, D. J.

J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
[Crossref]

Sinha, A. P. B.

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

Smith, J. C.

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

Sobon, G.

Song, K.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Song, W. L.

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Song, Y.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Song, Y.-W.

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32, 148–150 (2007).
[Crossref]

Sotor, J.

Srivastava, S. K.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

Stec, W. J.

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

Strupinski, W.

Su, X.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Sun, Z.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tanaka, Y.

Tang, D.

Tang, D. Y.

Tang, P.

Tang, X.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Taylor, J. R.

Tian, Q.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Torrisi, F.

Tripathi, S. K.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Tripathi, T. S.

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Uher, C.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Vandersande, J.

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, B.

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Wang, G.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Wang, H.

Wang, H. H.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Wang, J.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, J. Y.

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2  μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).
[Crossref]

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Wang, K.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

Wang, P.

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, X.-D.

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

Wang, Y.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Z.

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Wazer, J. R. V.

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Wen, S.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Wen, S. C.

Wen, S.-C.

Wise, F. W.

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

Woodward, R. I.

Wu, K.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

Wu, L.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Wu, S.

Xiang, Y.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Xiao, P.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Xie, C. S.

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Xie, G. Q.

Xing, F.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Xu, J.

Xu, W.-C.

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

Xu, Y.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Xu, Z.-C. W.-C.

Yaguchi, H.

Yamashita, S.

Yan, B.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Yan, P.

Yang, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Yang, H.

Yang, J.

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

Yang, M.

M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
[Crossref]

Yang, Q.-H.

Yang, R.

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

Yang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yin, S. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Yu, B.-K.

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Yu, H. H.

Yu, X.

Yu, X.-F.

Yuan, P.

Zeng, D. W.

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Zeng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Zhang, H.

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Zhang, H. J.

Zhang, L.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Zhang, Q.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Zhang, S.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Zhang, S.-C.

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Zhang, W.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Zhang, X.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

K. Wu, X. Zhang, J. Wang, and J. Chen, “463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber,” Opt. Lett. 40, 1374–1377 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

Zhao, C.

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Self-assembled topological insulator: Bi2Se3 membrane as a passive Q-switcher in an erbium-doped fiber laser,” J. Lightwave Technol. 31, 2857–2863 (2013).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Zhao, C.-J.

Zhao, J.

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Zhao, N.

Zhao, S. R.

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Zheng, J.

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

Zheng, X.-W.

Zhou, L.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Zhou, X.

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Zhu, B. L.

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Zou, W.

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Zybala, R.

2D Mater. (1)

Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, and S. Lu, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4, 045010 (2017).
[Crossref]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Adv. Funct. Mater. (2)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yang, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Adv. Mater. (2)

Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, and Y. M. Jhon, “Metallic MXene saturable absorber for femtosecond mode-locked lasers,” Adv. Mater. 29, 1702496 (2017).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Adv. Opt. Mater. (1)

J. Lee, B.-K. Yu, Y. I. Jhon, J. Koo, S. J. Kim, Y. M. Jhon, and J. H. Lee, “Filled skutterudites for broadband saturable absorbers,” Adv. Opt. Mater. 5, 1700096 (2017).
[Crossref]

Ann. Phys. (1)

K. Park, J. Lee, Y. T. Lee, W.-K. Choi, J. H. Lee, and Y.-W. Song, “Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction,” Ann. Phys. 527, 770–776 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

M. Jung, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012).
[Crossref]

Appl. Phys. Lett. (4)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101, 211106 (2012).
[Crossref]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96, 051122 (2010).
[Crossref]

T. Jiang, Y. Xu, Q. Tian, L. Liu, Z. Kang, R. Yang, G. Qin, and W. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101, 151122 (2012).
[Crossref]

X.-D. Wang, Z.-C. Luo, H. Liu, M. Liu, A.-P. Luo, and W.-C. Xu, “Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser,” Appl. Phys. Lett. 105, 161107 (2014).
[Crossref]

Chem. Mater. (1)

X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, “Structure and transport properties of double-doped CoSb2.75Ge0.25−xTex (x = 0.125–0.20) with in situ nanostructure,” Chem. Mater. 23, 2948–2955 (2011).
[Crossref]

Chem. Phys. Lett. (1)

L. X. Liu, H. Liu, J. Y. Wang, X. B. Hu, S. R. Zhao, H. D. Jiang, Q. J. Huang, H. H. Wang, and Z. F. Li, “Raman spectroscopy investigation of partially filled skutterudite,” Chem. Phys. Lett. 347, 373–377 (2001).
[Crossref]

Curr. Opin. Green Sustain. Chem. (1)

G. Rogl and P. Rogl, “Skutterudite, a most promising group of thermoelectric materials,” Curr. Opin. Green Sustain. Chem. 4, 50–57 (2017).
[Crossref]

Electron. Lett. (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

Y. I. Jhon, J. Lee, Y. M. Jhon, and J. H. Lee, “Topological insulators for mode-locking of 2-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1102208 (2018).
[Crossref]

M. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009).
[Crossref]

Inorg. Chem. (1)

W. E. Morgan, W. J. Stec, and J. R. V. Wazer, “Inner-orbital binding-energy shifts of antimony and bismuth compounds,” Inorg. Chem. 12, 953–955 (1973).
[Crossref]

J. Appl. Phys. (1)

T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of single crystalline semiconducting CoSb3,” J. Appl. Phys. 80, 4442–4449 (1996).
[Crossref]

J. Electron Spectrosc. Relat. Phenom. (1)

R. I. Hegde, S. R. Sainkar, S. Badrinarayanan, and A. P. B. Sinha, “A study of dilute tin alloys by X-ray photoelectron spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 24, 19–25 (1981).
[Crossref]

J. Lightwave Technol. (4)

J. Mater. Sci. Mater. Electron. (1)

O. L. Arnache, J. Pino, and L. C. Sánchez, “Determination of milling parameters useful on the formation of CoSb3 thermoelectric powders by low-energy mechanical alloying,” J. Mater. Sci. Mater. Electron. 27, 4120–4130 (2016).
[Crossref]

J. Opt. (1)

J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Harmonically mode-locked femtosecond fiber laser using non-uniform, WS2-particle deposited side-polished fiber,” J. Opt. 18, 035502 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (2)

L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Pronraj, B. Dong, Y. Xiang, F. Xing, D. Fan, and H. Zhang, “Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability,” Laser Photon. Rev. 12, 1870012 (2017).
[Crossref]

H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, and J. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Laser Phys. Lett. (6)

G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880–886 (2011).
[Crossref]

Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
[Crossref]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett. 10, 035103 (2013).
[Crossref]

M. Jung, J. Koo, Y. M. Chang, P. Debnath, Y.-W. Song, and J. H. Lee, “An all fiberized, 1.89-μm Q-switched laser employing carbon nanotube evanescent field interaction,” Laser Phys. Lett. 9, 669–673 (2012).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982  nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12, 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1  μm wavelength,” Laser Phys. Lett. 11, 035102 (2014).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
[Crossref]

Mater. Lett. (1)

D. W. Zeng, C. S. Xie, B. L. Zhu, and W. L. Song, “Characteristics of Sb2O3 nanoparticles synthesized from antimony by vapor condensation method,” Mater. Lett. 58, 312–315 (2004).
[Crossref]

Nat. Photonics (1)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorber for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Nature (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, “Localized vibrational modes in metallic solids,” Nature 395, 876–878 (1998).
[Crossref]

Opt. Commun. (1)

K. Wu, B. Chen, X. Zhang, S. Zhang, C. Guo, C. Li, P. Xiao, J. Wang, L. Zhou, W. Zou, and J. Chen, “High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective,” Opt. Commun. 406, 214–229 (2018).
[Crossref]

Opt. Eng. (1)

J. Lee, J. Lee, J. Koo, H. Chung, and J. H. Lee, “Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber,” Opt. Eng. 55, 076109 (2016).
[Crossref]

Opt. Express (16)

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. W.-C. Xu, H. Zhang, C.-J. Zhao, and S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).
[Crossref]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express 21, 20062–20072 (2013).
[Crossref]

J. Lee, J. Koo, Y. M. Jhon, and J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 6165–6173 (2014).
[Crossref]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935  nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22, 7865–7874 (2014).
[Crossref]

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20, B124–B130 (2012).
[Crossref]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21, 12797–12802 (2013).
[Crossref]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z.-C. Luo, M. Liu, Z.-N. Guo, X.-F. Jiang, A.-P. Luo, C.-J. Zhao, X.-F. Yu, W.-C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23, 20030–20039 (2015).
[Crossref]

B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, and J. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

R. I. Woodward, R. C. T. Howe, T. H. Runcorn, G. Hu, F. Torrisi, E. J. R. Kelleher, and T. Hasan, “Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber,” Opt. Express 23, 20051–20061 (2015).
[Crossref]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27  GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24, 10575–10589 (2016).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov, and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Opt. Express 22, 31113–31122 (2014).
[Crossref]

M. Jung, J. Lee, J. Park, J. Koo, Y. M. Jhon, and J. H. Lee, “Mode-locked, 1.94-μm, all-fiberized laser using WS2 based evanescent field interaction,” Opt. Express 23, 19996–20006 (2015).
[Crossref]

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23, 29014–29023 (2015).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (4)

Phys. Chem. Chem. Phys. (2)

M. Bala, S. Gupta, S. K. Srivastava, S. Amrithapandian, T. S. Tripathi, S. K. Tripathi, C.-L. Dong, C.-L. Chen, D. K. Avasthi, and K. Asokan, “Evolution of nanostructured single-phase CoSb3 thin films by low-energy ion beam induced mixing and their thermoelectric-performance,” Phys. Chem. Chem. Phys. 19, 24886–24895 (2017).
[Crossref]

M. Bala, C. Pannu, S. Gupta, T. S. Tripathi, S. K. Tripathi, K. Asokan, and D. K. Aasthi, “Phase evolution and electrical properties of Co-Sb alloys fabricated from Co/Sb bilayers by thermal annealing and ion beam mixing,” Phys. Chem. Chem. Phys. 17, 24427–24437 (2015).
[Crossref]

Phys. Rev. B (5)

D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, and C. Uher, “Low-temperature transport properties of p-type CoSb3,” Phys. Rev. B 51, 9622–9628 (1995).
[Crossref]

J. Yang, M. G. Endres, and G. P. Meisner, “Valence of Cr in skutterudites: electrical transport and magnetic properties of Cr-doped CoSb3,” Phys. Rev. B 66, 014436 (2002).
[Crossref]

J. L. Feldman and D. J. Singh, “Lattice dynamics of skutterudites: first-principles and model calculations for CoSb3,” Phys. Rev. B 53, 6273–6282 (1996).
[Crossref]

V. Pardo, J. C. Smith, and W. E. Pickett, “Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides,” Phys. Rev. B 85, 214531 (2012).
[Crossref]

B. Yan, L. Müchler, X.-L. Qi, S.-C. Zhang, and C. Felser, “Topological insulators in filled skutterudites,” Phys. Rev. B 85, 165125 (2012).
[Crossref]

Rev. Mod. Phys. (1)

M. Z. Hasan and C. L. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[Crossref]

Sci. Rep. (3)

M. Yang and W.-M. Liu, “The d-p band-inversion topological insulator in bismuth-based skutterudites,” Sci. Rep. 4, 5131 (2014).
[Crossref]

D. Mao, Y. Wang, C. Ma, L. Han, B. Jiang, X. Gan, S. Hua, W. Zhang, T. Mei, and J. Zhao, “WS2 mode-locked ultrafast fiber laser,” Sci. Rep. 5, 7965 (2015).
[Crossref]

D. Mao, X. She, B. Du, D. Yang, W. Zhang, K. Song, X. Cui, B. Jiang, T. Peng, and J. Zhao, “Erbium-doped fiber laser passively mode locked with few-layer WSe2/MoSe2 nanosheets,” Sci. Rep. 6, 23583 (2016).
[Crossref]

Small (1)

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12, 1489–1497 (2016).
[Crossref]

Other (1)

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (Optical Society of America, 2012), paper NTh1A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Measured (a) Raman spectrum and (b) energy-dispersive X-ray spectroscopy (EDS) profile of the cobalt antimonide ( CoSb 3 ) particle. Inset: measured SEM image of the prepared CoSb 3 powder.
Fig. 2.
Fig. 2. Measured X-ray photoelectron spectroscopy (XPS) profiles: (a) cobalt (Co) 2p spectrum and (b) antimony (Sb) 3d spectrum of the CoSb 3 particle.
Fig. 3.
Fig. 3. (a) Schematic of the cobalt antimonide ( CoSb 3 ) / polyvinyl alcohol (PVA)-deposited side-polished fiber. (b) Measured linear optical-absorption spectrum of the CoSb 3 / PVA composite.
Fig. 4.
Fig. 4. (a) Measurement setup for nonlinear transmission curves of the CoSb 3 / PVA -based SA. Measured nonlinear transmission curves of the CoSb 3 / PVA -deposited side-polished fiber: (b) transverse electric (TE) mode and (c) transverse magnetic (TM) mode.
Fig. 5.
Fig. 5. Mode-locked fiber laser configuration.
Fig. 6.
Fig. 6. Measured (a) optical spectrum (resolution bandwidth: 0.05 nm) and (b) oscilloscope trace of the output pulses. Inset: oscilloscope trace over the narrow span.
Fig. 7.
Fig. 7. Measured (a) autocorrelation trace of the output pulses and (b) electrical spectrum of the output pulses. Inset: measured electrical spectrum over a span of 1 GHz.

Tables (1)

Tables Icon

Table 1. Performance Comparison Between the Present Work and the Previously Demonstrated Mode-Locked Erbium-Doped Fiber Lasers Incorporating Other Saturable Absorption Materials

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( I ) = 1 Δ T · exp ( I I sat ) T n s ,

Metrics