Abstract

This paper reports a comprehensive analysis of the origin of the electroluminescence (EL) peaks and of the thermal droop in UV-B AlGaN-based LEDs. By carrying out spectral measurements at several temperatures and currents, (i) we extract information on the physical origin of the various spectral bands, and (ii) we develop a novel closed-form model based on the Shockley–Read–Hall theory and on the ABC rate equation that is able to reproduce the experimental data on thermal droop caused by non-radiative recombination through deep levels. In the samples under test, the three EL bands are ascribed to the following processes: band-to-band recombination in the quantum wells (main EL peak), a parasitic intra-bandgap radiative transition in the quantum well barriers, and a second defect-related radiative process in the p-AlGaN superlattice.

© 2017 Chinese Laser Press

1. INTRODUCTION

The UV-B spectral range, from 280 to 320 nm, is of great interest for several applications. Effective treatment of skin diseases [1], UV curing [2], and enhancement of plant growth [3] have already been demonstrated, but the conventional light sources in this spectral region are bulky, have limited lifetime, and contain toxic substances. For this reason, UV-B LEDs are promising devices, but their reliability still needs improvements [4]; in addition, the electroluminescence (EL) spectrum is often constituted by several emission bands that reduce the spectral purity.

Finally, the efficiency of UV-B LEDs is still low compared to their visible counterparts. This is partly due to the low light extraction efficiency of AlGaN-based structures [5] and partly to the non-radiative recombination losses [Shockley–Read–Hall (SRH) and Auger-related] that limit the internal quantum efficiency at low and high current levels. Recent papers indicated that the reduction in optical power with increasing temperature (referred to as thermal droop) may also limit the performance of GaN-based LEDs, causing an emission decrease comparable to the more discussed efficiency droop [6,7]. This is particularly relevant for UV LEDs, which—owing to the lower efficiency—convert most of the electrical power to heat. This effect is quantitatively ascribed to increased carrier escape or defect-related non-radiative recombination [8,9], but no comprehensive analysis or accurate theoretical model is present in the literature.

Understanding the physical origin of the parasitic peaks is important to reduce their contribution and improve the spectral purity of the devices. With the aim of obtaining more insight on these physical processes, within this paper we propose a new approach that has the following novelty elements: (i) the combined analysis of both spectral and temperature-dependent data, (ii) the definition of a closed-form model for the thermal droop caused by the SRH non-radiative recombination through deep levels—this model is based on the SRH theory and on the ABC rate equation, and (iii) a complete and consistent analysis of the various effects occurring in a wide temperature and bias current range.

2. EXPERIMENTAL DETAILS

The devices under test were grown by metal-organic vapor phase epitaxy on (0001) sapphire substrates. After a 700 nm thick AlN buffer layer, an AlN/GaN superlattice was introduced to relax the strain of an upper 4.5μm thick buffer and n-AlGaN current spreading layer. The active region is composed of three 2 nm thick nominally undoped In0.02Al0.36Ga0.62N quantum wells (QWs) separated by AlGaN barriers, giving a 308 nm nominal peak emission wavelength. The p side of the structure employs a 25 nm p-doped Al0.7Ga0.3N electron blocking layer (EBL), followed by a p-doped AlGaN/AlGaN short-period superlattice (SPSL) and a thin p-GaN contact layer. Additional details on the structure can be found in Refs. [10,11]. Subsequently, the wafers were fabricated into UVB-LED chips (junction area 0.072mm2) with standard processing techniques. The resulting devices show a nominal output power of 4.2 mW at 100 mA, which is in the range of typical current devices on the market. Details of the fabrication process can be found in Refs. [10,12].

To understand the origin of the EL and the role of the different thermal droop mechanisms, electrical and optical characteristics were measured in a liquid nitrogen cryostat from 100 to 400 K. The spectral power distribution of the EL was collected at five different currents, namely, 10 μA, 100 μA, 1 mA, 10 mA, and 100 mA, by means of a compact array spectrometer. The bias current was supplied by a precision parameter analyzer.

3. SPECTRAL ANALYSIS

The EL spectra collected at the various test temperatures are reported in Fig. 1 exemplarily for the 1 mA bias current. Several different spectral features can be noticed, including four peaks, which are referred to as peak 1, QW, peak 3, and peak 4 in the following. Complex (multi-band) emission spectra from UV devices were already reported in the past [1316]. The strongest parasitic emission peaks at 4% at room temperature, and this is comparable to state-of-the-art commercial devices with similar performances [17].

 figure: Fig. 1.

Fig. 1. Spectral distribution of the EL at various temperatures and a current of 1 mA. The four main emission peaks are labeled in the figure.

Download Full Size | PPT Slide | PDF

The wavelength of the second peak (“QW”) is compatible with the nominal emission from the QWs. A detailed analysis on the effect of bias current and temperature will be given in the following sections, which will also discuss the origin and behavior of peaks 3 and 4.

Peak 1 is visible only at the lowest temperature and current levels and is not relevant for the room temperature performance of the devices. For this reason, its analysis is beyond the scope of this paper. The collected experimental data do not point out a clear origin of this peak, which will be analyzed by means of a specific set of tests in the future.

4. ANALYSIS OF THE QW LUMINESCENCE

The analysis of the QW emission peak as a function of temperature and measuring current is summarized in Fig. 2. Three different thermal droop regimes can be identified.

 figure: Fig. 2.

Fig. 2. Intensity of the QW emission for different temperatures and currents.

Download Full Size | PPT Slide | PDF

The first one is visible at T<200K for the three lower currents (I1mA). In this case, a significant decrease in the optical power is detected even for small temperature variations; this effect is more prominent at low currents.

The temperature dependence of the optical power was fitted according to the well-known equation

L=L01+Aexp(Ea/kT),
where L0 is the extrapolated intensity at T=0K, A a proportionality constant, Ea the activation energy of the process causing the decrease in the optical power, and k the Boltzmann constant [18]. The results reported in Fig. 3 show a very good quality of the fit and a low value of the activation energy of about 70 meV. This behavior can be explained by taking into account the exciton delocalization inside the QWs [19]. Electrons and holes may be localized in potential minima, caused by fluctuations in the alloy composition or in the QW thickness. When the temperature is increased, the carriers can gain enough energy to overcome the small potential barrier confining them in the localized states, thus becoming delocalized in the plane of the QWs. This lowers the probability of an electron–hole interaction and decreases the rate of radiative recombination [2023]. This hypothesis is supported by the low activation energy derived in Fig. 3, which is comparable to values reported for exciton delocalization [2427]. Typical reported values of localization potential in AlGaN are, in some cases, lower, but the average radius of the composition fluctuation was recently shown to have a strong impact on the localization potential [27]. Additionally, our devices have a small In content in the QWs, which was shown to potentially increase the localization energy [28].

 figure: Fig. 3.

Fig. 3. Arrhenius plot of the intensity of the QW emission and fit according to Eq. (1).

Download Full Size | PPT Slide | PDF

An additional confirmation that for T<200K the reduction in optical power of the QW emission with increasing temperature is caused by exciton delocalization rather than by SRH recombination is given by the analysis of the peak wavelength of the QW emission shown in Fig. 4. The almost constant wavelength of the emission at low temperature (from 100 to 160 K) is not consistent with an increase in SRH recombination, which would add an additional redshift to the redshift of the bandgap in accordance with Varshni’s law due to the reduced density of carriers available for radiative recombination inside the QWs. Rather, the almost constant emission wavelength corresponds to a superimposed blueshift from localized electrons and holes that are thermally excited to higher energy states. At higher temperatures (T>160K), the peak wavelength strongly shifts red, caused by the bandgap narrowing with increasing temperature and confirmed by a fitting using Varshni’s law (see the inset in Fig. 4) [29].

 figure: Fig. 4.

Fig. 4. Temperature dependence of the peak wavelength of the QW emission. Inset: bandgap narrowing with increasing temperature in accordance with Varshni’s law.

Download Full Size | PPT Slide | PDF

The second thermal droop regime is visible in Fig. 2 for T300K for all currents. This can be clearly distinguished from the previous mechanism as a separate one due to the transition temperature range around 250–300 K. We propose SRH recombination as a good candidate for explaining such a decrease in the optical power.

Several reports [3033] used Eq. (1) to analyze the decrease in optical power at high temperatures. This formula is effective to investigate the thermal droop due to exciton delocalization, but it is not adequate to study the impact of SRH recombination (even if it is used sometimes in the literature [3436]). In fact, it can be noticed from Eq. (2) that the optical power does not approach zero for infinitely high temperatures, whereas we expect this trend when the temperature increases significantly [21,3739]:

limTL01+Aexp(Ea/kT)=L01+A.

Equation (1) is a simplification, as is clear from the theoretical background described, for example, in Ref. [40]. First, the distribution of the carriers is approximated by the Boltzmann distribution rather than described by the Fermi distribution. Moreover, the defect density, which acts as a rate-limiting element in the SRH recombination process, is not taken into account. An additional problem may arise from the assumption that the number of excitons in the QWs does not depend on temperature, which may not be reasonable over a wide temperature range due to additional temperature-dependent loss mechanisms (such as carrier escape, thermionic emission, and injection efficiency). Finally, Eq. (1) does not take into account the particular expressions of the capture and emission rates typical of the SRH process.

For this reason, we followed a novel approach based on the ABC rate equation [41,42] and on the approximated formula for the SRH non-radiative recombination lifetime τnr:

τnr=τ0(1+coshETEFikT),
where τ0 is a constant that depends on the deep level density and on the carrier capture rate, ET is the trap energy level, and EFi the intrinsic Fermi energy level [43]. According to the ABC model and assuming perfect injection efficiency, the rate equation of an LED can be written as
I=qVR(An+Bn2+Cn3).

Here, q is the electron electrical charge, VR the recombination volume, A=1/τnr the SRH recombination coefficient, B the bimolecular radiative recombination coefficient, C the Auger recombination coefficient, and n the carrier concentration. The internal quantum efficiency ηi can then be expressed as

ηi=Bn2I/qVR=Bn2An+Bn2+Cn3.

Based on Eqs. (3)–(5), it is possible to develop an analytical model for the thermal droop. When taking two temperatures T1<T2, the variation in internal quantum efficiency is

ηi(T2)ηi(T1)=B2n22A2n2+B2n22+C2n23A1n1+B1n12+C2n13B1n12,
where the subscript number in A, B, C, and n is a reference to the corresponding temperature value. Under the assumption that the value of B is not temperature dependent and that the Auger recombination is negligible (no efficiency droop was detected up to 30 mA), Eq. (6) can be rewritten as
ηi(T2)ηi(T1)=n22n12(A1n1+Bn12)(A2n2+Bn22).

If the current at the two temperatures is the same, and assuming that the recombination volume does not vary with temperature, we obtain from Eq. (4)

A1n1+Bn12=A2n2+Bn22,
and therefore
n2=A2+A224B(A1n1Bn12)2B,
where only the positive solution was kept, because the carrier concentration cannot be negative.

By using Eqs. (3), (7), and (9), it is possible to fit the experimental data for every current. The results shown in Fig. 5 demonstrate a good agreement between theory and experiment. To achieve the best fitting quality, the parameters τ0, A1, B, n1, and ETEFi had to be fitted independently for each current (but are kept constant, when not explicitly stated, for every temperature), which may partly result from the simplicity of the model. The increase in the density of carriers at different bias levels is expected, and the variation in the recombination coefficients is consistent with several reports [41,4448]. The parameters remained within a reasonable range, if the variation of the parameters with current density mentioned above is taken into account [44] (e.g., B from 2.63×1013 to 7.99×1013cm3s1, n1 from 2.7×1017 to 14.5×1017cm3), when compared to data available for InGaN-based devices [41,49] (given the lack of experimental reports on these values for AlGaN LEDs), confirming that the model achieves good fitting quality with meaningful parameters, comparable to experimental ones. The fitting indicated that the deep levels responsible for SRH recombination are located close to mid-gap (ETEFi in the range between 165 and 342 meV). Therefore, we conclude that above 300 K (i.e., at realistic temperatures of device operation), the thermal droop is caused by the increased SRH recombination.

 figure: Fig. 5.

Fig. 5. Intensity of the QW emission for different temperatures and currents fitted by Eqs. (3), (7), and (9).

Download Full Size | PPT Slide | PDF

The third region of interest in Fig. 2 is the part at low temperature (100K<T<250K) and high current (I10mA). In this case, the optical power emitted by the QW increases (instead of decreasing) with increasing temperature. This effect can be related to an enhanced hole injection from the p side to the QWs, as previously proposed for similar samples [10,11]. The enhanced hole injection at higher temperature is confirmed by numerical simulations based on a one-dimensional drift-diffusion model of the band structure and carrier concentration [50], as shown in Fig. 6. Here, the temperature dependence of the bandgap is described by Varshni’s empirical expression, and the charge carrier mobility is set constant in the temperature range. When the temperature is increased from 140 to 300 K, the electron concentration in the QWs is not expected to vary significantly, but the hole concentration in the farthest QW is expected to increase. The higher hole density causes the detected increase in optical power.

 figure: Fig. 6.

Fig. 6. Numerical simulation of the band diagram and of electron and hole concentration at 140 and 300 K at a current of 10 mA.

Download Full Size | PPT Slide | PDF

The presence of excitons and excitonic recombination has been shown to play an important role in time-resolved photoluminescence (TRPL) studies, even at high temperature and high excitation densities [51,52]. As reported in Ref. [52], the exciton density rapidly decreases in hundreds of picoseconds (even without self-heating), more rapidly than the e-h plasma. Both studies analyze TRPL with (at most) picosecond-long laser pulses, and there is no evidence that this process would impact the longer timescale of CW operation (the condition of our thermal droop analysis), especially if the self-heating of the device is taken into account. Even if we assume that excitons are present, their very low binding energy (50 meV at most, according to Refs. [51,52]) would lead to a significant dissociation in the long term, due to multi-phonon processes and to the energy distribution of the phonons. During a capacitance deep level transient spectroscopy experiment, it is possible to detect, at room temperature, thermal emission from deep levels about 0.6–0.8 eV below the conduction band and about 0.2–0.3 eV at 100 K [5358]. For all these reasons, excitonic effects are probably negligible in our thermal droop analysis.

5. PEAK 3 ANALYSIS

The EL intensity of peak 3 as a function of temperature and current is summarized in Fig. 7. In this case, at low currents we do not observe the double-slope behavior highlighted in Fig. 2 for the QW peak. The analysis of the thermal droop reveals that the intensity of peak 3 can also be fitted according to the complete SRH model based on Eqs. (3), (7), and (9). For this reason, non-radiative recombination through deep levels inside the bandgap is the likely cause for the reduction in the optical power of peak 3 with increasing temperature.

 figure: Fig. 7.

Fig. 7. Arrhenius plot of the peak 3 intensity for different currents fitted by the complete SRH model [Eqs. (3), (7), and (9)].

Download Full Size | PPT Slide | PDF

Information on the physical origin of peak 3 was obtained by the behavior at low temperature for the three highest currents. As can be noticed in Fig. 7, the optical power increases with increasing temperature, as already found for the QW peak. Therefore, peak 3 is also affected by the hole injection efficiency, and the layer responsible for this EL has to be located beyond the p side of the device. By using this information and by comparing the peak emission wavelength with the nominal bandgap values of the different layers in the heterostructure, we suggest that peak 3 originates from radiative transitions through deep levels, as confirmed by the broad shape of the peak (see Fig. 1), which is a common signature of parasitic intra-gap emission. This radiative recombination is most probably occurring in the quantum barrier next to the EBL and not inside the QWs, because no effect of exciton delocalization is detected, whereas it is present for the main QW peak. This hypothesis is supported when multiplying the hole and electron concentration shown in Fig. 6, because this product is directly proportional to the recombination rate. The results of the product show (not shown in this paper), besides strong peaks within the QWs, an increased value in that part of the band structure.

6. ANALYSIS OF PEAK 4

The analysis of the origin of peak 4 and of its thermal droop is more complex than for the other peaks. In this case, the SRH model does not fit the experimental data adequately (see Fig. 8 for three representative current values). For this reason, we suggest that a different mechanism may play an important role. The first information originates from the behavior at low temperature: contrary to the QW peak and peak 3, no increase in the optical power is detected with increasing temperature, suggesting that this emission process is not limited by hole injection and, therefore, that its source is probably located in the p side. Comparing the wavelength of peak 4 with the layer structure of the p side as well as considering the spectral width of peak 4 (see Fig. 1) suggests that peak 4 is likely related to a radiative parasitic transition inside the region with the lowest energy gap in the p side, i.e., the AlGaN/AlGaN SPSL, where the density of holes available for the emission is highest.

 figure: Fig. 8.

Fig. 8. Arrhenius plot of the peak 4 intensity for different currents fitted by the complete SRH model [Eq. (7)].

Download Full Size | PPT Slide | PDF

These assumptions can be supported by again analyzing the simulation results of the band structure, carrier densities, and recombination rates as partially shown in Fig. 6. Taking the radiative recombination rate in the p superlattice for different temperatures, a similar dependence can be recognized, as it is observed in the normalized intensity of peak 4 as a function of q/kT shown in Fig. 8. It should be noted, however, that the simulation does not take into account hole injection mechanisms at the p contact and, therefore, only partially reflects the experiment. The simulation shows that at low temperatures the band bending in the EBL is lower, because fewer acceptors are ionized and a higher external voltage is needed to maintain the current flow (mainly electrons at low temperature). Thus, more electrons overcome the EBL, penetrate into the p side, and recombine radiatively there. At higher temperatures more acceptors are ionized, a lower voltage is needed to inject holes in the active region, and, hence, the EBL works more efficiently preventing electron leakage into the p side.

The presence of various radiative transitions in the p side was already reported in the past, and qualitatively ascribed to several origins, such as band-to-band recombination promoted by defect-assisted electron tunneling [8] and radiative recombination through deep acceptor levels [59,60] or complexes [16].

An extended analysis of the temperature dependence of peak 4 becomes even more complex if the temperature and current dependence of the electron leakage across the EBL is taken into account. Additionally, the broad peak 4 may be the composition of several defect-related radiative recombination channels, given the asymmetric shape of peak 4 (see Fig. 1). All these aspects prevent a clear identification of the physical mechanism of the thermal droop. Given the short periodicity of the superlattice, it could also include field- or trap-assisted escape processes, such as phonon-assisted tunneling, trap-assisted tunneling, or more accurate models [6].

7. CONCLUSIONS

In summary, in this paper we showed that the temperature and current dependence of AlGaN UV-B LEDs can provide useful information on the physical origin of multiple EL peaks. Moreover, we developed a new closed-form model based on the SRH recombination lifetime and on the ABC model that can be used to closely fit the decrease of the optical power with increasing temperature caused by the non-radiative recombination through deep levels.

With increasing temperature, the QW emission showed three different trends that have been investigated in detail. At low temperature and high currents an increase in the optical power, caused by an enhanced hole injection from the p side to the n side, was found. At high temperature, the optical power is reduced due to a more common increase in the SRH recombination rate, whereas at low temperature and low current, the reduction is likely caused by exciton delocalization from potential minima inside the QWs.

A second emission peak (peak 3) originates most likely from parasitic intra-bandgap radiative transitions beyond the p side of the device and is influenced by the enhanced hole injection with increasing temperature at high currents. A possible location is in the quantum barrier next to the EBL, because we have not detected any exciton delocalization effect.

The third emission peak (peak 4) is the most complex one. It is attributed to a parasitic radiative transition, possibly in the p-AlGaN superlattice and assisted by a charge transfer mechanism.

APPENDIX A: SIMPLIFIED SRH MODEL

The fitting algorithm based on Eqs. (3), (7), and (9) is complex and requires some computation time. The model can be simplified considering that for T1<T2 the carrier concentration n2 is slightly lower than n1 (due to the increased SRH recombination), and we can write this difference as

n1=n2+Δn.

By using Eq. (A1) in Eq. (7), we obtain

ηi(T2)ηi(T1)=A1n23+A1n22Δn+Bn12n22A2n23+2A2n22Δn+A2n2Δn2+Bn12n22.

If the variation B in carrier concentration between two subsequent temperature points is small (Δn<n2), Eq. (A2) can be approximated as

ηi(T2)ηi(T1)A1n2+Bn12A2n2+Bn12.

By using Eq. (A3) instead of Eq. (7) together with Eqs. (3) and (9), we can obtain a simpler and quicker fitting algorithm. As can be noticed in Fig. 9 for the representative current of 10 mA, the fitting quality obtained by using the approximated Eq. (A3) (red line) is lower than the more accurate Eq. (7) (blue line), but agreement is still acceptable.

 figure: Fig. 9.

Fig. 9. Intensity of the QW emission at different temperatures fitted by the complete SRH model [Eq. (7)] and the approximated model [Eq. (A3)], respectively.

Download Full Size | PPT Slide | PDF

Funding

Bundesministerium für Bildung und Forschung (BMBF) (03ZZ0105A, 03ZZ0105B); Bundesministerium für Wirtschaft und Energie (BMWi) (03EFCBE067); Deutsche Forschungsgemeinschaft (DFG) (CRC 787).

Acknowledgment

The authors would like to thank the materials technology department and the process technology department at the Ferdinand-Braun-Institut for their contributions in the development of the UV-B LEDs. This work was partially supported by the German Federal Ministry of Education and Research through the consortia project “Advanced UV for Life.” Further support was given by the Federal Ministry for Economic Affairs and Energy through the project “UV-Berlin” as well as by the Deutsche Forschungsgemeinschaft within the Collaborative Research Center “Semiconductor NanoPhotonics.”

REFERENCES

1. H. Hönigsmann, “History of phototherapy in dermatology,” Photochem. Photobiol. Sci. 12, 16–21 (2013). [CrossRef]  

2. A. Endruweit, M. S. Johnson, and A. C. Long, “Curing of composite components by ultraviolet radiation: A review,” Polym. Compos. 27, 119–128 (2006). [CrossRef]  

3. M. Schreiner, J. Martínez-Abaigar, J. Glaab, and M. Jansen, “UV-B induced secondary plant metabolites,” Opt. Photon. 9, 34–37 (2014). [CrossRef]  

4. J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015). [CrossRef]  

5. K. H. Lee, H. J. Park, S. H. Kim, M. Asadirad, Y.-T. Moon, J. S. Kwak, and J.-H. Ryou, “Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: A comparison to InGaN-based visible flip-chip light-emitting diodes,” Opt. Express 23, 20340 (2015). [CrossRef]  

6. C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016). [CrossRef]  

7. N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013). [CrossRef]  

8. V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285 nm,” Appl. Phys. Lett. 81, 3666–3668 (2002). [CrossRef]  

9. X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27, 329–331 (2006). [CrossRef]  

10. F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295 nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015). [CrossRef]  

11. J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015). [CrossRef]  

12. M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013). [CrossRef]  

13. M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-Nitride UV devices,” Jpn. J. Appl. Phys. 44, 7191–7206 (2005). [CrossRef]  

14. A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009). [CrossRef]  

15. A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010). [CrossRef]  

16. A. Pinos, S. Marcinkevičius, and M. S. Shur, “High current-induced degradation of AlGaN ultraviolet light emitting diodes,” J. Appl. Phys. 109, 103108 (2011). [CrossRef]  

17. See, for instance, Sensor Electronic Technology Inc., “Technical Data Sheet,” S-S35F-F3-310-01-4.

18. N. Grandjean, J. Massies, I. Grzegory, and S. Porowski, “GaN/AlGaN quantum wells for UV emission: Heteroepitaxy versus homoepitaxy,” Semicond. Sci. Technol. 16, 358–361 (2001). [CrossRef]  

19. S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16, 2204 (1998). [CrossRef]  

20. S. Fan, Z. Qin, C. He, M. Hou, X. Wang, B. Shen, W. Li, W. Wang, D. Mao, P. Jin, J. Yan, and P. Dong, “Optical investigation of strong exciton localization in high Al composition AlxGa1-xN alloys,” Opt. Express 21, 24497 (2013). [CrossRef]  

21. J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014). [CrossRef]  

22. N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015). [CrossRef]  

23. T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010). [CrossRef]  

24. G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999). [CrossRef]  

25. N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett. 88, 62103 (2006). [CrossRef]  

26. H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008). [CrossRef]  

27. Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015). [CrossRef]  

28. H. X. Jiang and J. Y. Lin, “AlGaN and InAlGaN alloys—epitaxial growth, optical and electrical properties, and applications,” Opto-Electron. Rev. 10, 271–286 (2002). [CrossRef]  

29. Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004). [CrossRef]  

30. G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001). [CrossRef]  

31. S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008). [CrossRef]  

32. P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, “Polarized photoluminescence study of free and bound excitons in free-standing GaN,” Phys. Rev. B 70, 35210 (2004). [CrossRef]  

33. X.-B. Chen, J. Huso, J. L. Morrison, and L. Bergman, “Dynamics of GaN band edge photoluminescence at near-room-temperature regime,” J. Appl. Phys. 99, 46105 (2006). [CrossRef]  

34. D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016). [CrossRef]  

35. I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016). [CrossRef]  

36. L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010). [CrossRef]  

37. X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 82, 3614–3616 (2003). [CrossRef]  

38. D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Yellow luminescence of gallium nitride generated by carbon defect complexes,” Phys. Rev. Lett. 110, 1–5 (2013). [CrossRef]  

39. J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999). [CrossRef]  

40. D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451–3455 (1971). [CrossRef]  

41. J. Piprek, “Unified model for the GaN LED efficiency droop,” Proc. SPIE 7939, 793916 (2011). [CrossRef]  

42. S. Karpov, “ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review,” Opt. Quantum Electron. 47, 1293–1303 (2015). [CrossRef]  

43. D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011). [CrossRef]  

44. W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016). [CrossRef]  

45. Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016). [CrossRef]  

46. E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, “Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices,” New J. Phys. 15, 125006 (2013). [CrossRef]  

47. A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96, 103504 (2010). [CrossRef]  

48. J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96, 221106 (2010). [CrossRef]  

49. D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013). [CrossRef]  

50. Simulations are based on the software package SiLENSe 5.2.1, STR Group, Ltd.

51. A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008). [CrossRef]  

52. A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015). [CrossRef]  

53. S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000). [CrossRef]  

54. F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004). [CrossRef]  

55. C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, and S. J. Chua, “Study of electrically active defects in n-GaN layer,” Mater. Sci. Semicond. Process. 4, 595–600 (2001). [CrossRef]  

56. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009). [CrossRef]  

57. P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys. 111, 113105 (2012). [CrossRef]  

58. Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012). [CrossRef]  

59. M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285 nm,” Appl. Phys. Lett. 82, 167–169 (2003). [CrossRef]  

60. J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003). [CrossRef]  

References

  • View by:

  1. H. Hönigsmann, “History of phototherapy in dermatology,” Photochem. Photobiol. Sci. 12, 16–21 (2013).
    [Crossref]
  2. A. Endruweit, M. S. Johnson, and A. C. Long, “Curing of composite components by ultraviolet radiation: A review,” Polym. Compos. 27, 119–128 (2006).
    [Crossref]
  3. M. Schreiner, J. Martínez-Abaigar, J. Glaab, and M. Jansen, “UV-B induced secondary plant metabolites,” Opt. Photon. 9, 34–37 (2014).
    [Crossref]
  4. J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
    [Crossref]
  5. K. H. Lee, H. J. Park, S. H. Kim, M. Asadirad, Y.-T. Moon, J. S. Kwak, and J.-H. Ryou, “Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: A comparison to InGaN-based visible flip-chip light-emitting diodes,” Opt. Express 23, 20340 (2015).
    [Crossref]
  6. C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
    [Crossref]
  7. N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
    [Crossref]
  8. V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
    [Crossref]
  9. X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27, 329–331 (2006).
    [Crossref]
  10. F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
    [Crossref]
  11. J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
    [Crossref]
  12. M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
    [Crossref]
  13. M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-Nitride UV devices,” Jpn. J. Appl. Phys. 44, 7191–7206 (2005).
    [Crossref]
  14. A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
    [Crossref]
  15. A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010).
    [Crossref]
  16. A. Pinos, S. Marcinkevičius, and M. S. Shur, “High current-induced degradation of AlGaN ultraviolet light emitting diodes,” J. Appl. Phys. 109, 103108 (2011).
    [Crossref]
  17. See, for instance, Sensor Electronic Technology Inc., “Technical Data Sheet,” .
  18. N. Grandjean, J. Massies, I. Grzegory, and S. Porowski, “GaN/AlGaN quantum wells for UV emission: Heteroepitaxy versus homoepitaxy,” Semicond. Sci. Technol. 16, 358–361 (2001).
    [Crossref]
  19. S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16, 2204 (1998).
    [Crossref]
  20. S. Fan, Z. Qin, C. He, M. Hou, X. Wang, B. Shen, W. Li, W. Wang, D. Mao, P. Jin, J. Yan, and P. Dong, “Optical investigation of strong exciton localization in high Al composition AlxGa1-xN alloys,” Opt. Express 21, 24497 (2013).
    [Crossref]
  21. J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
    [Crossref]
  22. N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
    [Crossref]
  23. T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010).
    [Crossref]
  24. G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
    [Crossref]
  25. N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett. 88, 62103 (2006).
    [Crossref]
  26. H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008).
    [Crossref]
  27. Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015).
    [Crossref]
  28. H. X. Jiang and J. Y. Lin, “AlGaN and InAlGaN alloys—epitaxial growth, optical and electrical properties, and applications,” Opto-Electron. Rev. 10, 271–286 (2002).
    [Crossref]
  29. Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
    [Crossref]
  30. G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001).
    [Crossref]
  31. S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
    [Crossref]
  32. P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, “Polarized photoluminescence study of free and bound excitons in free-standing GaN,” Phys. Rev. B 70, 35210 (2004).
    [Crossref]
  33. X.-B. Chen, J. Huso, J. L. Morrison, and L. Bergman, “Dynamics of GaN band edge photoluminescence at near-room-temperature regime,” J. Appl. Phys. 99, 46105 (2006).
    [Crossref]
  34. D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016).
    [Crossref]
  35. I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).
    [Crossref]
  36. L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010).
    [Crossref]
  37. X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 82, 3614–3616 (2003).
    [Crossref]
  38. D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Yellow luminescence of gallium nitride generated by carbon defect complexes,” Phys. Rev. Lett. 110, 1–5 (2013).
    [Crossref]
  39. J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
    [Crossref]
  40. D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451–3455 (1971).
    [Crossref]
  41. J. Piprek, “Unified model for the GaN LED efficiency droop,” Proc. SPIE 7939, 793916 (2011).
    [Crossref]
  42. S. Karpov, “ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review,” Opt. Quantum Electron. 47, 1293–1303 (2015).
    [Crossref]
  43. D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
    [Crossref]
  44. W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016).
    [Crossref]
  45. Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
    [Crossref]
  46. E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, “Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices,” New J. Phys. 15, 125006 (2013).
    [Crossref]
  47. A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96, 103504 (2010).
    [Crossref]
  48. J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96, 221106 (2010).
    [Crossref]
  49. D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013).
    [Crossref]
  50. Simulations are based on the software package SiLENSe 5.2.1, STR Group, Ltd.
  51. A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
    [Crossref]
  52. A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
    [Crossref]
  53. S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000).
    [Crossref]
  54. F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
    [Crossref]
  55. C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, and S. J. Chua, “Study of electrically active defects in n-GaN layer,” Mater. Sci. Semicond. Process. 4, 595–600 (2001).
    [Crossref]
  56. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
    [Crossref]
  57. P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys. 111, 113105 (2012).
    [Crossref]
  58. Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
    [Crossref]
  59. M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
    [Crossref]
  60. J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
    [Crossref]

2016 (5)

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016).
[Crossref]

I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).
[Crossref]

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016).
[Crossref]

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

2015 (8)

S. Karpov, “ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review,” Opt. Quantum Electron. 47, 1293–1303 (2015).
[Crossref]

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015).
[Crossref]

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

K. H. Lee, H. J. Park, S. H. Kim, M. Asadirad, Y.-T. Moon, J. S. Kwak, and J.-H. Ryou, “Light-extraction efficiency control in AlGaN-based deep-ultraviolet flip-chip light-emitting diodes: A comparison to InGaN-based visible flip-chip light-emitting diodes,” Opt. Express 23, 20340 (2015).
[Crossref]

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

2014 (2)

M. Schreiner, J. Martínez-Abaigar, J. Glaab, and M. Jansen, “UV-B induced secondary plant metabolites,” Opt. Photon. 9, 34–37 (2014).
[Crossref]

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

2013 (7)

S. Fan, Z. Qin, C. He, M. Hou, X. Wang, B. Shen, W. Li, W. Wang, D. Mao, P. Jin, J. Yan, and P. Dong, “Optical investigation of strong exciton localization in high Al composition AlxGa1-xN alloys,” Opt. Express 21, 24497 (2013).
[Crossref]

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

H. Hönigsmann, “History of phototherapy in dermatology,” Photochem. Photobiol. Sci. 12, 16–21 (2013).
[Crossref]

M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
[Crossref]

D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013).
[Crossref]

E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, “Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices,” New J. Phys. 15, 125006 (2013).
[Crossref]

D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Yellow luminescence of gallium nitride generated by carbon defect complexes,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

2012 (2)

P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys. 111, 113105 (2012).
[Crossref]

Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
[Crossref]

2011 (3)

J. Piprek, “Unified model for the GaN LED efficiency droop,” Proc. SPIE 7939, 793916 (2011).
[Crossref]

D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
[Crossref]

A. Pinos, S. Marcinkevičius, and M. S. Shur, “High current-induced degradation of AlGaN ultraviolet light emitting diodes,” J. Appl. Phys. 109, 103108 (2011).
[Crossref]

2010 (5)

A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010).
[Crossref]

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010).
[Crossref]

L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010).
[Crossref]

A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96, 103504 (2010).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96, 221106 (2010).
[Crossref]

2009 (2)

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
[Crossref]

2008 (3)

S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
[Crossref]

H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008).
[Crossref]

A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
[Crossref]

2006 (4)

X.-B. Chen, J. Huso, J. L. Morrison, and L. Bergman, “Dynamics of GaN band edge photoluminescence at near-room-temperature regime,” J. Appl. Phys. 99, 46105 (2006).
[Crossref]

N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett. 88, 62103 (2006).
[Crossref]

A. Endruweit, M. S. Johnson, and A. C. Long, “Curing of composite components by ultraviolet radiation: A review,” Polym. Compos. 27, 119–128 (2006).
[Crossref]

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27, 329–331 (2006).
[Crossref]

2005 (1)

M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-Nitride UV devices,” Jpn. J. Appl. Phys. 44, 7191–7206 (2005).
[Crossref]

2004 (3)

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, “Polarized photoluminescence study of free and bound excitons in free-standing GaN,” Phys. Rev. B 70, 35210 (2004).
[Crossref]

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
[Crossref]

F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
[Crossref]

2003 (3)

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 82, 3614–3616 (2003).
[Crossref]

2002 (2)

H. X. Jiang and J. Y. Lin, “AlGaN and InAlGaN alloys—epitaxial growth, optical and electrical properties, and applications,” Opto-Electron. Rev. 10, 271–286 (2002).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

2001 (3)

N. Grandjean, J. Massies, I. Grzegory, and S. Porowski, “GaN/AlGaN quantum wells for UV emission: Heteroepitaxy versus homoepitaxy,” Semicond. Sci. Technol. 16, 358–361 (2001).
[Crossref]

G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001).
[Crossref]

C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, and S. J. Chua, “Study of electrically active defects in n-GaN layer,” Mater. Sci. Semicond. Process. 4, 595–600 (2001).
[Crossref]

2000 (1)

S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000).
[Crossref]

1999 (2)

J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
[Crossref]

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

1998 (1)

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16, 2204 (1998).
[Crossref]

1971 (1)

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451–3455 (1971).
[Crossref]

Adivarahan, V.

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Akasaki, I.

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

Aleksiejunas, R.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

Amano, H.

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

Ambacher, O.

G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001).
[Crossref]

Arehart, A. R.

Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
[Crossref]

Asadirad, M.

Asif Khan, M.

M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-Nitride UV devices,” Jpn. J. Appl. Phys. 44, 7191–7206 (2005).
[Crossref]

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Auret, F. D.

F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
[Crossref]

S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000).
[Crossref]

Avrutin, V.

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

Banal, R. G.

Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015).
[Crossref]

Banerjee, D.

D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016).
[Crossref]

Beaumont, B.

F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
[Crossref]

S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000).
[Crossref]

Bergman, L.

X.-B. Chen, J. Huso, J. L. Morrison, and L. Bergman, “Dynamics of GaN band edge photoluminescence at near-room-temperature regime,” J. Appl. Phys. 99, 46105 (2006).
[Crossref]

Bertazzi, F.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Bertram, F.

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

Bilenko, Y.

A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
[Crossref]

Bimberg, D.

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451–3455 (1971).
[Crossref]

Binder, M.

D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013).
[Crossref]

Bonn, M.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Borghs, G.

L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010).
[Crossref]

Brault, J.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Bremers, H.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Bretagnon, T.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Butté, R.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016).
[Crossref]

Can, N.

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

Cantarero, A.

G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001).
[Crossref]

Cao, X. A.

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27, 329–331 (2006).
[Crossref]

X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 82, 3614–3616 (2003).
[Crossref]

Chen, X.-B.

X.-B. Chen, J. Huso, J. L. Morrison, and L. Bergman, “Dynamics of GaN band edge photoluminescence at near-room-temperature regime,” J. Appl. Phys. 99, 46105 (2006).
[Crossref]

Cheng, K.

L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010).
[Crossref]

Chenot, S.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Chi, D. Z.

C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, and S. J. Chua, “Study of electrically active defects in n-GaN layer,” Mater. Sci. Semicond. Process. 4, 595–600 (2001).
[Crossref]

Chichibu, S.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16, 2204 (1998).
[Crossref]

Chitnis, A.

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Cho, J.

D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
[Crossref]

Chow, P. P.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Christen, J.

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

Chua, S. J.

C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, and S. J. Chua, “Study of electrically active defects in n-GaN layer,” Mater. Sci. Semicond. Process. 4, 595–600 (2001).
[Crossref]

Colton, J. S.

J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
[Crossref]

Courville, A.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Cros, A.

G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001).
[Crossref]

Czernecki, R.

P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys. 111, 113105 (2012).
[Crossref]

Dabiran, A. M.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Dai, Q.

D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
[Crossref]

Damilano, B.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

David, A.

A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96, 103504 (2010).
[Crossref]

De Mierry, P.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

De Santi, C.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Degroote, S.

L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010).
[Crossref]

Demchenko, D. O.

D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Yellow luminescence of gallium nitride generated by carbon defect complexes,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Detchprohm, T.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010).
[Crossref]

Deveaud, B.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016).
[Crossref]

Diallo, I. C.

D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Yellow luminescence of gallium nitride generated by carbon defect complexes,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Dominici, S.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Dong, P.

Drechsel, P.

D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013).
[Crossref]

Dussaigne, A.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016).
[Crossref]

Einfeldt, S.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
[Crossref]

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Endruweit, A.

A. Endruweit, M. S. Johnson, and A. C. Long, “Curing of composite components by ultraviolet radiation: A review,” Polym. Compos. 27, 119–128 (2006).
[Crossref]

Enslin, J.

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

Fan, S.

Fischer, A. M.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010).
[Crossref]

Frentrup, M.

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Funato, M.

Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015).
[Crossref]

Gachet, D.

Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015).
[Crossref]

Galler, B.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013).
[Crossref]

Ganguly, S.

D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016).
[Crossref]

Gaska, R.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
[Crossref]

A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
[Crossref]

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Gerhard, M.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Germain, M.

L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010).
[Crossref]

Gibart, P.

F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
[Crossref]

S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000).
[Crossref]

Gil, B.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Gilinsky, A. M.

I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).
[Crossref]

Glaab, J.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

M. Schreiner, J. Martínez-Abaigar, J. Glaab, and M. Jansen, “UV-B induced secondary plant metabolites,” Opt. Photon. 9, 34–37 (2014).
[Crossref]

Goano, M.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Göldner, A.

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

Goodman, S. A.

S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000).
[Crossref]

Govorkov, A. V.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Grandjean, N.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016).
[Crossref]

N. Grandjean, J. Massies, I. Grzegory, and S. Porowski, “GaN/AlGaN quantum wells for UV emission: Heteroepitaxy versus homoepitaxy,” Semicond. Sci. Technol. 16, 358–361 (2001).
[Crossref]

Grobe, E.

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451–3455 (1971).
[Crossref]

Grundmann, M. J.

A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96, 103504 (2010).
[Crossref]

Grzanka, S.

P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys. 111, 113105 (2012).
[Crossref]

Grzegory, I.

N. Grandjean, J. Massies, I. Grzegory, and S. Porowski, “GaN/AlGaN quantum wells for UV emission: Heteroepitaxy versus homoepitaxy,” Semicond. Sci. Technol. 16, 358–361 (2001).
[Crossref]

J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
[Crossref]

Guttmann, M.

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

Hader, J.

J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96, 221106 (2010).
[Crossref]

Hangleiter, A.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Hayes, M.

F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
[Crossref]

He, C.

Hoffmann, A.

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

Holtz, P. O.

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, “Polarized photoluminescence study of free and bound excitons in free-standing GaN,” Phys. Rev. B 70, 35210 (2004).
[Crossref]

Hönigsmann, H.

H. Hönigsmann, “History of phototherapy in dermatology,” Photochem. Photobiol. Sci. 12, 16–21 (2013).
[Crossref]

Hou, M.

Hurni, C. A.

Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
[Crossref]

Huso, J.

X.-B. Chen, J. Huso, J. L. Morrison, and L. Bergman, “Dynamics of GaN band edge photoluminescence at near-room-temperature regime,” J. Appl. Phys. 99, 46105 (2006).
[Crossref]

Ishibashi, A.

H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008).
[Crossref]

Iwata, Y.

Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015).
[Crossref]

Jacopin, G.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016).
[Crossref]

Jansen, M.

M. Schreiner, J. Martínez-Abaigar, J. Glaab, and M. Jansen, “UV-B induced secondary plant metabolites,” Opt. Photon. 9, 34–37 (2014).
[Crossref]

Jiang, H. X.

N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett. 88, 62103 (2006).
[Crossref]

H. X. Jiang and J. Y. Lin, “AlGaN and InAlGaN alloys—epitaxial growth, optical and electrical properties, and applications,” Opto-Electron. Rev. 10, 271–286 (2002).
[Crossref]

Jin, P.

Jin, Z.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Johnson, M. S.

A. Endruweit, M. S. Johnson, and A. C. Long, “Curing of composite components by ultraviolet radiation: A review,” Polym. Compos. 27, 119–128 (2006).
[Crossref]

Ju, J.-W.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Jurkevicius, J.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

Kadys, A.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

Kahouli, A.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Kalincev, D.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Kamyczek, P.

P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys. 111, 113105 (2012).
[Crossref]

Karpov, S.

S. Karpov, “ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review,” Opt. Quantum Electron. 47, 1293–1303 (2015).
[Crossref]

Kawaguchi, Y.

H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008).
[Crossref]

Kawakami, Y.

Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015).
[Crossref]

Kelz, R.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

Khachariya, D.

D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016).
[Crossref]

Kim, M. H.

D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
[Crossref]

Kim, S. H.

Kioupakis, E.

E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, “Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices,” New J. Phys. 15, 125006 (2013).
[Crossref]

Knauer, A.

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Kneissl, M.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
[Crossref]

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Koch, M.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Koch, S. W.

J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96, 221106 (2010).
[Crossref]

Kolbe, T.

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

Kolkovsky, V.

P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys. 111, 113105 (2012).
[Crossref]

Korytov, M.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Koschnick, F. K.

S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000).
[Crossref]

Kozhukhova, E. A.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Kueller, V.

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Kuhn, C.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

Kuokstis, E.

M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-Nitride UV devices,” Jpn. J. Appl. Phys. 44, 7191–7206 (2005).
[Crossref]

Kwak, J. S.

La Grassa, M.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Langer, T.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Lapeyrade, M.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
[Crossref]

LeBoeuf, S. F.

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27, 329–331 (2006).
[Crossref]

X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 82, 3614–3616 (2003).
[Crossref]

Ledentsov, N.

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

Ledentsov, N. N.

S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
[Crossref]

Lee, I.-H.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Lee, K. H.

Legodi, M. J.

F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
[Crossref]

Leroux, M.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Leys, M.

L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010).
[Crossref]

Li, J.

N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett. 88, 62103 (2006).
[Crossref]

Li, T.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010).
[Crossref]

Li, W.

Lim, H. F.

C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, and S. J. Chua, “Study of electrically active defects in n-GaN layer,” Mater. Sci. Semicond. Process. 4, 595–600 (2001).
[Crossref]

Lin, J. Y.

N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett. 88, 62103 (2006).
[Crossref]

H. X. Jiang and J. Y. Lin, “AlGaN and InAlGaN alloys—epitaxial growth, optical and electrical properties, and applications,” Opto-Electron. Rev. 10, 271–286 (2002).
[Crossref]

Liu, H.

X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 82, 3614–3616 (2003).
[Crossref]

Liu, K.

A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
[Crossref]

Liu, W.

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016).
[Crossref]

Lobo Ploch, N.

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Lobo-Ploch, N.

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

Long, A. C.

A. Endruweit, M. S. Johnson, and A. C. Long, “Curing of composite components by ultraviolet radiation: A review,” Polym. Compos. 27, 119–128 (2006).
[Crossref]

Lundin, V. V.

S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
[Crossref]

Malin, T. V.

I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).
[Crossref]

Mandavilli, V.

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Mandurrino, M.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Mao, D.

Marcinkevicius, S.

A. Pinos, S. Marcinkevičius, and M. S. Shur, “High current-induced degradation of AlGaN ultraviolet light emitting diodes,” J. Appl. Phys. 109, 103108 (2011).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
[Crossref]

A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
[Crossref]

Martínez-Abaigar, J.

M. Schreiner, J. Martínez-Abaigar, J. Glaab, and M. Jansen, “UV-B induced secondary plant metabolites,” Opt. Photon. 9, 34–37 (2014).
[Crossref]

Martinez-Criado, G.

G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001).
[Crossref]

Maruska, H. P.

M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-Nitride UV devices,” Jpn. J. Appl. Phys. 44, 7191–7206 (2005).
[Crossref]

Massies, J.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

N. Grandjean, J. Massies, I. Grzegory, and S. Porowski, “GaN/AlGaN quantum wells for UV emission: Heteroepitaxy versus homoepitaxy,” Semicond. Sci. Technol. 16, 358–361 (2001).
[Crossref]

Mehnke, F.

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

Meneghesso, G.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Meneghini, M.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Meyaard, D. S.

D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
[Crossref]

Meyer, B. K.

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

Meyer, W. E.

F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
[Crossref]

Mickevicius, J.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

Miskys, C. R.

G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001).
[Crossref]

Mogilatenko, A.

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
[Crossref]

Moloney, J. V.

J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96, 221106 (2010).
[Crossref]

Monavarian, M.

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

Monemar, B.

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, “Polarized photoluminescence study of free and bound excitons in free-standing GaN,” Phys. Rev. B 70, 35210 (2004).
[Crossref]

Moon, Y.-T.

Morkoç, H.

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

Morrison, J. L.

X.-B. Chen, J. Huso, J. L. Morrison, and L. Bergman, “Dynamics of GaN band edge photoluminescence at near-room-temperature regime,” J. Appl. Phys. 99, 46105 (2006).
[Crossref]

Muhin, A.

M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
[Crossref]

Murotani, H.

H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008).
[Crossref]

Myers, R. C.

Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
[Crossref]

Nadar, M. B.

D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016).
[Crossref]

Nakamura, S.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16, 2204 (1998).
[Crossref]

Nakarmi, M. L.

N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett. 88, 62103 (2006).
[Crossref]

Nepal, N.

N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett. 88, 62103 (2006).
[Crossref]

Okur, S.

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

Osinnykh, I. V.

I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).
[Crossref]

Oto, T.

Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015).
[Crossref]

Özgür, Ü.

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

Pachipulusu, R.

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Park, H. J.

Paskov, P. P.

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, “Polarized photoluminescence study of free and bound excitons in free-standing GaN,” Phys. Rev. B 70, 35210 (2004).
[Crossref]

Paskova, T.

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, “Polarized photoluminescence study of free and bound excitons in free-standing GaN,” Phys. Rev. B 70, 35210 (2004).
[Crossref]

Pearton, S. J.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Perlin, P.

J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
[Crossref]

Peter, M.

D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013).
[Crossref]

Pinos, A.

A. Pinos, S. Marcinkevičius, and M. S. Shur, “High current-induced degradation of AlGaN ultraviolet light emitting diodes,” J. Appl. Phys. 109, 103108 (2011).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
[Crossref]

A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
[Crossref]

Piprek, J.

J. Piprek, “Unified model for the GaN LED efficiency droop,” Proc. SPIE 7939, 793916 (2011).
[Crossref]

Placzek-Popko, E.

P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys. 111, 113105 (2012).
[Crossref]

Ploch, C.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

Ploch, N. L.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

Plyusnin, V. F.

I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).
[Crossref]

Podlipskas, Ž.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

Polyakov, A. Y.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Ponce, F. A.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010).
[Crossref]

Porowski, S.

N. Grandjean, J. Massies, I. Grzegory, and S. Porowski, “GaN/AlGaN quantum wells for UV emission: Heteroepitaxy versus homoepitaxy,” Semicond. Sci. Technol. 16, 358–361 (2001).
[Crossref]

Pristovsek, M.

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

Qin, Z.

Rai, S.

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

Ramam, A.

C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, and S. J. Chua, “Study of electrically active defects in n-GaN layer,” Mater. Sci. Semicond. Process. 4, 595–600 (2001).
[Crossref]

Rass, J.

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Reich, C.

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

Reshchikov, M. A.

D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Yellow luminescence of gallium nitride generated by carbon defect complexes,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Ringel, S. A.

Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
[Crossref]

Robidas, D.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Rosales, D.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Rossow, U.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Rothe, M.-A.

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

Rowland, L. B.

X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 82, 3614–3616 (2003).
[Crossref]

Ryou, J.-H.

Saha, D.

D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016).
[Crossref]

Sakharov, A. V.

S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
[Crossref]

Sankaranarayanan, S.

D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016).
[Crossref]

Schiavon, D.

D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013).
[Crossref]

Scholz, F.

D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013).
[Crossref]

Schreiner, M.

M. Schreiner, J. Martínez-Abaigar, J. Glaab, and M. Jansen, “UV-B induced secondary plant metabolites,” Opt. Photon. 9, 34–37 (2014).
[Crossref]

Schubert, E. F.

D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
[Crossref]

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
[Crossref]

Sereika, A.

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Shan, Q.

D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
[Crossref]

Shatalov, M.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
[Crossref]

A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
[Crossref]

M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-Nitride UV devices,” Jpn. J. Appl. Phys. 44, 7191–7206 (2005).
[Crossref]

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Shen, B.

Shur, M.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

Shur, M. S.

A. Pinos, S. Marcinkevičius, and M. S. Shur, “High current-induced degradation of AlGaN ultraviolet light emitting diodes,” J. Appl. Phys. 109, 103108 (2011).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
[Crossref]

A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
[Crossref]

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Simin, G.

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

Sinitsyn, M. A.

S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
[Crossref]

Smirnov, N. B.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Soh, C. B.

C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, and S. J. Chua, “Study of electrically active defects in n-GaN layer,” Mater. Sci. Semicond. Process. 4, 595–600 (2001).
[Crossref]

Sondergeld, M.

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451–3455 (1971).
[Crossref]

Sone, C.

D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
[Crossref]

Sota, T.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16, 2204 (1998).
[Crossref]

Spaeth, J. M.

S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000).
[Crossref]

Speck, J. S.

Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
[Crossref]

Stecher, T. E.

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27, 329–331 (2006).
[Crossref]

Steiauf, D.

E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, “Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices,” New J. Phys. 15, 125006 (2013).
[Crossref]

Stellmach, J.

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

Steude, G.

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

Stoelmacker, C.

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

Stölmacker, C.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

Stutzmann, M.

G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001).
[Crossref]

Suranov, A. S.

I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).
[Crossref]

Taguchi, T.

H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008).
[Crossref]

Tamulaitis, G.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Teke, A.

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

Teo, K. L.

J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
[Crossref]

Tsatsul’nikov, A. F.

S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
[Crossref]

Turchinovich, D.

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Uchida, K.

J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
[Crossref]

Usov, S. O.

S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
[Crossref]

Van de Walle, C. G.

E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, “Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices,” New J. Phys. 15, 125006 (2013).
[Crossref]

Vennéguès, P.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Vinter, B.

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

Wada, K.

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16, 2204 (1998).
[Crossref]

Wang, H. M.

M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-Nitride UV devices,” Jpn. J. Appl. Phys. 44, 7191–7206 (2005).
[Crossref]

Wang, W.

Wang, X.

Weber, E. R.

J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
[Crossref]

Wei, Q. Y.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010).
[Crossref]

Wernicke, T.

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Wetzel, C.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010).
[Crossref]

Weyers, M.

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
[Crossref]

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Wowchak, A. M.

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

Wu, L.

F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
[Crossref]

Wu, S.

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Xi, Y.

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
[Crossref]

Yamada, Y.

H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008).
[Crossref]

Yan, C. H.

X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 82, 3614–3616 (2003).
[Crossref]

Yan, J.

Yan, Q.

E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, “Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices,” New J. Phys. 15, 125006 (2013).
[Crossref]

Yang, J.

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
[Crossref]

A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
[Crossref]

Yilmaz, I.

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Yokogawa, T.

H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008).
[Crossref]

Yu, P. Y.

J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
[Crossref]

Zanoni, E.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Zavarin, E. E.

S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
[Crossref]

Zeimer, U.

M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
[Crossref]

Zeisel, R.

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

Zhang, F.

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

Zhang, J.

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

Zhang, J. P.

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

Zhang, L.

L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010).
[Crossref]

Zhang, Z.

Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
[Crossref]

Zhuravlev, K. S.

I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).
[Crossref]

Appl. Phys. Lett. (14)

V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J. P. Zhang, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “AlGaN single-quantum-well light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 81, 3666–3668 (2002).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, and M. S. Shur, “Aging of AlGaN quantum well light emitting diode studied by scanning near-field optical spectroscopy,” Appl. Phys. Lett. 95, 181914 (2009).
[Crossref]

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 10–13 (2010).
[Crossref]

G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films,” Appl. Phys. Lett. 74, 2456–2458 (1999).
[Crossref]

N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Exciton localization in AlGaN alloys,” Appl. Phys. Lett. 88, 62103 (2006).
[Crossref]

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
[Crossref]

D. Banerjee, S. Sankaranarayanan, D. Khachariya, M. B. Nadar, S. Ganguly, and D. Saha, “Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires,” Appl. Phys. Lett. 109, 31111 (2016).
[Crossref]

X. A. Cao, S. F. LeBoeuf, L. B. Rowland, C. H. Yan, and H. Liu, “Temperature-dependent emission intensity and energy shift in InGaN/GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett. 82, 3614–3616 (2003).
[Crossref]

D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M. H. Kim, and C. Sone, “On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes,” Appl. Phys. Lett. 99, 2012–2015 (2011).
[Crossref]

A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett. 96, 103504 (2010).
[Crossref]

J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96, 221106 (2010).
[Crossref]

Z. Zhang, C. A. Hurni, A. R. Arehart, J. Yang, R. C. Myers, J. S. Speck, and S. A. Ringel, “Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy,” Appl. Phys. Lett. 100, 1–5 (2012).
[Crossref]

M. Shatalov, A. Chitnis, V. Mandavilli, R. Pachipulusu, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, M. Asif Khan, G. Tamulaitis, A. Sereika, I. Yilmaz, M. S. Shur, and R. Gaska, “Time-resolved electroluminescence of AlGaN-based light-emitting diodes with emission at 285  nm,” Appl. Phys. Lett. 82, 167–169 (2003).
[Crossref]

J. Zhang, S. Wu, S. Rai, V. Mandavilli, V. Adivarahan, A. Chitnis, M. Shatalov, and M. Asif Khan, “AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission,” Appl. Phys. Lett. 83, 3456–3458 (2003).
[Crossref]

IEEE Electron Device Lett. (1)

X. A. Cao, S. F. LeBoeuf, and T. E. Stecher, “Temperature-dependent electroluminescence of AlGaN-based UV LEDs,” IEEE Electron Device Lett. 27, 329–331 (2006).
[Crossref]

J. Appl. Phys. (12)

F. Mehnke, C. Kuhn, J. Stellmach, T. Kolbe, N. Lobo-Ploch, J. Rass, M.-A. Rothe, C. Reich, N. Ledentsov, M. Pristovsek, T. Wernicke, and M. Kneissl, “Effect of heterostructure design on carrier injection and emission characteristics of 295  nm light emitting diodes,” J. Appl. Phys. 117, 195704 (2015).
[Crossref]

J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. L. Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, and M. Kneissl, “Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current and temperature,” J. Appl. Phys. 118, 94504 (2015).
[Crossref]

A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, and M. S. Shur, “Optical studies of degradation of AlGaN quantum well based deep ultraviolet light emitting diodes,” J. Appl. Phys. 108, 93113 (2010).
[Crossref]

A. Pinos, S. Marcinkevičius, and M. S. Shur, “High current-induced degradation of AlGaN ultraviolet light emitting diodes,” J. Appl. Phys. 109, 103108 (2011).
[Crossref]

C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, “Role of defects in the thermal droop of InGaN-based light emitting diodes,” J. Appl. Phys. 119, 94501 (2016).
[Crossref]

G. Martinez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, “Photoluminescence study of excitons in homoepitaxial GaN,” J. Appl. Phys. 90, 5627–5631 (2001).
[Crossref]

X.-B. Chen, J. Huso, J. L. Morrison, and L. Bergman, “Dynamics of GaN band edge photoluminescence at near-room-temperature regime,” J. Appl. Phys. 99, 46105 (2006).
[Crossref]

H. Murotani, Y. Yamada, T. Taguchi, A. Ishibashi, Y. Kawaguchi, and T. Yokogawa, “Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers,” J. Appl. Phys. 104, 053514 (2008).
[Crossref]

Y. Iwata, T. Oto, D. Gachet, R. G. Banal, M. Funato, and Y. Kawakami, “Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells,” J. Appl. Phys. 117, 115702 (2015).
[Crossref]

A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. M. Dabiran, P. P. Chow, A. M. Wowchak, I.-H. Lee, J.-W. Ju, and S. J. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” J. Appl. Phys. 106, 73706 (2009).
[Crossref]

P. Kamyczek, E. Placzek-Popko, V. Kolkovsky, S. Grzanka, and R. Czernecki, “A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN,” J. Appl. Phys. 111, 113105 (2012).
[Crossref]

L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, “Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy,” J. Appl. Phys. 108, 73522 (2010).
[Crossref]

J. Phys. D (2)

Ž. Podlipskas, R. Aleksiejūnas, A. Kadys, J. Mickevičius, J. Jurkevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers,” J. Phys. D 49, 145110 (2016).
[Crossref]

A. Pinos, S. Marcinkevičius, K. Liu, M. S. Shur, J. Yang, M. Shatalov, and R. Gaska, “Carrier lifetimes in AlGaN quantum wells: Electric field and excitonic effects,” J. Phys. D 41, 155116 (2008).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Chichibu, T. Sota, K. Wada, and S. Nakamura, “Exciton localization in InGaN quantum well devices,” J. Vac. Sci. Technol. B 16, 2204 (1998).
[Crossref]

Jpn. J. Appl. Phys. (2)

I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1−xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).
[Crossref]

M. Asif Khan, M. Shatalov, H. P. Maruska, H. M. Wang, and E. Kuokstis, “III-Nitride UV devices,” Jpn. J. Appl. Phys. 44, 7191–7206 (2005).
[Crossref]

Mater. Sci. Eng. B (1)

S. A. Goodman, F. D. Auret, F. K. Koschnick, J. M. Spaeth, B. Beaumont, and P. Gibart, “Radiation induced defects in MOVPE grown n-GaN,” Mater. Sci. Eng. B 71, 100–103 (2000).
[Crossref]

Mater. Sci. Semicond. Process. (1)

C. B. Soh, D. Z. Chi, A. Ramam, H. F. Lim, and S. J. Chua, “Study of electrically active defects in n-GaN layer,” Mater. Sci. Semicond. Process. 4, 595–600 (2001).
[Crossref]

New J. Phys. (1)

E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, “Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices,” New J. Phys. 15, 125006 (2013).
[Crossref]

Opt. Express (2)

Opt. Photon. (1)

M. Schreiner, J. Martínez-Abaigar, J. Glaab, and M. Jansen, “UV-B induced secondary plant metabolites,” Opt. Photon. 9, 34–37 (2014).
[Crossref]

Opt. Quantum Electron. (1)

S. Karpov, “ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review,” Opt. Quantum Electron. 47, 1293–1303 (2015).
[Crossref]

Opto-Electron. Rev. (1)

H. X. Jiang and J. Y. Lin, “AlGaN and InAlGaN alloys—epitaxial growth, optical and electrical properties, and applications,” Opto-Electron. Rev. 10, 271–286 (2002).
[Crossref]

Photochem. Photobiol. Sci. (1)

H. Hönigsmann, “History of phototherapy in dermatology,” Photochem. Photobiol. Sci. 12, 16–21 (2013).
[Crossref]

Phys. Rev. B (4)

P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, “Polarized photoluminescence study of free and bound excitons in free-standing GaN,” Phys. Rev. B 70, 35210 (2004).
[Crossref]

D. Bimberg, M. Sondergeld, and E. Grobe, “Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs,” Phys. Rev. B 4, 3451–3455 (1971).
[Crossref]

W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, “Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells,” Phys. Rev. B 94, 195411 (2016).
[Crossref]

A. Hangleiter, Z. Jin, M. Gerhard, D. Kalincev, T. Langer, H. Bremers, U. Rossow, M. Koch, M. Bonn, and D. Turchinovich, “Efficient formation of excitons in a dense electron-hole plasma at room temperature,” Phys. Rev. B 92, 241305 (2015).
[Crossref]

Phys. Rev. Lett. (1)

D. O. Demchenko, I. C. Diallo, and M. A. Reshchikov, “Yellow luminescence of gallium nitride generated by carbon defect complexes,” Phys. Rev. Lett. 110, 1–5 (2013).
[Crossref]

Phys. Status Solidi A (1)

F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, and P. Gibart, “Electrical characterisation of hole traps in n-type GaN,” Phys. Status Solidi A 201, 2271–2276 (2004).
[Crossref]

Phys. Status Solidi B (1)

D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, and F. Scholz, “Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250, 283–290 (2013).
[Crossref]

Physica B (1)

J. S. Colton, P. Y. Yu, K. L. Teo, P. Perlin, E. R. Weber, I. Grzegory, and K. Uchida, “Selective excitation of the yellow luminescence of GaN,” Physica B 273–274, 75–79 (1999).
[Crossref]

Polym. Compos. (1)

A. Endruweit, M. S. Johnson, and A. C. Long, “Curing of composite components by ultraviolet radiation: A review,” Polym. Compos. 27, 119–128 (2006).
[Crossref]

Proc. SPIE (3)

J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, and M. Kneissl, “High-power UV-B LEDs with long lifetime,” Proc. SPIE 9363, 93631K (2015).
[Crossref]

N. Can, S. Okur, M. Monavarian, F. Zhang, V. Avrutin, H. Morkoç, A. Teke, and Ü. Özgür, “Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients,” Proc. SPIE 9363, 93632U (2015).
[Crossref]

J. Piprek, “Unified model for the GaN LED efficiency droop,” Proc. SPIE 7939, 793916 (2011).
[Crossref]

Semicond. Sci. Technol. (4)

N. Grandjean, J. Massies, I. Grzegory, and S. Porowski, “GaN/AlGaN quantum wells for UV emission: Heteroepitaxy versus homoepitaxy,” Semicond. Sci. Technol. 16, 358–361 (2001).
[Crossref]

J. Brault, D. Rosales, B. Damilano, M. Leroux, A. Courville, M. Korytov, S. Chenot, P. Vennéguès, B. Vinter, P. De Mierry, A. Kahouli, J. Massies, T. Bretagnon, and B. Gil, “Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters,” Semicond. Sci. Technol. 29, 84001 (2014).
[Crossref]

M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, and M. Kneissl, “Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces,” Semicond. Sci. Technol. 28, 125015 (2013).
[Crossref]

N. Lobo Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, and M. Kneissl, “Investigation of the temperature dependent efficiency droop in UV LEDs,” Semicond. Sci. Technol. 28, 125021 (2013).
[Crossref]

Semiconductors (1)

S. O. Usov, A. F. Tsatsul’nikov, V. V. Lundin, A. V. Sakharov, E. E. Zavarin, M. A. Sinitsyn, and N. N. Ledentsov, “Energy characteristics of excitons in structures based on InGaN alloys,” Semiconductors 42, 720–725 (2008).
[Crossref]

Other (2)

See, for instance, Sensor Electronic Technology Inc., “Technical Data Sheet,” .

Simulations are based on the software package SiLENSe 5.2.1, STR Group, Ltd.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Spectral distribution of the EL at various temperatures and a current of 1 mA. The four main emission peaks are labeled in the figure.
Fig. 2.
Fig. 2. Intensity of the QW emission for different temperatures and currents.
Fig. 3.
Fig. 3. Arrhenius plot of the intensity of the QW emission and fit according to Eq. (1).
Fig. 4.
Fig. 4. Temperature dependence of the peak wavelength of the QW emission. Inset: bandgap narrowing with increasing temperature in accordance with Varshni’s law.
Fig. 5.
Fig. 5. Intensity of the QW emission for different temperatures and currents fitted by Eqs. (3), (7), and (9).
Fig. 6.
Fig. 6. Numerical simulation of the band diagram and of electron and hole concentration at 140 and 300 K at a current of 10 mA.
Fig. 7.
Fig. 7. Arrhenius plot of the peak 3 intensity for different currents fitted by the complete SRH model [Eqs. (3), (7), and (9)].
Fig. 8.
Fig. 8. Arrhenius plot of the peak 4 intensity for different currents fitted by the complete SRH model [Eq. (7)].
Fig. 9.
Fig. 9. Intensity of the QW emission at different temperatures fitted by the complete SRH model [Eq. (7)] and the approximated model [Eq. (A3)], respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L=L01+Aexp(Ea/kT),
limTL01+Aexp(Ea/kT)=L01+A.
τnr=τ0(1+coshETEFikT),
I=qVR(An+Bn2+Cn3).
ηi=Bn2I/qVR=Bn2An+Bn2+Cn3.
ηi(T2)ηi(T1)=B2n22A2n2+B2n22+C2n23A1n1+B1n12+C2n13B1n12,
ηi(T2)ηi(T1)=n22n12(A1n1+Bn12)(A2n2+Bn22).
A1n1+Bn12=A2n2+Bn22,
n2=A2+A224B(A1n1Bn12)2B,
n1=n2+Δn.
ηi(T2)ηi(T1)=A1n23+A1n22Δn+Bn12n22A2n23+2A2n22Δn+A2n2Δn2+Bn12n22.
ηi(T2)ηi(T1)A1n2+Bn12A2n2+Bn12.

Metrics