Abstract

Biosensors are a focus of research on terahertz metasurfaces. However, reports of ultra-sensitive biosensors based on Dirac points are rare. Here, a new terahertz metasurface is proposed that consists of patterned graphene and perovskites. This serves as an ultra-sensitive Dirac-point-based biosensor for qualitative detection of sericin. Theoretically, sericin may make graphene n-doped and drive the Fermi level to shift from the valence band to the Dirac point, causing a dramatic decrease in conductivity. Correspondingly, the dielectric environment on the metasurface undergoes significant change, which is suited for ultra-sensitive biosensing. In addition, metal halide perovskites, which are up-to-date optoelectronic materials, have a positive effect on the phase during terahertz wave transmission. Thus, this sensor was used to successfully detect sericin with a detection limit of 780 pg/mL, achieved by changing the amplitude and phase. The detection limit of this sensor is as much as one order of magnitude lower than that of sensors in published works. These results show that the Dirac-point-based biosensor is a promising platform for a wide range of ultra-sensitive and qualitative detection in biosensing and biological sciences.

© 2022 Chinese Laser Press

1. INTRODUCTION

A metasurface is a 2D artificial metamaterial composed of periodic sub-wavelength geometric unit cells [17]. Its coupling with electromagnetic waves generates a unique resonant response with far-ranging applications to modern photonic devices such as modulators [810], absorbers [11,12], lenses [13], and sensors [1417]. Recently, the plasmonic analog of electromagnetically induced transparency (EIT) has been generated in sub-wavelength geometric structures [18,19]. The absorbance linewidth is limited only by Drude damping, and the narrow EIT-like features render it ideal for biosensors [20]. Attempts have been made to realize ultra-sensitivity with EIT-like metasurface-based biosensors. However, related reports are rare owing to difficulties in changing the dielectric environment. A metasurface with graphene and metal halide perovskites may solve this problem. In such a device, graphene and metal halide perovskites work together to produce a resonant response that is ultra-sensitive to change in the dielectric environment under an external stimulus.

Graphene is a two-dimensional atomic system [21,22]. It allows modification of the Fermi level (EF) and the corresponding charge carrier density through biological, electrical, and optical methods [8,23,24]. Chemical vapor deposition (CVD) is a conventional method for producing graphene [25]. However, it is inevitably affected by impurities, defects, and disorders. CVD-graphene is usually p-doped, so the initial EF slightly deviates from the Dirac point and is in the valence band. In other words, the initial EF is quite close to the Dirac point [26]. The EF requires extremely weak external stimuli to move from the valence band to the Dirac point [27], which is suitable for an ultra-sensitive biosensor. Patterned graphene devices have also been widely researched for use in modern advanced equipment [28]. Patterning is the key to manufacturing graphene devices. Patterning graphene on the micro/nanoscale may greatly improve the performance of optical devices, which benefit from low-loss plasma characteristics [29]. Therefore, the patterning of graphene is an important factor that affects device performance [30]. Therefore, CVD-patterned graphene is ideal for producing an ultra-sensitive Dirac-point-based biosensor and tunable optics devices.

Metal halide perovskites are up-to-date optoelectronic materials with the crystal formula ABX3[A=CH3NH3(MA),CH(NH2)2(FA), Cs; B = Pb, Sn; X = Cl, Br, I] [3135]. In recent years, perovskites have shown great advantages in optics devices. Examples include photodetectors, solar cells, light-emitting diodes, and optical modulators [3638]. The excellent optoelectronic properties of metal halide perovskites have received great attention from the optics community. Most importantly, a metal halide perovskite has a high and adjustable relative permittivity that exerts a greater influence on the phase of a terahertz wave passing through it, which plays an active role in phase-based sensors.

In this work, a hybrid dual-optoelectronic-material terahertz metasurface (HDOMM) is used for a Dirac-point-based biosensor. The HDOMM contains an EIT-like metasurface and a sandwich complex composed of graphene, polyimide (PI), and a metal halide perovskite. The HDOMM is used as a platform for ultra-sensitive and qualitative detection of sericin. Using the changes in amplitude and phase, HDOMM can detect sericin with a detection limit of 780 pg/mL. The internal mechanism for ultra-sensitive sensing includes the following two aspects. First, the sericin drives the EF of graphene to move to the Dirac point, causing a dramatic change in the dielectric environment. This is the main factor. Second, a metal halide perovskite boosts the positive effect on the phase. This plays a secondary role. These two factors are used to achieve ultra-sensitive label-free sensing with the HDOMM.

2. RESULTS AND DISCUSSION

A. Fabrication of the HDOMM and Its Characteristics

As shown in Fig. 1(a), the manufacturing process begins with the preparation of an EIT-like metasurface. The unit cell consists of a cut-wire resonator (CW) and two split-oval-ring resonators (SORRs). These resonators were engineered through conventional photolithography [Fig. 1a(i)]. Then, an MAPbI3 film was spin-coated on the metasurface [Fig. 1a(ii)]. The MAPbI3 wrapped the CWs and SORRs with good uniformity. Next, the MAPbI3 was covered with a 1.5-μm-thick PI film [Fig. 1a(iii)]. PI was used to completely isolate MAPbI3 from the ambient conditions, conferring stability to the MAPbI3. After that, trilayer graphene was transferred onto the PI film [Fig. 1a(iv)].

 figure: Fig. 1.

Fig. 1. Manufacture and characterization of the HDOMM. (a) Manufacturing process: (i) an EIT-like metasurface sample was prepared; (ii) a metal halide perovskite [CH3NH3PbI3(MAPbI3)] was spin-coated on the EIT-like metasurface sample; (iii) the PI film was spin-coated on MAPbI3; (iv) graphene was transferred onto the PI film; (v) the trilayer graphene was patterned into a fishing net structure with round holes; (vi) sericin was qualitatively sensed. (b) Three optical microscope images of the different samples. (c) Unit cell of the EIT-like metasurface. The corresponding parameters are P=200μm, l=170μm, w=20μm, a=130μm, b=60μm, c=40μm, d=15μm e=10μm, m=36μm. (d) Raman spectrum of graphene. The inset is a sample of the EIT-like metasurface with the patterned graphene and MAPbI3 film. (e) X-ray diffraction (XRD) pattern of the perovskite films. The inset is an SEM image of MAPbI3.

Download Full Size | PPT Slide | PDF

Subsequently, the graphene was patterned into a fishing net structure with round holes whose diameters are 100 μm [Fig. 1a(v, vi)]. Figure 1(b) shows optical microscope images of the bare EIT-like metasurface, the EIT-like metasurface with graphene and MAPbI3, and the EIT-like metasurface with patterned graphene and MAPbI3. Finally, the HDOMM was used as a Dirac-point-based biosensor [Fig. 1a(vi)]. The dimensions of the unit cell and the electric and magnetic boundary conditions are shown in Fig. 1(c). Figure 1(d) displays the Raman spectrum of graphene excited by a 514-nm laser. The D peak has disappeared. The 2D peak is located at 2680cm1, and the G peak is at 1600cm1. The intensity of the 2D peak is lower than that of the G peak. In addition, the full width at half-maximum of the 2D peak is 55cm1. These results show that the graphene has high quality. Before the X-ray diffraction (XRD) measurement, an MAPbI3 film was deposited on a silicon substrate. Figure 1(e) shows the XRD spectrum. The diffraction peaks are at 14.34°, 28.72°, and 32.16°, representing the (110), (220), and (310) crystal planes, respectively. Figure 1(e) shows no characteristic peaks associated with PbI2 and other redundant phases. The inset of Fig. 1(e) is the top-view SEM image of the MAPbI3 film. The MAPbI3 film has large grains and no pinholes, demonstrating a smooth, uniform morphology.

B. Mechanism of EIT-Like Metasurface and Theoretical Model

Figure 2(a) shows the experiment and simulation transmission spectra of the bare EIT-like metasurface, which presents a classic W-line shape. The experiment results agree relatively well with the simulation results in Fig. 2(a). However, there are still some differences due to the inevitable errors in processing and measuring. Figure 2(c) shows the simulated electric field distributions at 0.65 THz. For the CW, the electric field demonstrates a dipole resonant mode acting as a bright mode. Because the CW couples the incident THz waves, the electric field of the CW is consistently oriented in the polarization direction of the THz waves [39,40], whereas the SORRs decouple from the incident THz waves, serving as a dark mode. However, when the incident THz waves excite the CW, the dark mode couples with the bright mode. Figure 2(c) shows that the electric field of two SORRs is opposite that of the CW. This indicates a coupling with the near field of the CW. Because the CW and SORRs keep comparable excitation strength and a π phase difference, there is destructive interference between the bright and dark modes, which causes a narrow transparency window [40,41]. The coupled harmonic oscillator model is applied to describe the destructive interference between the bright and dark modes. The interference can be analytically described by the coupled differential equations [3941]

x¨1+γ1x˙1+ω02x1+κx2=E,x¨2+γ2x˙2+(ω0+δ)2x2+κx1=0,
where x1 and x2 are the resonant amplitudes, and γ1 and γ2 the losses of bright and dark modes, respectively; δ is the detuning of the resonant frequency of the dark-mode oscillator from the bright-mode one; and κ is the coupling coefficient between the two oscillators. Solving Eq. (1) with the approximation ωω0ω0 yields the susceptibility χ:
χ=χr+iχi(ωω0δ)+iγ22(ωω0+iγ12)(ωω0δ+iγ22)κ24.
The energy loss is always proportional to the imaginary part of χ; thus, the transmission can be written as
T1χi=1gχi,
where χi is the imaginary part of the susceptibility, which is proportional to the energy loss. The transmission T is calculated from T=1gχi, in which g is the geometric parameter describing the strength of the coupling of the bright mode with the incident electric field E. During coupling, the absorbance linewidth is limited only by Drude damping. That is to say, any change in the transparency window is due only to the external dielectric environment owing to the suppression of radiative losses [20]. In addition, Fig. 2(d) shows circulating current distributions along SORRs, representing low radiation loss. Therefore, the excellent features render the EIT-like metasurface ideal for biosensors.
 figure: Fig. 2.

Fig. 2. Performance and mechanism of the EIT-like metasurface. (a) Experimental and simulated transmission spectra. (b) Simulated transmission spectra under different conductivities. (c) Simulated electric field distributions at 0.65 THz. (d) Surface current distributions at 0.65 THz. (e)–(h) Simulated electric field distributions under different conductivities.

Download Full Size | PPT Slide | PDF

To realize ultra-sensitive sensing, the HDOMM was used as a platform for qualitative detection of sericin, which has strong water solubility. For such detection, the patterned graphene is in direct contact with the sericin and performs the main sensing function. The perovskite is not in direct contact with the sericin, boosting the influence on the phase. This plays a secondary role. The change in the dielectric environment is mainly due to the conductivity of the patterned graphene. Therefore, the relationship between the conductivity and transmission spectra of the HDOMM was simulated to clarify the sensing mechanism of the HDOMM. Figure 2(b) shows the simulated transmission spectra under different conductivities. The transparency window gradually shrinks with increasing conductivity. An in-depth understanding of the electromagnetic behavior is obtained from the simulated electric field distributions in Figs. 2(e)–2(h) for the HDOMM under different conductivities. The field concentrations are strong when the conductivity is 0 S/m [Fig. 2(i)]. However, as the conductivity increases from 0 to 2500 S/m, the electric fields gradually decrease. Correspondingly, the transparency window shrinks.

C. HDOMM Application to Sericin Sensing

Figures 3(a)–3(c) show the experimental transmission spectra for the HDOMM at sericin concentrations from 780 pg/mL to 1.25 μg/mL. Compared with that of the bare HDOMM, the transparency window with sericin is significantly enhanced. The obvious enhancement of the transparency window facilitates well the qualitative sensing of sericin. To clarify the sensing effect further, it is defined as ΔT/T=[(TsericinTbare)/Tbare]×100%, where Tsericin (Tbare) is the transmittance at the transparency window with (without) sericin. From Figs. 3(a)–3(c), ΔT/T for sericin at 1.25 μg/mL (highest concentration) is 6.7%, slightly higher than ΔT/T=5.0% at 1.17 ng/mL; however, this is much lower than ΔT/T=21% for sericin at 780 pg/mL (lowest concentration). The conclusion drawn from these results is that the HDOMM can serve as an ultra-sensitive qualitatively detecting biosensor. This sensor was used to successfully detect sericin with a detection limit of 780 pg/mL. In addition, two abnormal THz responses were found: first, the transparency window with sericin is significantly higher than that for the bare HDOMM; second, ΔT/T for 1.25 μg/mL (highest concentration) is much lower than ΔT/T for 780 pg/mL (lowest concentration). To understand the internal mechanism of the two abnormal THz responses, the coupled harmonic oscillator model is used to fit the experimental transmission spectra for the HDOMM biosensor at sericin concentrations from 780 pg/mL to 1.25 μg/mL.

 figure: Fig. 3.

Fig. 3. Sensing performance of the HDOMM biosensor based on amplitude. (a)–(c) Experimental transmission spectra. (d)–(f) Corresponding theoretical fitted transmission spectra from (a)–(c). (g)–(i) Fitting parameters γ1 and γ2 as functions of sericin concentration. (j)–(l) Sensing mechanisms.

Download Full Size | PPT Slide | PDF

Figures 3(d)–3(f) present the theoretical fitted transmission spectra. The fitting results agree relatively well with the measurement. Figures 3(g)–3(i) show the fitting parameters γ1 and γ2 as functions of sericin concentration from 780 pg/mL to 1.25 μg/mL. Compared with those of the bare sample, both the radiative damping of the bright mode γ1 and non-radiative damping of the dark mode γ2 dramatically decrease under the influence of sericin. This is because introducing sericin changes the dielectric environment in the HDOMM, thus causing the reductions in γ1 and γ2. The combined results in Fig. 2(b) suggest that the conductivity of graphene has decreased. Therefore, the transmission amplitude significantly increases at the transparency window. The second abnormal THz response is more clearly explained by calculating Δγ1/γ1=[(γ1bareγ1sericin)/γ1bare]×100% and Δγ2/γ2=[(γ2bareγ2sericin)/γ1bare]×100%. The bigger Δγ1/γ1(Δγ2/γ2) is, the more γ1(γ2) is reduced. The results are shown in Table 1.

Tables Icon

Table 1. Δγ/γ for Different Sericin Concentrations

In Table 1, both Δγ1/γ1 and Δγ2/γ2 are maximum when the sericin concentration is at its minimum of 780 pg/mL. Such a sensing response is mainly caused by the unique bio-doping, which makes the initial EF move to the Dirac point, leading to a sharp drop in the graphene conductivity. Figures 3(j)–3(l) show the sensing mechanisms of the HDOMM biosensor. CVD graphene is usually p-doped owing to the inevitable influence of impurities, defects, and disorder. The initial EF slightly deviates from the Dirac point and is in the valence band, as shown in Fig. 3(j). The initial EF is quite close to the Dirac point. As the 780-pg/mL sericin and the patterned graphene covalently bond, the initial EF shifts from the valence band to the Dirac point, as shown in Fig. 3(k). The carrier density correspondingly decreases in the patterned graphene. Therefore, the conductivity decreases. This results in the observed marked enhancement of the transparency window. However, when the sericin concentration is 1.17 ng/mL, the initial EF shifts from the Dirac point to the conduction band [see Fig. 3(l)]. The carrier density correspondingly increases, which enhances the conductivity. Therefore, the transparency window of the 1.17-ng/mL sericin is lower than that of the 780-pg/mL sericin. The results and theoretical analysis show that a substantial increase in the amplitude of the transparency window was achieved at the lowest sericin concentration; that is, ultrasensitive detection of sericin was achieved. The internal mechanism leading to this result is mainly that the EF of graphene has moved to the Dirac point under the drive of the sericin, causing a dramatic change in the dielectric environment of the EIT coupling. Therefore, the conclusion drawn is that the ultra-sensitive sericin sensing is mainly caused by the EF shifting to the Dirac point. The designed sensor is considered a Dirac-point-based biosensor. The sensitivity of this biosensor has been greatly improved compared with sensors of previous works (Table 2). Here, we are based on the interaction between external molecules and graphene to compare the sensitivity of previous works. Sericin molecules have no benzene ring-like structures and are without π-electrons. Therefore, it cannot form ππ stacking with graphene. First, we compare the no ππ stacking case. In Table 2, we can find that the sensitivity of the Dirac-point-based HDOMM sensor is as much as two orders of magnitude higher than that of detecting fructose in Ref. [43]. In general, if an external molecule has a benzene ring-like structure with π-electrons, it strongly interacts with the π-electrons of graphene through ππ stacking [42]. Therefore, the graphene-based sensor shows higher sensitivity to the external molecules containing π-electrons [42]. However, the sensitivity of the Dirac-point-based sensor to detecting sericin molecules without π-electrons is one order of magnitude higher than that of detecting chlorpyrifos methyl molecules that form ππ stacking with graphene in previous work [15,42]. Furthermore, the sensitivity of the Dirac-point-based HDOMM sensor is as much as two orders of magnitude higher than that of the sensor (Graphene+PI) whose analytes contain π-electrons in Ref. [43]. In summary, the HDOMM sensor has higher sensing performance.

Tables Icon

Table 2. Comparison with Previous Worksa

Figures 4(a)–4(c) show the experimental phase spectra for the HDOMM at sericin concentrations from 780 pg/mL to 1.25 μg/mL. The reference point of the phase spectra for the HDOMM with sericin is the corresponding phase in dry air. In Figs. 4(a)–4(c), the phase spectra of the HDOMM with sericin are significantly different from those for the bare HDOMM. The obvious change in the phase spectra also facilitates the qualitative sensing of sericin. To clarify the sensing effect further, it is defined as ΔP/P=|(PsericinPbare)/Pbare|, where Psericin (Pbare) is the phase at the transparency window with (without) sericin. From Figs. 4(a)–4(c), ΔP/P for sericin at 1.25 μg/mL (highest concentration) is 0.6, slightly lower than ΔP/P=2.6 at 1.17 ng/mL; however, this is much lower than ΔP/P=10 for sericin at 780 pg/mL (lowest concentration). The conclusion drawn from these results is that the HDOMM can serve as an ultra-sensitive qualitatively detecting biosensor. This sensor was used to successfully detect sericin with a detection limit of 780 pg/mL. As is the case for the phase-based sensing effect, and the phase spectra undergo the maximum change at the minimum sericin concentration of 780 pg/mL. The internal mechanism is also mainly that the EF of graphene has moved to the Dirac point, causing a dramatic change in the dielectric environment. Figure 4(d) shows the mechanism through which perovskite facilitates phase-based sensing. When terahertz waves pass through graphene, φ0 changes to φ0+Δφ owing to the biological doping in graphene, where φ0 is the initial phase of the terahertz wave, and Δφ is the change in phase caused by the change in conductivity. After the terahertz waves pass through perovskite, φ0+Δφ changes to (φ0+Δφ)+(ω/c)nl, where ω is the frequency, c is the speed of light, n is the refractive index of perovskite, and l is the thickness of the perovskite. Because perovskite has a relatively high refractive index, Figs. 4(a)–4(c) show that the phase of terahertz waves [(φ0+Δφ)+(ω/c)nl] greatly changes with the sericin concentration. Therefore, perovskite plays an important role in phase-based sensing.

 figure: Fig. 4.

Fig. 4. Sensing performance of the HDOMM biosensor based on phase. (a)–(c) Experimental phase spectra for the HDOMM at sericin concentrations from 780 pg/mL to 1.25 μg/mL. (d) Role of perovskite in phase-based sensing.

Download Full Size | PPT Slide | PDF

3. CONCLUSION

Ultra-sensitive and qualitative detection of sericin has been demonstrated using a new patterned graphene–PI–perovskite integrated terahertz metasurface as a platform for Dirac-point-based biosensing. The changes in amplitude and phase were used to successfully detect sericin with a detection limit of 780 pg/mL. The sensitivity of this sensor is as much as one order of magnitude higher than that of sensors in published works. The internal mechanism of ultra-sensitive biosensing was explained via simulation, coupled-harmonic-oscillator model fitting, and theoretical analysis of the changes in the graphene EF. It was found that as 780-pg/mL sericin and the patterned graphene covalently bond, the initial EF shifts from the valence band to the Dirac point. Correspondingly, the carrier density decreases in the patterned graphene, which decreases the conductivity. This results in marked enhancement of the transparency window. Thus, ultra-sensitive and qualitative detection of sericin was achieved. This work could lead to a wide range of ultra-sensitive and qualitative detection of biomolecules based on the Dirac-point-based biosensor.

APPENDIX A: EXPERIMENT

First, 1.3 mol/L PbI2 and 0.3 mol/L CH3NH3I (MAI) were dissolved in 80 μL of a mixed solvent consisting of N,N-dimethylformamide and dimethyl sulfoxide at a volume ratio of 9:1. After that, the precursor solution was spin-coated on the metasurface at 6000 r/min for 15 s. Next, 60 μL of a MAI/isopropyl alcohol solution (35 mg/mL) was spin-coated on the wet film at 4500 r/min for 45 s. After spin-coating, the hybrid perovskite metasurface sample was transferred to a hot plate and pre-annealed at 70°C for 20 s in a glove box. Then the hybrid perovskite metasurface sample was annealed at 100°C for 30 min. After the spin-coating of perovskite on the metasurface was finished, a 2-μm-thick PI film was spin-coated on the MAPbI3 film at 3500 r/min. When the drying of the PI film was completed, a 1cm×1cm graphene sheet was carefully transferred onto the dried PI film. Finally, the graphene was patterned. The patterning of the graphene was achieved in four steps [28]: (1) the metal mask was manufactured; (2) patterned zinc metal was sputtered on the uppermost layer of the graphene; (3) the HCl aqueous solution (0.02 mol/L) chemically reacted with zinc for 3 to 5 min to remove zinc while removing the graphene in contact with the patterned zinc; (4) after the first, second, and third Zn/HCl treatments, the patterned graphene was obtained. While the lowest detection limit of sericin was explored, 100-μL sericin solutions under different concentrations were dropped on the HDOMM biosensor, and the experimental test was performed after the water evaporation was completed.

APPENDIX B: MEASUREMENTS

An 8f confocal terahertz time-domain spectroscopy (THz-TDS) system was used for the measurements. Before the measurements, dry air was introduced to maintain a constant environment. The temperature was 27°C, and the humidity was 2.7% in the THz-TDS setup. An LED-optically pumped all-fiber femtosecond laser was used to generate a terahertz pulse. The wavelength of the laser center was at 1560 nm with a 100-fs pulse duration and 100-MHz repetition rate. The laser power was 100 mW during the measurements. The beam was split into two identical beams. One beam was used to generate the THz transient by exciting a biased photoconductive antenna, while the other served to detect the THz pulse. The THz time scan was 40 ps, and the spectral resolution was 40 GHz.

Funding

National Natural Science Foundation of China (61675147, 61701434, 61735010); Special Funding of the Taishan Scholar Project (tsqn201909150); Natural Science Foundation of Guangxi Province (ZR2020FK008); National Key Research and Development Program of China (2017YFA0700202, 2017YFB1401203); Qingchuang Science and Technology Plan of Shandong Universities (2019KJN001); Shandong Province Higher Education Science and Technology Program (J17KA087); Natural Science Foundation of Jiangsu Province (BK20180862); China Postdoctoral Fund (2019M651725); Natural Science Foundation of Shandong Province (ZR202102180769).

Disclosures

The authors declare no conflicts of interest.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

REFERENCES

1. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006). [CrossRef]  

2. S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020). [CrossRef]  

3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]  

4. C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021). [CrossRef]  

5. T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021). [CrossRef]  

6. T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021). [CrossRef]  

7. J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021). [CrossRef]  

8. Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020). [CrossRef]  

9. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012). [CrossRef]  

10. W. He, M. Tong, Z. Xu, Y. Hu, X. A. Cheng, and T. Jiang, “Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface,” Photon. Res. 9, 1099–1108 (2021). [CrossRef]  

11. G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019). [CrossRef]  

12. J. Y. Suen, K. Fan, and W. J. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7, 1801632 (2019). [CrossRef]  

13. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010). [CrossRef]  

14. M. Gupta and R. Singh, “Terahertz sensing with optimized Q/Veff metasurface cavities,” Adv. Opt. Mater. 8, 1902025 (2020). [CrossRef]  

15. R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020). [CrossRef]  

16. H. M. Silalahi, Y.-P. Chen, Y.-H. Shih, Y.-S. Chen, X.-Y. Lin, J.-H. Liu, and C.-Y. Huang, “Floating terahertz metamaterials with extremely large refractive index sensitivities,” Photon. Res. 9, 1970–1978 (2021). [CrossRef]  

17. R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021). [CrossRef]  

18. X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019). [CrossRef]  

19. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990). [CrossRef]  

20. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef]  

21. M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020). [CrossRef]  

22. J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020). [CrossRef]  

23. T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018). [CrossRef]  

24. H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018). [CrossRef]  

25. J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020). [CrossRef]  

26. M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021). [CrossRef]  

27. H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021). [CrossRef]  

28. A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011). [CrossRef]  

29. J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012). [CrossRef]  

30. S. Shukla, S.-Y. Kang, and S. Saxena, “Synthesis and patterning of graphene: strategies and prospects,” Appl. Phys. Rev. 6, 021311 (2019). [CrossRef]  

31. H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017). [CrossRef]  

32. A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020). [CrossRef]  

33. H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020). [CrossRef]  

34. M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021). [CrossRef]  

35. C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021). [CrossRef]  

36. Y. Wei, T. Ma, J. Chen, M. Zhao, and H. Zeng, “Metal halide perovskites for optical parametric modulation,” J. Phys. Chem. Lett. 12, 3090–3098 (2021). [CrossRef]  

37. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017). [CrossRef]  

38. W. Tian, H. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017). [CrossRef]  

39. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018). [CrossRef]  

40. M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019). [CrossRef]  

41. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012). [CrossRef]  

42. W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019). [CrossRef]  

43. W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020). [CrossRef]  

References

  • View by:

  1. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [Crossref]
  2. S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020).
    [Crossref]
  3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  4. C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
    [Crossref]
  5. T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
    [Crossref]
  6. T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
    [Crossref]
  7. J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021).
    [Crossref]
  8. Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
    [Crossref]
  9. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
    [Crossref]
  10. W. He, M. Tong, Z. Xu, Y. Hu, X. A. Cheng, and T. Jiang, “Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface,” Photon. Res. 9, 1099–1108 (2021).
    [Crossref]
  11. G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019).
    [Crossref]
  12. J. Y. Suen, K. Fan, and W. J. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7, 1801632 (2019).
    [Crossref]
  13. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010).
    [Crossref]
  14. M. Gupta and R. Singh, “Terahertz sensing with optimized Q/Veff metasurface cavities,” Adv. Opt. Mater. 8, 1902025 (2020).
    [Crossref]
  15. R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
    [Crossref]
  16. H. M. Silalahi, Y.-P. Chen, Y.-H. Shih, Y.-S. Chen, X.-Y. Lin, J.-H. Liu, and C.-Y. Huang, “Floating terahertz metamaterials with extremely large refractive index sensitivities,” Photon. Res. 9, 1970–1978 (2021).
    [Crossref]
  17. R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
    [Crossref]
  18. X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
    [Crossref]
  19. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
    [Crossref]
  20. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
    [Crossref]
  21. M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
    [Crossref]
  22. J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
    [Crossref]
  23. T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
    [Crossref]
  24. H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
    [Crossref]
  25. J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
    [Crossref]
  26. M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
    [Crossref]
  27. H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
    [Crossref]
  28. A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011).
    [Crossref]
  29. J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012).
    [Crossref]
  30. S. Shukla, S.-Y. Kang, and S. Saxena, “Synthesis and patterning of graphene: strategies and prospects,” Appl. Phys. Rev. 6, 021311 (2019).
    [Crossref]
  31. H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
    [Crossref]
  32. A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
    [Crossref]
  33. H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
    [Crossref]
  34. M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
    [Crossref]
  35. C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
    [Crossref]
  36. Y. Wei, T. Ma, J. Chen, M. Zhao, and H. Zeng, “Metal halide perovskites for optical parametric modulation,” J. Phys. Chem. Lett. 12, 3090–3098 (2021).
    [Crossref]
  37. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
    [Crossref]
  38. W. Tian, H. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
    [Crossref]
  39. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  40. M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
    [Crossref]
  41. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  42. W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
    [Crossref]
  43. W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
    [Crossref]

2021 (12)

C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
[Crossref]

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021).
[Crossref]

W. He, M. Tong, Z. Xu, Y. Hu, X. A. Cheng, and T. Jiang, “Ultrafast all-optical terahertz modulation based on an inverse-designed metasurface,” Photon. Res. 9, 1099–1108 (2021).
[Crossref]

H. M. Silalahi, Y.-P. Chen, Y.-H. Shih, Y.-S. Chen, X.-Y. Lin, J.-H. Liu, and C.-Y. Huang, “Floating terahertz metamaterials with extremely large refractive index sensitivities,” Photon. Res. 9, 1970–1978 (2021).
[Crossref]

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Y. Wei, T. Ma, J. Chen, M. Zhao, and H. Zeng, “Metal halide perovskites for optical parametric modulation,” J. Phys. Chem. Lett. 12, 3090–3098 (2021).
[Crossref]

2020 (10)

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020).
[Crossref]

M. Gupta and R. Singh, “Terahertz sensing with optimized Q/Veff metasurface cavities,” Adv. Opt. Mater. 8, 1902025 (2020).
[Crossref]

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
[Crossref]

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

2019 (6)

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
[Crossref]

G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019).
[Crossref]

J. Y. Suen, K. Fan, and W. J. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7, 1801632 (2019).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

S. Shukla, S.-Y. Kang, and S. Saxena, “Synthesis and patterning of graphene: strategies and prospects,” Appl. Phys. Rev. 6, 021311 (2019).
[Crossref]

2018 (3)

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

2017 (3)

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

W. Tian, H. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

2012 (3)

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011).
[Crossref]

2010 (1)

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010).
[Crossref]

2009 (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

Abdelsamie, M.

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

Abhishek Kumar, A. S.

A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
[Crossref]

Agarwal, P.

A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Ako, R. T.

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

Al-Naib, I.

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

Anthony, J. E.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Babbe, F.

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

Bhaskaran, M.

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

Blum, V.

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

Cao, W.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Chen, D.

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

Chen, H.-T.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Chen, J.

Y. Wei, T. Ma, J. Chen, M. Zhao, and H. Zeng, “Metal halide perovskites for optical parametric modulation,” J. Phys. Chem. Lett. 12, 3090–3098 (2021).
[Crossref]

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Chen, M.

M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]

Chen, T.

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

Chen, X.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Chen, Y.-P.

Chen, Y.-S.

Cheng, X. A.

Cho, B.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Cho, J. H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Choi, H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Chung, D. S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Cui, T. J.

C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
[Crossref]

Dai, F.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Dai, H.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Dai, J.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Day, C. S.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Dimiev, A.

A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011).
[Crossref]

Dong, T.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Fan, K.

J. Y. Suen, K. Fan, and W. J. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7, 1801632 (2019).
[Crossref]

Feng, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012).
[Crossref]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Fu, X. J.

C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gan, Q.

G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019).
[Crossref]

Gao, J.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

Gao, W.

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Gupta, M.

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

M. Gupta and R. Singh, “Terahertz sensing with optimized Q/Veff metasurface cavities,” Adv. Opt. Mater. 8, 1902025 (2020).
[Crossref]

Ha, T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Han, J.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Han, Q.

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

Han, S.

S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020).
[Crossref]

Han, Z.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Hao, X.

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

He, W.

Heo, E.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Holland, E. K.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Hu, H.

G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019).
[Crossref]

Hu, Y.

Huang, C.-Y.

Huang, J.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Huang, K.

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

Huang, Y.

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

In, C.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Jen, Y. J.

G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019).
[Crossref]

Jiang, T.

Jing, H.

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

Jo, H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Jung, H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Jurchescu, O. D.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Kang, M. S.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Kang, S.-Y.

S. Shukla, S.-Y. Kang, and S. Saxena, “Synthesis and patterning of graphene: strategies and prospects,” Appl. Phys. Rev. 6, 021311 (2019).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kim, D. H.

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
[Crossref]

Kim, H.-D.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Kim, T.-T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Kivshar, Y. S.

S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020).
[Crossref]

Kong, D.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Kono, J.

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

Koo, J.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Kosynkin, D. V.

A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011).
[Crossref]

Kumar, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Kundtz, N.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010).
[Crossref]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Lee, H.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Lee, J.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Lee, W.

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

Lee, Y. H.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Li, A.

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

Li, C.-Y.

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

Li, F.

J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Li, J.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021).
[Crossref]

J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021).
[Crossref]

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012).
[Crossref]

Li, L.

W. Tian, H. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

Li, Q.

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

Li, S.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Li, T.

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

Li, W.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012).
[Crossref]

Li, Y.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liang, L.

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
[Crossref]

Lin, X.-Y.

Liu, C. X.

C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
[Crossref]

Liu, J.

Liu, J.-H.

Liu, K.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Liu, L.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Liu, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, X.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Liu, Y.

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

Loo, Y. L.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Lu, X.

M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]

Lu, Y.

Lv, F.

M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]

Ma, T.

Y. Wei, T. Ma, J. Chen, M. Zhao, and H. Zeng, “Metal halide perovskites for optical parametric modulation,” J. Phys. Chem. Lett. 12, 3090–3098 (2021).
[Crossref]

Ma, Y.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Manjappa, M.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Miao, J.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Min, B.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Mitzi, D. B.

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

Novoselov, K. S.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Oh, S. S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Ouyang, C.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Padilla, W. J.

J. Y. Suen, K. Fan, and W. J. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7, 1801632 (2019).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Peng, G.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Peng, R.-W.

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Ping, J.

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

Pitchappa, P.

S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020).
[Crossref]

Plum, E.

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

Qi, J.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012).
[Crossref]

Qi, L.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012).
[Crossref]

Qian, X.

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012).
[Crossref]

Qin, S.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Quan, B.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Ramesh, S.

A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
[Crossref]

Ren, X.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

Ren, Y.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

Rui, G.

G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019).
[Crossref]

Rybin, M. V.

S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020).
[Crossref]

Saxena, S.

S. Shukla, S.-Y. Kang, and S. Saxena, “Synthesis and patterning of graphene: strategies and prospects,” Appl. Phys. Rev. 6, 021311 (2019).
[Crossref]

Shih, Y.-H.

Shukla, S.

S. Shukla, S.-Y. Kang, and S. Saxena, “Synthesis and patterning of graphene: strategies and prospects,” Appl. Phys. Rev. 6, 021311 (2019).
[Crossref]

Silalahi, H. M.

Singer, M.

G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019).
[Crossref]

Singh, R.

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020).
[Crossref]

M. Gupta and R. Singh, “Terahertz sensing with optimized Q/Veff metasurface cavities,” Adv. Opt. Mater. 8, 1902025 (2020).
[Crossref]

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
[Crossref]

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Sinitskii, A.

A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011).
[Crossref]

Slesarev, A.

A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011).
[Crossref]

Smith, D. R.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010).
[Crossref]

Solanki, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Song, X.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
[Crossref]

Sorli, J.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Sriram, S.

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

Srivastava, Y. K.

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020).
[Crossref]

A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Suen, J. Y.

J. Y. Suen, K. Fan, and W. J. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7, 1801632 (2019).
[Crossref]

Sum, T. C.

A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Sun, Z.

A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011).
[Crossref]

Sutter-Fella, C. M.

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

Tan, T. C.

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

Tang, L.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Tang, T.

J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Tian, W.

W. Tian, H. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

Tian, Z.

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Toney, M. F.

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

Tong, M.

Tour, J. M.

A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011).
[Crossref]

Tyznik, C.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Vardeny, Z. V.

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

Wang, C.

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Wang, G.

Wang, H.

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
[Crossref]

Wang, L.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Wang, M.

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
[Crossref]

Wang, Q.

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

Wang, R.

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

Wang, S.

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

Wang, T.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, W.

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

Wang, Y.

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

Wang, Z.

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

Wei, D.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
[Crossref]

Wei, Y.

Y. Wei, T. Ma, J. Chen, M. Zhao, and H. Zeng, “Metal halide perovskites for optical parametric modulation,” J. Phys. Chem. Lett. 12, 3090–3098 (2021).
[Crossref]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

Wu, J. W.

C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
[Crossref]

Wu, L.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Wu, X.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Xiao, S.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xiao, Z.

M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]

Xie, J.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Xie, L.

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Xin, Y.

Xiong, B.

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

Xu, C.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, J.

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

Xu, W.

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Xu, Z.

Yan, X.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yang, F.

C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
[Crossref]

Yang, J.

C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
[Crossref]

Yang, M.

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
[Crossref]

Yang, P.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Yang, Q.

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

Yang, X.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Yang, Y.

J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Yao, H.

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

Yao, J.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Ye, Y.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

Yin, J.

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Ying, Y.

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Yuan, X.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Yue, Z.

Zeng, H.

Y. Wei, T. Ma, J. Chen, M. Zhao, and H. Zeng, “Metal halide perovskites for optical parametric modulation,” J. Phys. Chem. Lett. 12, 3090–3098 (2021).
[Crossref]

Zhan, Q.

G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019).
[Crossref]

Zhang, H.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
[Crossref]

Zhang, J.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Zhang, L.

C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
[Crossref]

Zhang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
[Crossref]

Zhang, S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Zhang, T.

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

Zhang, W.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Zhang, X.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Zhang, Y.

Zhang, Z.

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

M. Yang, L. Liang, Z. Zhang, Y. Xin, D. Wei, X. Song, H. Zhang, Y. Lu, M. Wang, and M. Zhang, “Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells,” Opt. Express 27, 19520–19529 (2019).
[Crossref]

Zhao, M.

Y. Wei, T. Ma, J. Chen, M. Zhao, and H. Zeng, “Metal halide perovskites for optical parametric modulation,” J. Phys. Chem. Lett. 12, 3090–3098 (2021).
[Crossref]

Zhao, R.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Zheng, C.

J. Li, C. Zheng, J. Li, G. Wang, J. Liu, Z. Yue, X. Hao, Y. Yang, F. Li, T. Tang, Y. Zhang, Y. Zhang, and J. Yao, “Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface,” Photon. Res. 9, 1939–1947 (2021).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

Zhou, H.

W. Tian, H. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

Zhou, J.

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Zhou, R.

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

Zhou, Y.

M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]

Zhu, J.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Zhu, M.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Zhu, Y.

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

Zhu, Z.

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

ACS Appl. Mater. Interfaces (4)

R. Wang, W. Xu, D. Chen, R. Zhou, Q. Wang, W. Gao, J. Kono, L. Xie, and Y. Ying, “Ultrahigh-sensitivity molecular sensing with carbon nanotube terahertz metamaterials,” ACS Appl. Mater. Interfaces 12, 40629–40634 (2020).
[Crossref]

M. Abdelsamie, T. Li, F. Babbe, J. Xu, Q. Han, V. Blum, C. M. Sutter-Fella, D. B. Mitzi, and M. F. Toney, “Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films,” ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).
[Crossref]

C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y. L. Loo, Z. V. Vardeny, and O. D. Jurchescu, “Photocurrent in metal-halide perovskite/organic semiconductor heterostructures: impact of microstructure on charge generation efficiency,” ACS Appl. Mater. Interfaces 13, 10231–10238 (2021).
[Crossref]

W. Xu, Y. Huang, R. Zhou, Q. Wang, J. Yin, J. Kono, J. Ping, L. Xie, and Y. Ying, “Metamaterial-free flexible graphene-enabled terahertz sensors for pesticide detection at bio-interface,” ACS Appl. Mater. Interfaces 12, 44281–44287 (2020).
[Crossref]

ACS Photon. (1)

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Adv. Func. Mater. (1)

T. Dong, S. Li, M. Manjappa, P. Yang, J. Zhou, D. Kong, B. Quan, X. Chen, C. Ouyang, F. Dai, J. Han, C. Ouyang, X. Zhang, J. Li, Y. Li, J. Miao, Y. Li, L. Wang, R. Singh, W. Zhang, and X. Wu, “Nonlinear THz-nano metasurfaces,” Adv. Func. Mater. 31, 2100463 (2021).
[Crossref]

Adv. Mater. (3)

T. C. Tan, Y. K. Srivastava, R. T. Ako, W. Wang, M. Bhaskaran, S. Sriram, I. Al-Naib, E. Plum, and R. Singh, “Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing,” Adv. Mater. 33, 2100836 (2021).
[Crossref]

H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, and H. Lee, “Electrically controllable molecularization of terahertz meta-atoms,” Adv. Mater. 30, 1802760 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Adv. Mater. Technol. (1)

Q. Li, M. Gupta, X. Zhang, S. Wang, T. Chen, R. Singh, J. Han, and W. Zhang, “Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials,” Adv. Mater. Technol. 5, 1900840 (2020).
[Crossref]

Adv. Opt. Mater. (5)

S. Han, M. V. Rybin, P. Pitchappa, Y. K. Srivastava, Y. S. Kivshar, and R. Singh, “Guided-mode resonances in all-dielectric terahertz metasurfaces,” Adv. Opt. Mater. 8, 1900959 (2020).
[Crossref]

C. X. Liu, F. Yang, X. J. Fu, J. W. Wu, L. Zhang, J. Yang, and T. J. Cui, “Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals,” Adv. Opt. Mater. 9, 2100932 (2021).
[Crossref]

M. Gupta and R. Singh, “Terahertz sensing with optimized Q/Veff metasurface cavities,” Adv. Opt. Mater. 8, 1902025 (2020).
[Crossref]

G. Rui, H. Hu, M. Singer, Y. J. Jen, Q. Zhan, and Q. Gan, “Symmetric meta-absorber-induced superchirality,” Adv. Opt. Mater. 7, 1901038 (2019).
[Crossref]

J. Y. Suen, K. Fan, and W. J. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7, 1801632 (2019).
[Crossref]

Appl. Phys. Rev. (1)

S. Shukla, S.-Y. Kang, and S. Saxena, “Synthesis and patterning of graphene: strategies and prospects,” Appl. Phys. Rev. 6, 021311 (2019).
[Crossref]

Appl. Surf. Sci. (1)

M. Yang, T. Li, J. Gao, X. Yan, L. Liang, H. Yao, J. Li, D. Wei, M. Wang, T. Zhang, Y. Ye, X. Song, H. Zhang, Y. Ren, X. Ren, and J. Yao, “Graphene–polyimide-integrated metasurface for ultrasensitive modulation of higher-order terahertz Fano resonances at the Dirac point,” Appl. Surf. Sci. 562, 150182 (2021).
[Crossref]

Biosens. Bioelectron. (2)

R. Zhou, C. Wang, Y. Huang, K. Huang, Y. Wang, W. Xu, L. Xie, and Y. Ying, “Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures,” Biosens. Bioelectron. 188, 113336 (2021).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Carbon (5)

H. Yao, X. Yan, M. Yang, Q. Yang, Y. Liu, A. Li, M. Wang, D. Wei, Z. Tian, and L. Liang, “Frequency-dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene-based metal and all-dielectric metamaterials,” Carbon 184, 400–408 (2021).
[Crossref]

M. Chen, Z. Xiao, X. Lu, F. Lv, and Y. Zhou, “Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial,” Carbon 159, 273–282 (2020).
[Crossref]

J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, “Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging,” Carbon 163, 34–42 (2020).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H.-T. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Chem. Soc. Rev. (1)

H. Wang and D. H. Kim, “Perovskite-based photodetectors: materials and devices,” Chem. Soc. Rev. 46, 5204–5236 (2017).
[Crossref]

J. Phys. Chem. Lett. (1)

Y. Wei, T. Ma, J. Chen, M. Zhao, and H. Zeng, “Metal halide perovskites for optical parametric modulation,” J. Phys. Chem. Lett. 12, 3090–3098 (2021).
[Crossref]

Light Sci. Appl. (1)

J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, and K. S. Novoselov, “Light-induced irreversible structural phase transition in trilayer graphene,” Light Sci. Appl. 9, 174 (2020).
[Crossref]

Nanophotonics (1)

H. Jing, Y. Zhu, R.-W. Peng, C.-Y. Li, B. Xiong, Z. Wang, Y. Liu, and M. Wang, “Hybrid organic-inorganic perovskite metamaterial for light trapping and photon-to-electron conversion,” Nanophotonics 9, 3323–3333 (2020).
[Crossref]

Nanoscale (1)

J. Feng, W. Li, X. Qian, J. Qi, L. Qi, and J. Li, “Patterning of graphene,” Nanoscale 4, 4883 (2012).
[Crossref]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Nat. Mater. (3)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Opt. Express (1)

Photon. Res. (3)

Phys. Rev. Lett. (1)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[Crossref]

Sci. Adv. (1)

A. S. Abhishek Kumar, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, and R. Singh, “Excitons in 2D perovskites for ultrafast terahertz photonic devices,” Sci. Adv. 6, eaax8821 (2020).
[Crossref]

Science (2)

A. Dimiev, D. V. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, “Layer-by-layer removal of graphene for device patterning,” Science 331, 1168–1172 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Small (1)

W. Tian, H. Zhou, and L. Li, “Hybrid organic-inorganic perovskite photodetectors,” Small 13, 1702107 (2017).
[Crossref]

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Manufacture and characterization of the HDOMM. (a) Manufacturing process: (i) an EIT-like metasurface sample was prepared; (ii) a metal halide perovskite [CH3NH3PbI3(MAPbI3)] was spin-coated on the EIT-like metasurface sample; (iii) the PI film was spin-coated on MAPbI3; (iv) graphene was transferred onto the PI film; (v) the trilayer graphene was patterned into a fishing net structure with round holes; (vi) sericin was qualitatively sensed. (b) Three optical microscope images of the different samples. (c) Unit cell of the EIT-like metasurface. The corresponding parameters are P=200μm, l=170μm, w=20μm, a=130μm, b=60μm, c=40μm, d=15μm e=10μm, m=36μm. (d) Raman spectrum of graphene. The inset is a sample of the EIT-like metasurface with the patterned graphene and MAPbI3 film. (e) X-ray diffraction (XRD) pattern of the perovskite films. The inset is an SEM image of MAPbI3.
Fig. 2.
Fig. 2. Performance and mechanism of the EIT-like metasurface. (a) Experimental and simulated transmission spectra. (b) Simulated transmission spectra under different conductivities. (c) Simulated electric field distributions at 0.65 THz. (d) Surface current distributions at 0.65 THz. (e)–(h) Simulated electric field distributions under different conductivities.
Fig. 3.
Fig. 3. Sensing performance of the HDOMM biosensor based on amplitude. (a)–(c) Experimental transmission spectra. (d)–(f) Corresponding theoretical fitted transmission spectra from (a)–(c). (g)–(i) Fitting parameters γ1 and γ2 as functions of sericin concentration. (j)–(l) Sensing mechanisms.
Fig. 4.
Fig. 4. Sensing performance of the HDOMM biosensor based on phase. (a)–(c) Experimental phase spectra for the HDOMM at sericin concentrations from 780 pg/mL to 1.25 μg/mL. (d) Role of perovskite in phase-based sensing.

Tables (2)

Tables Icon

Table 1. Δγ/γ for Different Sericin Concentrations

Tables Icon

Table 2. Comparison with Previous Worksa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x¨1+γ1x˙1+ω02x1+κx2=E,x¨2+γ2x˙2+(ω0+δ)2x2+κx1=0,
χ=χr+iχi(ωω0δ)+iγ22(ωω0+iγ12)(ωω0δ+iγ22)κ24.
T1χi=1gχi,