Abstract

A major challenge towards nanophotonics is the integration of nanoemitters on optical chips. Combining the optical properties of nanoemitters with the benefits of integration and scalability of integrated optics is still a major issue to overcome. In this work, we demonstrate the integration of nanoemitters positioned in a controlled manner onto a substrate and onto an optical ion-exchanged glass waveguide via direct laser writing based on two-photon polymerization. Our nanoemitters are colloidal CdSe/ZnS quantum dots (QDs) embedded in polymeric nanostructures. By varying the laser parameters during the patterning process, we make size-controlled QD-polymer nanostructures that were systematically characterized using optical and structural methods. Structures as small as 17 nm in height were fabricated. The well-controlled QD-polymer nanostructure systems were then successfully integrated onto a new photonic platform for nanophotonics made of an ion-exchanged waveguide. We show that our QDs maintain their light emitting quality after integration as verified by photoluminescence (PL) measurements. Ultimately, QD emission coupled to our waveguides is detected through a home-built fiber-edge coupling PL measurement setup. Our results show the potential for future integration of nanoemitters onto complex photonic chips.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid integrated optical waveguides in glass for enhanced visible photoluminescence of nanoemitters

Josslyn Beltran Madrigal, Ricardo Tellez-Limon, Florent Gardillou, Denis Barbier, Wei Geng, Christophe Couteau, Rafael Salas-Montiel, and Sylvain Blaize
Appl. Opt. 55(36) 10263-10268 (2016)

Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching

Jinman Lv, Binbin Hong, Yang Tan, Feng Chen, Javier Rodríguez Vázquez de Aldana, and Guo Ping Wang
Photon. Res. 8(3) 257-262 (2020)

Dynamic Airy imaging through high-efficiency broadband phase microelements by femtosecond laser direct writing

Ze Cai, Xinbo Qi, Deng Pan, Shengyun Ji, Jincheng Ni, Zhaoxin Lao, Chen Xin, Jiawen Li, Yanlei Hu, Dong Wu, and Jiaru Chu
Photon. Res. 8(6) 875-883 (2020)

References

  • View by:
  • |
  • |
  • |

  1. C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
    [Crossref]
  2. S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
    [Crossref]
  3. P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
    [Crossref]
  4. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
    [Crossref]
  5. L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
    [Crossref]
  6. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [Crossref]
  7. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [Crossref]
  8. M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
    [Crossref]
  9. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref]
  10. P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).
  11. W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
    [Crossref]
  12. C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, and J. M. J. Fréchet, “Incorporation of furan into low band-gap polymers for efficient solar cells,” J. Am. Chem. Soc. 132, 15547–15549 (2010).
    [Crossref]
  13. Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Lett. 4, 1093–1098 (2004).
    [Crossref]
  14. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
    [Crossref]
  15. L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8, 3376–3380 (2008).
    [Crossref]
  16. R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
    [Crossref]
  17. I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
    [Crossref]
  18. J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
    [Crossref]
  19. S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
    [Crossref]
  20. H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photon. 4, 1879–1884 (2017).
    [Crossref]
  21. H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
    [Crossref]
  22. G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
    [Crossref]
  23. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
    [Crossref]
  24. M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
    [Crossref]
  25. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [Crossref]
  26. M. J. Smith, C. H. Lin, S. Yu, and V. V. Tsukruk, “Composite structures with emissive quantum dots for light enhancement,” Adv. Opt. Mater. 7, 1801072 (2019).
    [Crossref]
  27. J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
    [Crossref]
  28. R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
    [Crossref]
  29. S.-K. Park, X. Teng, J. Jung, P. Prabhakaran, C. W. Ha, and K.-S. Lee, “Photopatternable cadmium-free quantum dots with ene-functionalization,” Opt. Mater. Express 7, 2440–2449 (2017).
    [Crossref]
  30. T. H. Au, S. Buil, X. Quélin, J.-P. Hermier, and N. D. Lai, “Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures,” Nanoscale Adv. 1, 3225–3231 (2019).
    [Crossref]
  31. Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
    [Crossref]
  32. A. Tervonen, S. K. Honkanen, and B. R. West, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
    [Crossref]
  33. Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
    [Crossref]
  34. K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
    [Crossref]
  35. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
    [Crossref]
  36. X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
    [Crossref]
  37. H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83, 819–821 (2003).
    [Crossref]
  38. H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” in NMR • 3D Analysis • Photopolymerization (Springer, 2004), pp. 169–273.
  39. F. Aloui, L. Lecamp, P. Lebaudy, and F. Burel, “Refractive index evolution of various commercial acrylic resins during photopolymerization,” Express Polym. Lett. 12, 966–971 (2018).
    [Crossref]
  40. M. Schmid, D. Ludescher, and H. Giessen, “Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure,” Opt. Mater. Express 9, 4564–4577 (2019).
    [Crossref]
  41. M. Elie, S. Gaillard, and J. L. Renaud, Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges, R. D. Costa, ed. (Springer, 2017).
  42. O. V. Yaroshchuk and L. O. Dolgov, “Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials,” Opt. Mater. 29, 1097–1102 (2007).
    [Crossref]
  43. V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
    [Crossref]
  44. M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
    [Crossref]
  45. B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
    [Crossref]
  46. V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
    [Crossref]
  47. E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications,” Ceram. Int. 41, 7996–8001 (2015).
    [Crossref]
  48. J. S. Varsanik and J. J. Bernstein, “Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation,” J. Micromech. Microeng. 23, 095017 (2013).
    [Crossref]
  49. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).
  50. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933–937 (1996).
    [Crossref]
  51. J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
    [Crossref]
  52. W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
    [Crossref]
  53. P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, “Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals,” J. Phys. Chem. C 120, 17136–17142 (2016).
    [Crossref]
  54. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9, 2532–2536 (2009).
    [Crossref]
  55. S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir 22, 2407–2410 (2006).
    [Crossref]
  56. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008).
    [Crossref]
  57. P. Prabhakaran, W. J. Kim, K.-S. Lee, and P. N. Prasad, “Quantum dots (QDs) for photonic applications,” Opt. Mater. Express 2, 578–593 (2012).
    [Crossref]
  58. J. B. Madrigal, R. Tellez-Limon, F. Gardillou, D. Barbier, W. Geng, C. Couteau, R. Salas-Montiel, and S. Blaize, “Hybrid integrated optical waveguides in glass for enhanced visible photoluminescence of nanoemitters,” Appl. Opt. 55, 10263–10268 (2016).
    [Crossref]
  59. A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, “Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration,” ACS Photon. 4, 2165–2170 (2017).
    [Crossref]

2019 (4)

M. J. Smith, C. H. Lin, S. Yu, and V. V. Tsukruk, “Composite structures with emissive quantum dots for light enhancement,” Adv. Opt. Mater. 7, 1801072 (2019).
[Crossref]

T. H. Au, S. Buil, X. Quélin, J.-P. Hermier, and N. D. Lai, “Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures,” Nanoscale Adv. 1, 3225–3231 (2019).
[Crossref]

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

M. Schmid, D. Ludescher, and H. Giessen, “Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure,” Opt. Mater. Express 9, 4564–4577 (2019).
[Crossref]

2018 (2)

F. Aloui, L. Lecamp, P. Lebaudy, and F. Burel, “Refractive index evolution of various commercial acrylic resins during photopolymerization,” Express Polym. Lett. 12, 966–971 (2018).
[Crossref]

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

2017 (7)

S.-K. Park, X. Teng, J. Jung, P. Prabhakaran, C. W. Ha, and K.-S. Lee, “Photopatternable cadmium-free quantum dots with ene-functionalization,” Opt. Mater. Express 7, 2440–2449 (2017).
[Crossref]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, “Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration,” ACS Photon. 4, 2165–2170 (2017).
[Crossref]

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photon. 4, 1879–1884 (2017).
[Crossref]

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref]

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

2016 (8)

R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

J. B. Madrigal, R. Tellez-Limon, F. Gardillou, D. Barbier, W. Geng, C. Couteau, R. Salas-Montiel, and S. Blaize, “Hybrid integrated optical waveguides in glass for enhanced visible photoluminescence of nanoemitters,” Appl. Opt. 55, 10263–10268 (2016).
[Crossref]

P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, “Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals,” J. Phys. Chem. C 120, 17136–17142 (2016).
[Crossref]

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

2015 (7)

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications,” Ceram. Int. 41, 7996–8001 (2015).
[Crossref]

R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
[Crossref]

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref]

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

2014 (2)

S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

2013 (2)

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

J. S. Varsanik and J. J. Bernstein, “Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation,” J. Micromech. Microeng. 23, 095017 (2013).
[Crossref]

2012 (2)

P. Prabhakaran, W. J. Kim, K.-S. Lee, and P. N. Prasad, “Quantum dots (QDs) for photonic applications,” Opt. Mater. Express 2, 578–593 (2012).
[Crossref]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

2011 (1)

A. Tervonen, S. K. Honkanen, and B. R. West, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[Crossref]

2010 (5)

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, and J. M. J. Fréchet, “Incorporation of furan into low band-gap polymers for efficient solar cells,” J. Am. Chem. Soc. 132, 15547–15549 (2010).
[Crossref]

2009 (2)

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[Crossref]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9, 2532–2536 (2009).
[Crossref]

2008 (2)

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008).
[Crossref]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8, 3376–3380 (2008).
[Crossref]

2007 (2)

V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[Crossref]

O. V. Yaroshchuk and L. O. Dolgov, “Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials,” Opt. Mater. 29, 1097–1102 (2007).
[Crossref]

2006 (1)

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir 22, 2407–2410 (2006).
[Crossref]

2005 (1)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

2004 (1)

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Lett. 4, 1093–1098 (2004).
[Crossref]

2003 (2)

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83, 819–821 (2003).
[Crossref]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[Crossref]

2002 (1)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

1999 (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

1997 (1)

1996 (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933–937 (1996).
[Crossref]

Aghaeimeibodi, S.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

Alivisatos, A. P.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Lett. 4, 1093–1098 (2004).
[Crossref]

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933–937 (1996).
[Crossref]

Aloui, F.

F. Aloui, L. Lecamp, P. Lebaudy, and F. Burel, “Refractive index evolution of various commercial acrylic resins during photopolymerization,” Express Polym. Lett. 12, 966–971 (2018).
[Crossref]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Anderson, P. D.

A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, “Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration,” ACS Photon. 4, 2165–2170 (2017).
[Crossref]

Anikeeva, P. O.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9, 2532–2536 (2009).
[Crossref]

Aoki, K.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008).
[Crossref]

Arakawa, Y.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Au, T. H.

T. H. Au, S. Buil, X. Quélin, J.-P. Hermier, and N. D. Lai, “Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures,” Nanoscale Adv. 1, 3225–3231 (2019).
[Crossref]

Aubert, T.

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

Auffèves, A.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Avila, T. R.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Bachelot, R.

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Badolato, A.

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref]

Barbier, D.

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Bawendi, M. G.

R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9, 2532–2536 (2009).
[Crossref]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

Beaujuge, P. M.

C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, and J. M. J. Fréchet, “Incorporation of furan into low band-gap polymers for efficient solar cells,” J. Am. Chem. Soc. 132, 15547–15549 (2010).
[Crossref]

Benson, O.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

Bernstein, J. J.

J. S. Varsanik and J. J. Bernstein, “Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation,” J. Micromech. Microeng. 23, 095017 (2013).
[Crossref]

Beyler, A. P.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Bischof, T. S.

R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Bisschop, S.

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

Bitton, O.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

Björk, M. T.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Lett. 4, 1093–1098 (2004).
[Crossref]

Blaize, S.

Bleuse, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

Bouchard, A.

E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications,” Ceram. Int. 41, 7996–8001 (2015).
[Crossref]

Boussert, B.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Lett. 4, 1093–1098 (2004).
[Crossref]

Bozhevolnyi, S. I.

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photon. 4, 1879–1884 (2017).
[Crossref]

Brainis, E.

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

Broquin, J.-E.

E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications,” Ceram. Int. 41, 7996–8001 (2015).
[Crossref]

Bückmann, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Buil, S.

T. H. Au, S. Buil, X. Quélin, J.-P. Hermier, and N. D. Lai, “Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures,” Nanoscale Adv. 1, 3225–3231 (2019).
[Crossref]

Bulovic, V.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9, 2532–2536 (2009).
[Crossref]

Burel, F.

F. Aloui, L. Lecamp, P. Lebaudy, and F. Burel, “Refractive index evolution of various commercial acrylic resins during photopolymerization,” Express Polym. Lett. 12, 966–971 (2018).
[Crossref]

Busch, K.

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Cardoso, J. V. D. M.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Chen, B.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

Chen, O.

R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Chen, Y.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Chichkov, B. N.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[Crossref]

Cho, N.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Chon, J. W. M.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83, 819–821 (2003).
[Crossref]

Choy, J. T.

R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Chung, Y.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Chuntonov, L.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

Claudon, J.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

Cleary, L.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Cordero, J. M.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Coropceanu, I.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Couteau, C.

Cui, J.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Cui, Y.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Lett. 4, 1093–1098 (2004).
[Crossref]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Dai, D.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

Dalacu, D.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Davanco, M.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

Davanço, M.

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref]

de Graaf, M.

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

Demory, J.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Dietrich, C. P.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Dijkema, J. J.

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

Dinh, X. Q.

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Dolgov, L. O.

O. V. Yaroshchuk and L. O. Dolgov, “Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials,” Opt. Mater. 29, 1097–1102 (2007).
[Crossref]

Dupont, M.

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Eberl, C.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

El Mard, H.

R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
[Crossref]

Elie, M.

M. Elie, S. Gaillard, and J. L. Renaud, Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges, R. D. Costa, ed. (Springer, 2017).

Elshaari, A. W.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

El-Tamer, A.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Englund, D.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Essig, S.

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Evers, W. H.

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

Farsari, M.

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[Crossref]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Fiore, A.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Fischer, A. J.

A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, “Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration,” ACS Photon. 4, 2165–2170 (2017).
[Crossref]

Fischer, J.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

Fognini, A.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Fréchet, J. M. J.

C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, and J. M. J. Fréchet, “Incorporation of furan into low band-gap polymers for efficient solar cells,” J. Am. Chem. Soc. 132, 15547–15549 (2010).
[Crossref]

Frölich, A.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Gaillard, S.

M. Elie, S. Gaillard, and J. L. Renaud, Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges, R. D. Costa, ed. (Springer, 2017).

Galliker, P.

S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
[Crossref]

Gamelin, D. R.

P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, “Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals,” J. Phys. Chem. C 120, 17136–17142 (2016).
[Crossref]

Gardillou, F.

Geng, W.

Geoffray, F.

E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications,” Ceram. Int. 41, 7996–8001 (2015).
[Crossref]

Gérard, J.-M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

Geuchies, J. J.

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

Ghibaudo, E.

E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications,” Ceram. Int. 41, 7996–8001 (2015).
[Crossref]

Giessen, H.

Giesz, V.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Gomes, R.

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

Grange, T.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Gregersen, N.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

Gu, M.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83, 819–821 (2003).
[Crossref]

Gudjonsdottir, S.

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

Guimard, D.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008).
[Crossref]

Ha, C. W.

S.-K. Park, X. Teng, J. Jung, P. Prabhakaran, C. W. Ha, and K.-S. Lee, “Photopatternable cadmium-free quantum dots with ene-functionalization,” Opt. Mater. Express 7, 2440–2449 (2017).
[Crossref]

R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
[Crossref]

Halpert, J. E.

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9, 2532–2536 (2009).
[Crossref]

Hamie, F.

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Hamilton, M.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Hansen, S. L.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Haran, G.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

Harris, D. K.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Heathcote, S. L.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Hens, Z.

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

Hermier, J.-P.

T. H. Au, S. Buil, X. Quélin, J.-P. Hermier, and N. D. Lai, “Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures,” Nanoscale Adv. 1, 3225–3231 (2019).
[Crossref]

Hinze, U.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Höfling, S.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Holcombe, T. W.

C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, and J. M. J. Fréchet, “Incorporation of furan into low band-gap polymers for efficient solar cells,” J. Am. Chem. Soc. 132, 15547–15549 (2010).
[Crossref]

Honkanen, S. K.

A. Tervonen, S. K. Honkanen, and B. R. West, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[Crossref]

Hornecker, G.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Hou, Y.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]

Houtepen, A. J.

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

Huang, I.-C.

R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Hughes, S.

V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[Crossref]

Hur, J.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Iwamoto, S.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008).
[Crossref]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

Jang, E.

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir 22, 2407–2410 (2006).
[Crossref]

Jang, K. K.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Jauffred, L.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8, 3376–3380 (2008).
[Crossref]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Jayanti, S. V.

S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
[Crossref]

Jensen, R. A.

R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Jöns, K. D.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Jordan, E.

E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications,” Ceram. Int. 41, 7996–8001 (2015).
[Crossref]

Jradi, S.

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Jun, S.

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir 22, 2407–2410 (2006).
[Crossref]

Jung, J.

Kadic, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Kamp, M.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Kaschke, J.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Kawata, S.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83, 819–821 (2003).
[Crossref]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[Crossref]

H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” in NMR • 3D Analysis • Photopolymerization (Springer, 2004), pp. 169–273.

Kennerknecht, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Kilburn, T. B.

P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, “Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals,” J. Phys. Chem. C 120, 17136–17142 (2016).
[Crossref]

Kim, D. K.

S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
[Crossref]

Kim, D.-J.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Kim, J.

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir 22, 2407–2410 (2006).
[Crossref]

Kim, J.-H.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

Kim, J.-M.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Kim, M.-S.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[Crossref]

Kim, W. J.

Kirkwood, N.

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

Knowles, K. E.

P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, “Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals,” J. Phys. Chem. C 120, 17136–17142 (2016).
[Crossref]

Koch, L.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Koleske, D. D.

A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, “Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration,” ACS Photon. 4, 2165–2170 (2017).
[Crossref]

Koo, H.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Kress, S. J. P.

S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Krini, R.

R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
[Crossref]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Kumar, S.

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photon. 4, 1879–1884 (2017).
[Crossref]

Lai, N. D.

T. H. Au, S. Buil, X. Quélin, J.-P. Hermier, and N. D. Lai, “Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures,” Nanoscale Adv. 1, 3225–3231 (2019).
[Crossref]

Lalanne, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

Lanco, L.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Lanzillotti-Kimura, N. D.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Leavitt, R. P.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

Lebaudy, P.

F. Aloui, L. Lecamp, P. Lebaudy, and F. Burel, “Refractive index evolution of various commercial acrylic resins during photopolymerization,” Express Polym. Lett. 12, 966–971 (2018).
[Crossref]

Lecamp, L.

F. Aloui, L. Lecamp, P. Lebaudy, and F. Burel, “Refractive index evolution of various commercial acrylic resins during photopolymerization,” Express Polym. Lett. 12, 966–971 (2018).
[Crossref]

Ledermann, A.

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Lee, E. H.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Lee, J.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Lee, K.

R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Lee, K. K.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Lee, K.-S.

Lee, O. P.

C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, and J. M. J. Fréchet, “Incorporation of furan into low band-gap polymers for efficient solar cells,” J. Am. Chem. Soc. 132, 15547–15549 (2010).
[Crossref]

Lee, Y.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Lemaître, A.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Liddle, J. A.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Lett. 4, 1093–1098 (2004).
[Crossref]

Lin, C. H.

M. J. Smith, C. H. Lin, S. Yu, and V. V. Tsukruk, “Composite structures with emissive quantum dots for light enhancement,” Adv. Opt. Mater. 7, 1801072 (2019).
[Crossref]

Lin, J.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]

Liu, J.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Liu, L.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Loncar, M.

R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

Longo, A.

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).

Ludescher, D.

Madrigal, J. B.

Maeda, M.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83, 819–821 (2003).
[Crossref]

Mahmoodian, S.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Malik, N. S.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

Marchioro, A.

P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, “Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals,” J. Phys. Chem. C 120, 17136–17142 (2016).
[Crossref]

Maruo, S.

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Mirin, R.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Mirkhani, V.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Naber, A.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

Nakamura, O.

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Nam, S. W.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Nikolay, N.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

Nishioka, M.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008).
[Crossref]

Nomura, M.

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008).
[Crossref]

Norris, D. J.

S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
[Crossref]

Obata, K.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Oddershede, L. B.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8, 3376–3380 (2008).
[Crossref]

Ozden, B.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Park, J.

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir 22, 2407–2410 (2006).
[Crossref]

Park, J.-J.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Park, S. I.

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

Park, S.-K.

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Peng, Y.

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Poole, P. J.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Portalupi, S. L.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Poulikakos, D.

S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
[Crossref]

Prabhakaran, P.

S.-K. Park, X. Teng, J. Jung, P. Prabhakaran, C. W. Ha, and K.-S. Lee, “Photopatternable cadmium-free quantum dots with ene-functionalization,” Opt. Mater. Express 7, 2440–2449 (2017).
[Crossref]

R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
[Crossref]

P. Prabhakaran, W. J. Kim, K.-S. Lee, and P. N. Prasad, “Quantum dots (QDs) for photonic applications,” Opt. Mater. Express 2, 578–593 (2012).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Prasad, P. N.

Quélin, X.

T. H. Au, S. Buil, X. Quélin, J.-P. Hermier, and N. D. Lai, “Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures,” Nanoscale Adv. 1, 3225–3231 (2019).
[Crossref]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Rao, V. S. C. M.

V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[Crossref]

Reid, P. J.

P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, “Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals,” J. Phys. Chem. C 120, 17136–17142 (2016).
[Crossref]

Reimer, M. E.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Reitzenstein, S.

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

Renaud, J. L.

M. Elie, S. Gaillard, and J. L. Renaud, Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges, R. D. Costa, ed. (Springer, 2017).

Richardson, A. C.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8, 3376–3380 (2008).
[Crossref]

Richardson, C. J. K.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

Richner, P.

S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
[Crossref]

Rodt, S.

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

Sagnes, I.

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Salas-Montiel, R.

Santhosh, K.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

Santori, C.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Sapienza, L.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

Schall, J.

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

Schell, A. W.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

Schmid, M.

Schnauber, P.

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

Senellart, P.

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref]

Shi, Q.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

Siampour, H.

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photon. 4, 1879–1884 (2017).
[Crossref]

Singh, A.

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

Smith, M. J.

M. J. Smith, C. H. Lin, S. Yu, and V. V. Tsukruk, “Composite structures with emissive quantum dots for light enhancement,” Adv. Opt. Mater. 7, 1801072 (2019).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Solomon, G.

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Son, Y.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

Song, D.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Song, J. D.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

Sönnichsen, C.

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Lett. 4, 1093–1098 (2004).
[Crossref]

Sontheimer, B.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

Srinivasan, K.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref]

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

Staude, I.

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Stenger, N.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Stobbe, S.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Subramania, G.

A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, “Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration,” ACS Photon. 4, 2165–2170 (2017).
[Crossref]

Sun, H.-B.

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[Crossref]

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83, 819–821 (2003).
[Crossref]

H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” in NMR • 3D Analysis • Photopolymerization (Springer, 2004), pp. 169–273.

Sun, X. W.

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Takada, K.

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83, 819–821 (2003).
[Crossref]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Tellez-Limon, R.

Teng, X.

Tervonen, A.

A. Tervonen, S. K. Honkanen, and B. R. West, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[Crossref]

Thiel, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Thompson, M. G.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

Tong, F.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Tong, L.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

Tsukruk, V. V.

M. J. Smith, C. H. Lin, S. Yu, and V. V. Tsukruk, “Composite structures with emissive quantum dots for light enhancement,” Adv. Opt. Mater. 7, 1801072 (2019).
[Crossref]

van der Stam, W.

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Van Thourhout, D.

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

Varsanik, J. S.

J. S. Varsanik and J. J. Bernstein, “Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation,” J. Micromech. Microeng. 23, 095017 (2013).
[Crossref]

Verma, V.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Von Freymann, G.

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Waks, E.

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Wegener, M.

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

West, B. R.

A. Tervonen, S. K. Honkanen, and B. R. West, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[Crossref]

White, A.

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref]

Whitham, P. J.

P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, “Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals,” J. Phys. Chem. C 120, 17136–17142 (2016).
[Crossref]

Woo, C. H.

C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, and J. M. J. Fréchet, “Incorporation of furan into low band-gap polymers for efficient solar cells,” J. Am. Chem. Soc. 132, 15547–15549 (2010).
[Crossref]

Wu, H.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

Xie, W.

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

Xin, C.

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

Xu, T.

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Yang, D.

R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
[Crossref]

Yang, X.

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Yapabandara, K.

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

Yaroshchuk, O. V.

O. V. Yaroshchuk and L. O. Dolgov, “Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials,” Opt. Mater. 29, 1097–1102 (2007).
[Crossref]

Yu, S.

M. J. Smith, C. H. Lin, S. Yu, and V. V. Tsukruk, “Composite structures with emissive quantum dots for light enhancement,” Adv. Opt. Mater. 7, 1801072 (2019).
[Crossref]

Zadeh, I. E.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

Zentel, R.

R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
[Crossref]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

Zhang, C.-Z.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Zhou, X.

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]

Zhu, Y.

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

Zwiller, V.

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

ACS Nano (1)

W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, and A. J. Houtepen, “Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals,” ACS Nano 12, 11244–11253 (2018).
[Crossref]

ACS Photon. (3)

A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, “Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration,” ACS Photon. 4, 2165–2170 (2017).
[Crossref]

R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photon. 3, 423–427 (2016).
[Crossref]

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Nanofabrication of plasmonic circuits containing single photon sources,” ACS Photon. 4, 1879–1884 (2017).
[Crossref]

Adv. Funct. Mater. (1)

G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three‐dimensional nanostructures for photonics,” Adv. Funct. Mater. 20, 1038–1052 (2010).
[Crossref]

Adv. Mater. (1)

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Adv. Mater. Technol. (1)

Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, “3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing,” Adv. Mater. Technol. 4, 1800522 (2019).
[Crossref]

Adv. Opt. Mater. (1)

M. J. Smith, C. H. Lin, S. Yu, and V. V. Tsukruk, “Composite structures with emissive quantum dots for light enhancement,” Adv. Opt. Mater. 7, 1801072 (2019).
[Crossref]

AIP Adv. (1)

X. Zhou, Y. Hou, and J. Lin, “A review on the processing accuracy of two-photon polymerization,” AIP Adv. 5, 030701 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, “Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization,” Appl. Phys. Lett. 83, 819–821 (2003).
[Crossref]

H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83, 1104–1106 (2003).
[Crossref]

Ceram. Int. (1)

E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo, and J.-E. Broquin, “Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications,” Ceram. Int. 41, 7996–8001 (2015).
[Crossref]

Express Polym. Lett. (1)

F. Aloui, L. Lecamp, P. Lebaudy, and F. Burel, “Refractive index evolution of various commercial acrylic resins during photopolymerization,” Express Polym. Lett. 12, 966–971 (2018).
[Crossref]

J. Am. Chem. Soc. (1)

C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, and J. M. J. Fréchet, “Incorporation of furan into low band-gap polymers for efficient solar cells,” J. Am. Chem. Soc. 132, 15547–15549 (2010).
[Crossref]

J. Micromech. Microeng. (1)

J. S. Varsanik and J. J. Bernstein, “Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation,” J. Micromech. Microeng. 23, 095017 (2013).
[Crossref]

J. Nanosci. Nanotechnol. (1)

V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, and K. K. Lee, “Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations,” J. Nanosci. Nanotechnol. 16, 7358–7362 (2016).
[Crossref]

J. Phys. Chem. C (1)

P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, and D. R. Gamelin, “Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals,” J. Phys. Chem. C 120, 17136–17142 (2016).
[Crossref]

Langmuir (1)

S. Jun, E. Jang, J. Park, and J. Kim, “Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices,” Langmuir 22, 2407–2410 (2006).
[Crossref]

Laser Photon. Rev. (1)

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits,” Laser Photon. Rev. 10, 870–894 (2016).
[Crossref]

Light Sci. Appl. (1)

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Macromol. Rapid Commun. (1)

R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, and K. Lee, “Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique,” Macromol. Rapid Commun. 36, 1108–1114 (2015).
[Crossref]

Nano Lett. (10)

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, and Y. Son, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10, 2310–2317 (2010).
[Crossref]

S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, and A. Auffèves, “Bright phonon-tuned single-photon source,” Nano Lett. 15, 6290–6294 (2015).
[Crossref]

Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, “Integration of colloidal nanocrystals into lithographically patterned devices,” Nano Lett. 4, 1093–1098 (2004).
[Crossref]

W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, and D. Van Thourhout, “Nanoscale and single-dot patterning of colloidal quantum dots,” Nano Lett. 15, 7481–7487 (2015).
[Crossref]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8, 3376–3380 (2008).
[Crossref]

I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, “Deterministic integration of single photon sources in silicon based photonic circuits,” Nano Lett. 16, 2289–2294 (2016).
[Crossref]

J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, “Hybrid integration of solid-state quantum emitters on a silicon photonic chip,” Nano Lett. 17, 7394–7400 (2017).
[Crossref]

S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
[Crossref]

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum,” Nano Lett. 9, 2532–2536 (2009).
[Crossref]

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, and O. Chen, “Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths,” Nano Lett. 16, 289–296 (2015).
[Crossref]

Nanoscale Adv. (1)

T. H. Au, S. Buil, X. Quélin, J.-P. Hermier, and N. D. Lai, “Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures,” Nanoscale Adv. 1, 3225–3231 (2019).
[Crossref]

Nat. Commun. (4)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7, 11823 (2016).
[Crossref]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6, 7833 (2015).
[Crossref]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

B. Chen, H. Wu, C. Xin, D. Dai, and L. Tong, “Flexible integration of free-standing nanowires into silicon photonics,” Nat. Commun. 8, 20 (2017).
[Crossref]

Nat. Nanotechnol. (1)

P. Senellart, G. Solomon, and A. White, “High-performance semiconductor quantum-dot single-photon sources,” Nat. Nanotechnol. 12, 1026–1039 (2017).
[Crossref]

Nat. Photonics (3)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
[Crossref]

M. Farsari and B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3, 450–452 (2009).
[Crossref]

K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008).
[Crossref]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[Crossref]

Opt. Eng. (1)

A. Tervonen, S. K. Honkanen, and B. R. West, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

O. V. Yaroshchuk and L. O. Dolgov, “Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials,” Opt. Mater. 29, 1097–1102 (2007).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. Lett. (4)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, and S. Stobbe, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113, 093603 (2014).
[Crossref]

V. S. C. M. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett. 99, 193901 (2007).
[Crossref]

Sci. Rep. (1)

Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener, “Wiring up pre-characterized single-photon emitters by laser lithography,” Sci. Rep. 6, 31135 (2016).
[Crossref]

Science (2)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933–937 (1996).
[Crossref]

Other (4)

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 2012).

M. Elie, S. Gaillard, and J. L. Renaud, Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges, R. D. Costa, ed. (Springer, 2017).

P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, and M. Davanco, “Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits,” arXiv:1905.12030 (2019).

H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” in NMR • 3D Analysis • Photopolymerization (Springer, 2004), pp. 169–273.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic of the conventional DLW-TPP platform. (b), (c) Cross section and 3D illustration of our developed DLW-TPP platform for thick substrates. The red dots represent QDs dispersed inside the polymer liquid. The white dashed line shows the control of the laser focus height, which is indicated with H. (d) Schematic of a single QDs-polymer voxel presenting a typical oval shape.
Fig. 2.
Fig. 2. Characterization of QD-polymer voxels. Tilt-view (a) SEM image and (b) AFM image of the voxel array with laser powers P (10 to 20 mW using 2 mW steps) and exposure time T (1 to 5 ms using 1 ms steps). The default value H in this sample is 0 nm. (c), (d) Dependence of the height and diameter of single voxel structures in function of P and T, respectively. P=20  mW in (c), T=5  ms in (d). (e) AFM line profile of the QD-polymer voxels with P=10  mW marked with black dashed area in (b). The peak marked with the red dashed circle indicates the profile of the smallest voxel with T=1  ms, which is shown in the AFM image (not to scale) in (f). Four dots marked with white dashed circles are QDs surrounded by a polymer layer. Tilt-view (b) SEM image and (h) size dependence of an array of voxel structures by only changing the focal plane H (0 to 500 nm using 50 nm steps), with P=20  mW and T=5  ms. (i) Measured PL image of a voxel array with 5 μm of distance between voxels.
Fig. 3.
Fig. 3. (a) SEM image of IEWs coated with a 4 nm thick conducting carbon layer. The schematic 3D view of the IEWs is shown in the inset. Integration of single QD-polymer voxels (b) on top and at the center of different waveguides and (c) several on the same waveguide, respectively. (d) SEM image of a single QD-polymer voxel on a single IEW; the inset shows the enlarged SEM image of the structure. (e) Far-field emission of the voxel in (d). The white dashed line indicates the outline of the IEW.
Fig. 4.
Fig. 4. (a) Schematic of QD emission measurement. (b) Spectrum of far-field emission emitted from the single QD-polymer nanostructure on the IEW with a Gaussian fit (red line). (c) Normalized extracted spectrum collected from the waveguide facet by a single mode fiber. The black line is for the nanoemitters placed on the IEW, while the gray line is for the IEW without nanoemitters on top.
Fig. 5.
Fig. 5. (a)–(d) Fabrication of a single layer of QDs by controlling laser printing parameters (P,T,H). (e) SEM image of a single QD layer of the QD-polymer nanocomposite; this sample is the same as (d). The inset shows the detailed part marked with a yellow square.
Fig. 6.
Fig. 6. Relationship between QD concentration and far-field PL of QD-polymer voxels.
Fig. 7.
Fig. 7. (a) Refractive index distribution of the IEW. (b) |E| field cross-section distribution with a 590 nm TE propagating mode along the IEW; the white solid line indicates the amplitude distribution vertical to the interface.
Fig. 8.
Fig. 8. (a) Experimental fiber-IEW coupling stage. (b) Fiber coupled with the IEWs sample. (c) Microcopy image of fiber-IEWs coupling, enlarging the yellow dashed square in (b). (d) Coupled alignment laser scattered by QD-polymer voxel. White dashed line represents the corresponding waveguide.
Fig. 9.
Fig. 9. QD-IEW coupling efficiency as a function of the QD position along (a) x and (b) z.
Fig. 10.
Fig. 10. (a) Schematic of an ensemble PL spectrum that consists of the individual QD emission spectrum convolved with the interparticle inhomogeneities. (b) Simulated transmission spectrum for 11 QDs emission coupled into IEW propagating modes.