Abstract

Single-photon light detection and ranging (lidar) offers single-photon sensitivity and picosecond timing resolution, which is desirable for high-precision three-dimensional (3D) imaging over long distances. Despite important progress, further extending the imaging range presents enormous challenges because only a few echo photons return and are mixed with strong noise. Here, we tackled these challenges by constructing a high-efficiency, low-noise coaxial single-photon lidar system and developing a long-range-tailored computational algorithm that provides high photon efficiency and good noise tolerance. Using this technique, we experimentally demonstrated active single-photon 3D imaging at a distance of up to 45 km in an urban environment, with a low return-signal level of 1 photon per pixel. Our system is feasible for imaging at a few hundreds of kilometers by refining the setup, and thus represents a step towards low-power and high-resolution lidar over extra-long ranges.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).
  2. B. Schwarz, “Lidar: mapping the world in 3D,” Nat. Photonics 4, 429–430 (2010).
    [Crossref]
  3. C. L. Glennie, W. E. Carter, R. L. Shrestha, and W. E. Dietrich, “Geodetic imaging with airborne lidar: the Earth’s surface revealed,” Rep. Prog. Phys. 76, 086801 (2013).
    [Crossref]
  4. D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
    [Crossref]
  5. W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
    [Crossref]
  6. A. B. Gschwendtner and W. E. Keicher, “Development of coherent laser radar at Lincoln Laboratory,” Lincoln Lab. J. 12, 383–396 (2000).
  7. G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
    [Crossref]
  8. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [Crossref]
  9. J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett 21, 1020–1022 (2009).
    [Crossref]
  10. F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
    [Crossref]
  11. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009).
    [Crossref]
  12. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560  nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
    [Crossref]
  13. Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
    [Crossref]
  14. S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
    [Crossref]
  15. W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2006).
    [Crossref]
  16. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
    [Crossref]
  17. Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361, eaat2298 (2018).
    [Crossref]
  18. D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1, 112–125 (2015).
    [Crossref]
  19. Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
    [Crossref]
  20. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
    [Crossref]
  21. J. Rapp and V. K. Goyal, “A few photons among many: unmixing signal and noise for photon-efficient active imaging,” IEEE Trans. Comput. Imaging 3, 445–459 (2017).
    [Crossref]
  22. D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37, 113 (2018).
    [Crossref]
  23. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10  kilometers range,” Opt. Express 25, 11919–11931 (2017).
    [Crossref]
  24. Z.-P. Li, X. Huang, P.-Y. Peng, Y. Hong, C. Yu, Y. Cao, J. Zhang, F. Xu, and J.-W. Pan, “Super-resolution single-photon imaging at 8.2  kilometers,” Opt. Express 28, 4076–4087 (2020).
    [Crossref]
  25. M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
    [Crossref]
  26. C. Yu, M. Shangguan, H. Xia, J. Zhang, X. Dou, and J. W. Pan, “Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications,” Opt. Express 25, 14611–14620 (2017).
    [Crossref]
  27. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).
  28. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007).
    [Crossref]
  29. D. Shin, J. H. Shapiro, and V. K. Goyal, “Photon-efficient super-resolution laser radar,” Proc. SPIE 10394, 1039409 (2017).
    [Crossref]
  30. J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019), pp. 7815–7819.
  31. D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24, 1873–1888 (2016).
    [Crossref]
  32. J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
    [Crossref]
  33. Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms - theory and practice,” IEEE Trans. Image Process. 21, 1084–1096 (2012).
    [Crossref]
  34. M. J. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC Press, 2001).
  35. https://github.com/quantum-inspired-lidar/long-range-photon-efficient-imaging.git .
  36. B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
    [Crossref]
  37. R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27, 4590–4611 (2019).
    [Crossref]
  38. J. J. Degnan, “Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping,” Remote Sens. 8, 958 (2016).
    [Crossref]
  39. C. Bruschini, H. Homulle, I. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
    [Crossref]
  40. P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, and G. S. Buller, “High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement,” Appl. Opt. 59, 4488–4498 (2020).
    [Crossref]
  41. D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
    [Crossref]
  42. H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532  nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
    [Crossref]

2020 (2)

2019 (4)

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27, 4590–4611 (2019).
[Crossref]

C. Bruschini, H. Homulle, I. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
[Crossref]

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

2018 (3)

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37, 113 (2018).
[Crossref]

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361, eaat2298 (2018).
[Crossref]

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

2017 (5)

2016 (6)

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24, 1873–1888 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

J. J. Degnan, “Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping,” Remote Sens. 8, 958 (2016).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532  nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

2015 (1)

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1, 112–125 (2015).
[Crossref]

2014 (3)

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

2013 (2)

2012 (1)

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms - theory and practice,” IEEE Trans. Image Process. 21, 1084–1096 (2012).
[Crossref]

2010 (2)

B. Schwarz, “Lidar: mapping the world in 3D,” Nat. Photonics 4, 429–430 (2010).
[Crossref]

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

2009 (3)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett 21, 1020–1022 (2009).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009).
[Crossref]

2007 (2)

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007).
[Crossref]

2006 (1)

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2006).
[Crossref]

2005 (1)

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).

2002 (1)

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

2000 (1)

A. B. Gschwendtner and W. E. Keicher, “Development of coherent laser radar at Lincoln Laboratory,” Lincoln Lab. J. 12, 383–396 (2000).

1998 (1)

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Abdalati, W.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Albota, M. A.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Altmann, Y.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
[Crossref]

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361, eaat2298 (2018).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref]

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019), pp. 7815–7819.

Antolovic, I.

C. Bruschini, H. Homulle, I. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

Aull, B. F.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Banerdt, W. B.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Bindschadler, R.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Boroson, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Bowman, R.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

Brockherde, W.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Bronzi, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Bruschini, C.

C. Bruschini, H. Homulle, I. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

Buller, G.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[Crossref]

Buller, G. S.

P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, and G. S. Buller, “High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement,” Appl. Opt. 59, 4488–4498 (2020).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27, 4590–4611 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
[Crossref]

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10  kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560  nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009).
[Crossref]

Burianek, D. A.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Burri, S.

C. Bruschini, H. Homulle, I. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

Cao, Y.

Carter, W. E.

C. L. Glennie, W. E. Carter, R. L. Shrestha, and W. E. Dietrich, “Geodetic imaging with airborne lidar: the Earth’s surface revealed,” Rep. Prog. Phys. 76, 086801 (2013).
[Crossref]

Chan, S.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

Charbon, E.

C. Bruschini, H. Homulle, I. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

Chen, S.

Christnacher, F.

Colaço, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
[Crossref]

Collins, R. J.

Connolly, P. W. R.

Contini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Cornwell, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Csatho, B.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Dalla Mora, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Davis, W. R.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).

Degnan, J. J.

J. J. Degnan, “Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping,” Remote Sens. 8, 958 (2016).
[Crossref]

Dietrich, W. E.

C. L. Glennie, W. E. Carter, R. L. Shrestha, and W. E. Dietrich, “Geodetic imaging with airborne lidar: the Earth’s surface revealed,” Rep. Prog. Phys. 76, 086801 (2013).
[Crossref]

Digonnet, M. J.

M. J. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC Press, 2001).

Dorenbos, S. N.

Dou, X.

Du, B.

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

Ducic, V.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2006).
[Crossref]

Durini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Duxbury, T. C.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Edgar, M. P.

Faccio, D.

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361, eaat2298 (2018).
[Crossref]

Farrell, S. L.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Fernández, V.

Fouche, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Frey, H. V.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Fricker, H. A.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Garvin, J. B.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Gemmell, N. R.

Gibson, G. J.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007).
[Crossref]

Gibson, G. M.

Glennie, C. L.

C. L. Glennie, W. E. Carter, R. L. Shrestha, and W. E. Dietrich, “Geodetic imaging with airborne lidar: the Earth’s surface revealed,” Rep. Prog. Phys. 76, 086801 (2013).
[Crossref]

Goyal, V. K.

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361, eaat2298 (2018).
[Crossref]

J. Rapp and V. K. Goyal, “A few photons among many: unmixing signal and noise for photon-efficient active imaging,” IEEE Trans. Comput. Imaging 3, 445–459 (2017).
[Crossref]

D. Shin, J. H. Shapiro, and V. K. Goyal, “Photon-efficient super-resolution laser radar,” Proc. SPIE 10394, 1039409 (2017).
[Crossref]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24, 1873–1888 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1, 112–125 (2015).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
[Crossref]

Grant, L. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett 21, 1020–1022 (2009).
[Crossref]

Gschwendtner, A. B.

A. B. Gschwendtner and W. E. Keicher, “Development of coherent laser radar at Lincoln Laboratory,” Lincoln Lab. J. 12, 383–396 (2000).

Gyongy, I.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

Hadfield, R. H.

Halimi, A.

Harding, D.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Harmany, Z. T.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms - theory and practice,” IEEE Trans. Image Process. 21, 1084–1096 (2012).
[Crossref]

Head, J. W.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Heinrichs, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Henderson, R. K.

P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, and G. S. Buller, “High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement,” Appl. Opt. 59, 4488–4498 (2020).
[Crossref]

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett 21, 1020–1022 (2009).
[Crossref]

Hernandez-Marin, S.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007).
[Crossref]

Hero, A. O.

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361, eaat2298 (2018).
[Crossref]

Homulle, H.

C. Bruschini, H. Homulle, I. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

Hong, Y.

Huang, X.

Keicher, W. E.

A. B. Gschwendtner and W. E. Keicher, “Development of coherent laser radar at Lincoln Laboratory,” Lincoln Lab. J. 12, 383–396 (2000).

Khatri, F.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Kirmani, A.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1, 112–125 (2015).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
[Crossref]

Kocher, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Kovalik, J. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Krichel, N. J.

Kwok, R.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Lamb, R. A.

Laurenzis, M.

Leach, J.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

Lefsky, M.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Li, H.

Li, Z.

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

Li, Z.-P.

Lindell, D. B.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37, 113 (2018).
[Crossref]

Liu, X.

Lussana, R.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Mai, H.

Marcia, R. F.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms - theory and practice,” IEEE Trans. Image Process. 21, 1084–1096 (2012).
[Crossref]

Marino, R. M.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Markus, T.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Marshak, A.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Mccarthy, A.

P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, and G. S. Buller, “High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement,” Appl. Opt. 59, 4488–4498 (2020).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27, 4590–4611 (2019).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560  nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009).
[Crossref]

McLaughlin, S.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
[Crossref]

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361, eaat2298 (2018).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref]

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019), pp. 7815–7819.

Melzer, T.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2006).
[Crossref]

Meng, W.

Mooney, J. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Muhleman, D. O.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Murphy, D. V.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Neumann, T.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Newbury, N. R.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

O’Brien, M. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

O’Toole, M.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37, 113 (2018).
[Crossref]

Padgett, M. J.

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361, eaat2298 (2018).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref]

Palm, S.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Pan, J. W.

Pan, J.-W.

Pang, C.

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

Pawlikowska, A. M.

Peng, H.

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

Peng, P.-Y.

Pettengill, G. H.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Phillips, D. B.

Phillips, R. J.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Player, B. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Rapp, J.

J. Rapp and V. K. Goyal, “A few photons among many: unmixing signal and noise for photon-efficient active imaging,” IEEE Trans. Comput. Imaging 3, 445–459 (2017).
[Crossref]

Ren, X.

P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, and G. S. Buller, “High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement,” Appl. Opt. 59, 4488–4498 (2020).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560  nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
[Crossref]

Richardson, J. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett 21, 1020–1022 (2009).
[Crossref]

Robinson, B. S.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Schutz, B.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Schwarz, B.

B. Schwarz, “Lidar: mapping the world in 3D,” Nat. Photonics 4, 429–430 (2010).
[Crossref]

Shangguan, M.

Shapiro, J. H.

D. Shin, J. H. Shapiro, and V. K. Goyal, “Photon-efficient super-resolution laser radar,” Proc. SPIE 10394, 1039409 (2017).
[Crossref]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24, 1873–1888 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1, 112–125 (2015).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
[Crossref]

Shin, D.

D. Shin, J. H. Shapiro, and V. K. Goyal, “Photon-efficient super-resolution laser radar,” Proc. SPIE 10394, 1039409 (2017).
[Crossref]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24, 1873–1888 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1, 112–125 (2015).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
[Crossref]

Shrestha, R. L.

C. L. Glennie, W. E. Carter, R. L. Shrestha, and W. E. Dietrich, “Geodetic imaging with airborne lidar: the Earth’s surface revealed,” Rep. Prog. Phys. 76, 086801 (2013).
[Crossref]

Smith, B.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Smith, D. E.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Sodnik, Z.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Solomon, S. C.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Spinhirne, J.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Studnicka, N.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2006).
[Crossref]

Sun, M.-J.

Tachella, J.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
[Crossref]

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019), pp. 7815–7819.

Taghizadeh, M. R.

Tang, K.

Tanner, M. G.

Tao, Y.

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

Tisa, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Tobin, R.

Tosi, A.

P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, and G. S. Buller, “High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement,” Appl. Opt. 59, 4488–4498 (2020).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Tourneret, J.-Y.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
[Crossref]

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019), pp. 7815–7819.

Ullrich, A.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2006).
[Crossref]

Venkatraman, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
[Crossref]

Villa, F.

P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, and G. S. Buller, “High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement,” Appl. Opt. 59, 4488–4498 (2020).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Waddie, A. J.

Wagner, W.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2006).
[Crossref]

Wallace, A.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[Crossref]

Wallace, A. M.

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009).
[Crossref]

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007).
[Crossref]

Wang, Z.

Webb, C.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Wetzstein, G.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37, 113 (2018).
[Crossref]

Weyers, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Willard, B. C.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Willett, R. M.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms - theory and practice,” IEEE Trans. Image Process. 21, 1084–1096 (2012).
[Crossref]

Wong, F. N.

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24, 1873–1888 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
[Crossref]

Wu, D.

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Wu, E.

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

Wu, G.

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

Wu, Z.

Xia, H.

Xie, X.

Xu, F.

Yang, X.

You, L.

Yu, C.

Zappa, F.

P. W. R. Connolly, X. Ren, A. Mccarthy, H. Mai, F. Villa, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, and G. S. Buller, “High concentration factor diffractive microlenses integrated with CMOS single-photon avalanche diode detector arrays for fill-factor improvement,” Appl. Opt. 59, 4488–4498 (2020).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

Zayhowski, J. J.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Zeng, H.

Zhang, J.

Zhang, L.

Zhang, W.

Zhang, Z.

Zhu, F.

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

Zuber, M. T.

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Zwally, H. J.

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

Zwiller, V.

ACM Trans. Graph. (1)

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-photon 3D imaging with deep sensor fusion,” ACM Trans. Graph. 37, 113 (2018).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (2)

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20, 364–373 (2014).
[Crossref]

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13, 1006–1015 (2007).
[Crossref]

IEEE Photon. Technol. Lett (1)

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett 21, 1020–1022 (2009).
[Crossref]

IEEE Trans. Comput. Imaging (2)

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Comput. Imaging 1, 112–125 (2015).
[Crossref]

J. Rapp and V. K. Goyal, “A few photons among many: unmixing signal and noise for photon-efficient active imaging,” IEEE Trans. Comput. Imaging 3, 445–459 (2017).
[Crossref]

IEEE Trans. Image Process. (2)

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform-based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25, 1935–1946 (2016).
[Crossref]

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP: sparse Poisson intensity reconstruction algorithms - theory and practice,” IEEE Trans. Image Process. 21, 1084–1096 (2012).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analysis of lidar signals with multiple returns,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 2170–2180 (2007).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (1)

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka, “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner,” ISPRS J. Photogramm. Remote Sens. 60, 100–112 (2006).
[Crossref]

Light Sci. Appl. (1)

C. Bruschini, H. Homulle, I. Antolovic, S. Burri, and E. Charbon, “Single-photon avalanche diode imagers in biophotonics: review and outlook,” Light Sci. Appl. 8, 87 (2019).
[Crossref]

Lincoln Lab. J. (3)

A. B. Gschwendtner and W. E. Keicher, “Development of coherent laser radar at Lincoln Laboratory,” Lincoln Lab. J. 12, 383–396 (2000).

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).

Nat. Commun. (1)

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7, 12046 (2016).
[Crossref]

Nat. Photonics (2)

B. Schwarz, “Lidar: mapping the world in 3D,” Nat. Photonics 4, 429–430 (2010).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Opt. Express (9)

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560  nm wavelength single-photon detection,” Opt. Express 21, 8904–8915 (2013).
[Crossref]

Z. Li, E. Wu, C. Pang, B. Du, Y. Tao, H. Peng, H. Zeng, and G. Wu, “Multi-beam single-photon-counting three-dimensional imaging lidar,” Opt. Express 25, 10189–10195 (2017).
[Crossref]

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10  kilometers range,” Opt. Express 25, 11919–11931 (2017).
[Crossref]

Z.-P. Li, X. Huang, P.-Y. Peng, Y. Hong, C. Yu, Y. Cao, J. Zhang, F. Xu, and J.-W. Pan, “Super-resolution single-photon imaging at 8.2  kilometers,” Opt. Express 28, 4076–4087 (2020).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref]

C. Yu, M. Shangguan, H. Xia, J. Zhang, X. Dou, and J. W. Pan, “Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications,” Opt. Express 25, 14611–14620 (2017).
[Crossref]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “Computational multi-depth single-photon imaging,” Opt. Express 24, 1873–1888 (2016).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27, 4590–4611 (2019).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532  nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

Proc. IEEE (1)

W. Abdalati, H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, and C. Webb, “The ICESat-2 laser altimetry mission,” Proc. IEEE 98, 735–751 (2010).
[Crossref]

Proc. SPIE (2)

D. Shin, J. H. Shapiro, and V. K. Goyal, “Photon-efficient super-resolution laser radar,” Proc. SPIE 10394, 1039409 (2017).
[Crossref]

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the lunar laser communication demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Remote Sens. (1)

J. J. Degnan, “Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping,” Remote Sens. 8, 958 (2016).
[Crossref]

Rep. Prog. Phys. (1)

C. L. Glennie, W. E. Carter, R. L. Shrestha, and W. E. Dietrich, “Geodetic imaging with airborne lidar: the Earth’s surface revealed,” Rep. Prog. Phys. 76, 086801 (2013).
[Crossref]

Sci. Rep. (2)

S. Chan, A. Halimi, F. Zhu, I. Gyongy, R. K. Henderson, R. Bowman, S. McLaughlin, G. S. Buller, and J. Leach, “Long-range depth imaging using a single-photon detector array and non-local data fusion,” Sci. Rep. 9, 8075 (2019).
[Crossref]

B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Science (3)

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343, 58–61 (2014).
[Crossref]

Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, and D. Faccio, “Quantum-inspired computational imaging,” Science 361, eaat2298 (2018).
[Crossref]

D. E. Smith, M. T. Zuber, H. V. Frey, J. B. Garvin, J. W. Head, D. O. Muhleman, G. H. Pettengill, R. J. Phillips, S. C. Solomon, H. J. Zwally, W. B. Banerdt, and T. C. Duxbury, “Topography of the northern hemisphere of mars from the mars orbiter laser altimeter,” Science 279, 1686–1692 (1998).
[Crossref]

SIAM J. Imaging Sci. (1)

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. Mclaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12, 521–550 (2019).
[Crossref]

Other (3)

J. Tachella, Y. Altmann, S. McLaughlin, and J.-Y. Tourneret, “3D reconstruction using single-photon lidar data exploiting the widths of the returns,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019), pp. 7815–7819.

M. J. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC Press, 2001).

https://github.com/quantum-inspired-lidar/long-range-photon-efficient-imaging.git .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Illustration of long-range active imaging. Satellite image of the experimental layout in Shanghai city, where the single-photon lidar is placed on Chongming Island and the target is a tall building in Pudong. (a) Schematic diagram of the setup. SM, scanning mirror; Cam, camera; M, mirror; PERM, 45° perforated mirror; PBS, polarization beam splitter; SPAD, single-photon avalanche diode; MMF, multimode fiber; PMF, polarization-maintaining fiber; LA, laser (1550 nm); COL, collimator; F, filter; FF, fiber filter; L, lens; HWP, half-wave plate; QWP, quarter-wave plate. (b) Photograph of the setup. The optical system consists of a telescope congregation and an optical-component box for shielding. (c) Close-up photograph of the target, the Pudong Civil Aviation Building. The building is 45 km from the single-photon lidar setup.
Fig. 2.
Fig. 2. Raw-data histogram and global-gating process. (a) Raw-data histogram for the 45 km imaging experiment over the laser period (10  μs). (b) Noise fitting for the background noise, which comes mainly from the internally reflected ASE noisy photons and increases with time following a binomial distribution. (c) Censored time bins for reconstructions. (d) Illustration of the signal counts. (e) Illustration of a histogram of a single pixel within the effective signal gate Tgate.
Fig. 3.
Fig. 3. Long-range 3D imaging over 45 km. (a) Real visible-band image (tailored) of the target taken with a standard astronomical camera. This photograph is substantially blurred due to the inadequate spatial resolution and the air turbulence in the urban environment. The red rectangle indicates the approximate lidar FoR. (b)–(e) Reconstruction results obtained by using the pixelwise maximum likelihood (ML) method, photon-efficient algorithm [18], unmixing algorithm by Rapp and Goyal [21], and the proposed algorithm, respectively. The single-photon lidar recorded an average PPP of 2.59, and the SBR was 0.03. The calculated relative depth for each individual pixel is given by the false color (see color scale on right). Our algorithm performs much better than the other state-of-the-art photon-efficient computational algorithms and provides sufficient resolution to clearly resolve the 0.6 m wide windows [see expanded view in inset of (e)].
Fig. 4.
Fig. 4. Long-range target taken in daylight over 21.6 km. (a) Topology of the experiment. (b) Ground-truth image of the target (building K11). (c) Visible-band image of the target taken with a standard astronomical camera. (d)–(g) Depth profile taken with the proposed single-photon lidar in daylight and reconstructed by applying the different algorithms to the data with 1.2 signal PPP and SBR=0.11. (d) Reconstruction with the pixelwise ML method. (e) Reconstruction with the photon-efficient algorithm [18]. (f) Reconstruction with the algorithm of Rapp and Goyal [21]. (g) Reconstruction with the proposed algorithm. The peak signal-to-noise ratio (PSNR) was calculated by comparing the reconstructed image with a high-quality image obtained with a large number of photons. The proposed method yields a much higher PSNR than the other algorithms.
Fig. 5.
Fig. 5. Long-range target at 21.6 km imaged in daylight and at night. (a) Visible-band image of the target taken with a standard astronomical camera. (b) Depth profile of image taken in daylight and reconstructed with signal PPP=1.2, SBR=0.11. (c) Depth profile of image taken at night and reconstructed with signal PPP=1.2, SBR=0.15.
Fig. 6.
Fig. 6. Reconstruction of multilayer depth profile of a complex scene. (a) Visible-band image of the target taken by a standard astronomical camera mounted on the imaging system with an f=700  mm camera lens. (b), (c) Depth profile taken by the proposed single-photon lidar over 2.1 km, and recovered by using the proposed computational algorithm. Trees at different depths and their fine features can be identified.

Tables (2)

Tables Icon

Algorithm 1. Global gating.

Tables Icon

Table 1. Summary of Representative Single-Photon Imaging Experiments, Focusing on Imaging Distance and Sensitivity

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R(t;θx,θy)=θx,θyFoVhxy(θxθx,θyθy)r(θx,θy)ht[t2d(θx,θy)/c]dθxdθy+b
SPoisson(h*RD+B),
t0{(Ts2)M,(Ts2)M+1,...,(Ts+1)M}
minimizeRDLRD(RD;Y,h,B)subjecttoRDi,j,k0,i,j,k,