Abstract

Understanding and controlling defect in two-dimensional materials is important for both linear and nonlinear optoelectronic devices, especially in terms of tuning nonlinear optical absorption. Taking advantage of an atomic defect formed easily by smaller size, molybdenum disulfide nanosheet is prepared successfully with a different size by gradient centrifugation. Interestingly, size-dependent sulfur vacancies are observed by high-resolution X-ray photoelectron spectroscopy, atomic force microscopy, and transmission electron microscopy. The defect effect on nonlinear absorption is investigated by Z-scan measurement at the wavelength of 800 nm. The results suggest the transition from saturable absorption to reverse saturable absorption can be observed in both dispersions and films. First principle calculations suggest that sulfur vacancies act as the trap state to capture the excited electrons. Moreover, an energy-level model with the trap state is put forward to explain the role of the sulfur vacancy defect in nonlinear optical absorption. The results suggest that saturable absorption and reverse saturable absorption originate from the competition between the excited, defect state and ground state absorption. Our finding provides a way to tune the nonlinear optical performance of optoelectronic devices by defect engineering.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
    [Crossref]
  2. K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, and K. Cho, “Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers,” Nanotechnology 25, 375703 (2014).
    [Crossref]
  3. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
    [Crossref]
  4. H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
    [Crossref]
  5. L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
    [Crossref]
  6. Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, and J. Wang, “Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects,” Chem. Mater. 28, 4390–4396 (2016).
    [Crossref]
  7. M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16, 25093–25100 (2014).
    [Crossref]
  8. A. Singh, S. Kumar, R. Das, and P. K. Sahoo, “Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods,” RSC Adv. 5, 88767–88772 (2015).
    [Crossref]
  9. P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
    [Crossref]
  10. C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
    [Crossref]
  11. K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
    [Crossref]
  12. Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
    [Crossref]
  13. K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
    [Crossref]
  14. S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
    [Crossref]
  15. L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
    [Crossref]
  16. S. Karmakar, S. Biswas, and P. Kumbhakar, “A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures,” Appl. Surf. Sci. 455, 379–391 (2018).
    [Crossref]
  17. X. Zhang, R. Zhang, Y. Zhang, T. Jiang, and S. Qin, “Tunable photoluminescence of bilayer MoS2 via interlayer twist,” Opt. Mater. 94, 213–216 (2019).
    [Crossref]
  18. S. Karmakar, S. Biswas, and P. Kumbhakar, “Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication,” Opt. Mater. 73, 585–594 (2017).
    [Crossref]
  19. C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, and Y. H. Tsang, “Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet,” Opt. Mater. 101, 109694 (2020).
    [Crossref]
  20. R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
    [Crossref]
  21. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  22. J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
    [Crossref]
  23. J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, and J. Wang, “Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets,” ACS Photon. 4, 3063–3070 (2017).
    [Crossref]
  24. K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
    [Crossref]
  25. P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
    [Crossref]
  26. S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, and J. Wang, “Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets,” Opt. Mater. Express 6, 3159–3168 (2016).
    [Crossref]
  27. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
    [Crossref]
  28. S. Salehi and A. Saffarzadeh, “Atomic defect states in monolayers of MoS2 and WS2,” Surf. Sci. 651, 215–221 (2016).
    [Crossref]
  29. Y. Zhou, P. Yang, H. Zu, F. Gao, and X. Zu, “Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots,” Phys. Chem. Chem. Phys. 15, 10385–10394 (2013).
    [Crossref]
  30. K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
    [Crossref]
  31. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide MoS2 as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
    [Crossref]
  32. X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3, 785–790 (2012).
    [Crossref]
  33. M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
    [Crossref]
  34. C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
    [Crossref]
  35. L.-P. Feng, J. Su, and Z.-T. Liu, “Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study,” J. Alloys Compd. 613, 122–127 (2014).
    [Crossref]
  36. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
    [Crossref]
  37. A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
    [Crossref]
  38. G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
    [Crossref]
  39. X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
    [Crossref]
  40. P. Kumar, M. Singh, and G. B. Reddy, “Oxidized core-shell MoO2–MoS2 nanostructured thin films for hydrogen evolution,” ACS Appl. Nano Mater. 3, 711–723 (2019).
    [Crossref]
  41. S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
    [Crossref]
  42. M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
    [Crossref]
  43. Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, “Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films,” J. Mater. Chem. C 2, 6319–6325 (2014).
    [Crossref]
  44. L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
    [Crossref]
  45. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
    [Crossref]
  46. X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
    [Crossref]
  47. B. M. Szydłowska, B. Tywoniuk, and W. J. Blau, “Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime,” ACS Photon. 5, 3608–3612 (2018).
    [Crossref]
  48. G.-H. Jung, S. Yoo, and Q. H. Park, “Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions,” Nanophotonics 8, 263–270 (2018).
    [Crossref]
  49. M. Zawadzka, J. Wang, W. J. Blau, and M. O. Senge, “Modeling of nonlinear absorption of 5, 10-A2B2 porphyrins in the nanosecond regime,” J. Phys. Chem. A 117, 15–26 (2013).
    [Crossref]
  50. Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
    [Crossref]
  51. J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2 (0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
    [Crossref]
  52. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
    [Crossref]
  53. M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, and K. S. Thygesen, “Defect-tolerant monolayer transition metal dichalcogenides,” Nano Lett. 16, 2234–2239 (2016).
    [Crossref]
  54. X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
    [Crossref]
  55. B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, and R. Philip, “The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures,” Phys. Chem. Chem. Phys. 16, 8168–8177 (2014).
    [Crossref]
  56. C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
    [Crossref]
  57. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
    [Crossref]

2020 (1)

C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, and Y. H. Tsang, “Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet,” Opt. Mater. 101, 109694 (2020).
[Crossref]

2019 (7)

X. Zhang, R. Zhang, Y. Zhang, T. Jiang, and S. Qin, “Tunable photoluminescence of bilayer MoS2 via interlayer twist,” Opt. Mater. 94, 213–216 (2019).
[Crossref]

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

P. Kumar, M. Singh, and G. B. Reddy, “Oxidized core-shell MoO2–MoS2 nanostructured thin films for hydrogen evolution,” ACS Appl. Nano Mater. 3, 711–723 (2019).
[Crossref]

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
[Crossref]

2018 (7)

Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
[Crossref]

X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
[Crossref]

X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
[Crossref]

B. M. Szydłowska, B. Tywoniuk, and W. J. Blau, “Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime,” ACS Photon. 5, 3608–3612 (2018).
[Crossref]

G.-H. Jung, S. Yoo, and Q. H. Park, “Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions,” Nanophotonics 8, 263–270 (2018).
[Crossref]

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

S. Karmakar, S. Biswas, and P. Kumbhakar, “A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures,” Appl. Surf. Sci. 455, 379–391 (2018).
[Crossref]

2017 (8)

S. Karmakar, S. Biswas, and P. Kumbhakar, “Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication,” Opt. Mater. 73, 585–594 (2017).
[Crossref]

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
[Crossref]

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, and J. Wang, “Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets,” ACS Photon. 4, 3063–3070 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

2016 (7)

M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, and K. S. Thygesen, “Defect-tolerant monolayer transition metal dichalcogenides,” Nano Lett. 16, 2234–2239 (2016).
[Crossref]

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, and J. Wang, “Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets,” Opt. Mater. Express 6, 3159–3168 (2016).
[Crossref]

S. Salehi and A. Saffarzadeh, “Atomic defect states in monolayers of MoS2 and WS2,” Surf. Sci. 651, 215–221 (2016).
[Crossref]

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, and J. Wang, “Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects,” Chem. Mater. 28, 4390–4396 (2016).
[Crossref]

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

2015 (6)

A. Singh, S. Kumar, R. Das, and P. K. Sahoo, “Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods,” RSC Adv. 5, 88767–88772 (2015).
[Crossref]

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

2014 (10)

B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, and R. Philip, “The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures,” Phys. Chem. Chem. Phys. 16, 8168–8177 (2014).
[Crossref]

Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, “Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films,” J. Mater. Chem. C 2, 6319–6325 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide MoS2 as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

L.-P. Feng, J. Su, and Z.-T. Liu, “Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study,” J. Alloys Compd. 613, 122–127 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, and K. Cho, “Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers,” Nanotechnology 25, 375703 (2014).
[Crossref]

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16, 25093–25100 (2014).
[Crossref]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

2013 (7)

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Y. Zhou, P. Yang, H. Zu, F. Gao, and X. Zu, “Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots,” Phys. Chem. Chem. Phys. 15, 10385–10394 (2013).
[Crossref]

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

M. Zawadzka, J. Wang, W. J. Blau, and M. O. Senge, “Modeling of nonlinear absorption of 5, 10-A2B2 porphyrins in the nanosecond regime,” J. Phys. Chem. A 117, 15–26 (2013).
[Crossref]

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

2012 (2)

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3, 785–790 (2012).
[Crossref]

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

2010 (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

2004 (1)

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2 (0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

Addou, R.

K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, and K. Cho, “Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers,” Nanotechnology 25, 375703 (2014).
[Crossref]

Ajayan, P. M.

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Akinwande, D.

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Aloukos, P.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Anand, B.

B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, and R. Philip, “The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures,” Phys. Chem. Chem. Phys. 16, 8168–8177 (2014).
[Crossref]

Angelica, A.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

Ataca, C.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Bai, J.

X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
[Crossref]

Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

Bakandritsos, A.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Banerjee, S.

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

Banerjee, S. K.

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Bao, Q.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Bechelany, M.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Biswas, S.

S. Karmakar, S. Biswas, and P. Kumbhakar, “A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures,” Appl. Surf. Sci. 455, 379–391 (2018).
[Crossref]

S. Karmakar, S. Biswas, and P. Kumbhakar, “Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication,” Opt. Mater. 73, 585–594 (2017).
[Crossref]

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

Blau, W. J.

B. M. Szydłowska, B. Tywoniuk, and W. J. Blau, “Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime,” ACS Photon. 5, 3608–3612 (2018).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

M. Zawadzka, J. Wang, W. J. Blau, and M. O. Senge, “Modeling of nonlinear absorption of 5, 10-A2B2 porphyrins in the nanosecond regime,” J. Phys. Chem. A 117, 15–26 (2013).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Bonini, N.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Brennan, B.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Chang, C.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Chang, M. J.

K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Chatterjee, U.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

Chen, B.

Chen, J.

Chen, K.

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Chen, Q.

Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, and J. Wang, “Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects,” Chem. Mater. 28, 4390–4396 (2016).
[Crossref]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Chen, S.

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

Chen, Y.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, “Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films,” J. Mater. Chem. C 2, 6319–6325 (2014).
[Crossref]

Chen, Z.

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

Cheng, M.

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

Cheng, P. K.

C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, and Y. H. Tsang, “Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet,” Opt. Mater. 101, 109694 (2020).
[Crossref]

Chhowalla, M.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Cho, K.

K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, and K. Cho, “Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers,” Nanotechnology 25, 375703 (2014).
[Crossref]

Choi, J.-Y.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Choi, W.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Coleman, J. N.

S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, and J. Wang, “Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets,” Opt. Mater. Express 6, 3159–3168 (2016).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Couris, S.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Cui, Y.

X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
[Crossref]

Daisuke, K.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

Das, R.

A. Singh, S. Kumar, R. Das, and P. K. Sahoo, “Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods,” RSC Adv. 5, 88767–88772 (2015).
[Crossref]

Der-Hsien, L.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

Dong, N.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, and J. Wang, “Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets,” ACS Photon. 4, 3063–3070 (2017).
[Crossref]

Du, J.

Du, W.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Fan, W.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Feng, L.-P.

L.-P. Feng, J. Su, and Z.-T. Liu, “Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study,” J. Alloys Compd. 613, 122–127 (2014).
[Crossref]

Feng, Y.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Fuhr, J. D.

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2 (0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

Gao, F.

Y. Zhou, P. Yang, H. Zu, F. Gao, and X. Zu, “Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots,” Phys. Chem. Chem. Phys. 15, 10385–10394 (2013).
[Crossref]

Ghosh, R.

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Gilmore, I. S.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Gong, Y.

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

Gopinath, P.

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16, 25093–25100 (2014).
[Crossref]

Grossman, J. C.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Guo, Y.

Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
[Crossref]

Hanlon, D.

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

He, C.

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
[Crossref]

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

He, D.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

He, F.

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

He, M.

X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

He, X.

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

He, Y.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

Hong, S.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Hong, X.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Hu, Z.

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

Huang, D.

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

Huang, J.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
[Crossref]

J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, and J. Wang, “Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets,” ACS Photon. 4, 3063–3070 (2017).
[Crossref]

Huang, Y.

C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
[Crossref]

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

Hwang, W.-S.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Idrobo, J. C.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Jacobsen, K. W.

M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, and K. S. Thygesen, “Defect-tolerant monolayer transition metal dichalcogenides,” Nano Lett. 16, 2234–2239 (2016).
[Crossref]

Jena, D.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Jhon, Y. I.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Jhon, Y. M.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Jia, B.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Jiang, B.

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Jiang, D.

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

Jiang, J.

Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
[Crossref]

Jiang, T.

X. Zhang, R. Zhang, Y. Zhang, T. Jiang, and S. Qin, “Tunable photoluminescence of bilayer MoS2 via interlayer twist,” Opt. Mater. 94, 213–216 (2019).
[Crossref]

Jiang, X.-F.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3, 785–790 (2012).
[Crossref]

Jin, C.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Jin, Y. W.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Jinesh, K. B.

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16, 25093–25100 (2014).
[Crossref]

Jiyoung, N.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

John, H.

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16, 25093–25100 (2014).
[Crossref]

Jun, X.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

Jung, C.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Jung, G.-H.

G.-H. Jung, S. Yoo, and Q. H. Park, “Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions,” Nanophotonics 8, 263–270 (2018).
[Crossref]

Kanehara, M.

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

Kang, J. S.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Kaplan, D.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Karmakar, S.

S. Karmakar, S. Biswas, and P. Kumbhakar, “A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures,” Appl. Surf. Sci. 455, 379–391 (2018).
[Crossref]

S. Karmakar, S. Biswas, and P. Kumbhakar, “Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication,” Opt. Mater. 73, 585–594 (2017).
[Crossref]

Kavitha, M. K.

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16, 25093–25100 (2014).
[Crossref]

Kim, H.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Kim, J.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Kim, J.-S.

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Kim, K.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Kim, S.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Kislyakov, I. M.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

Ko, C.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Kole, A. K.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

Kolokithas-Ntoukas, A.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Konar, A.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Kong, J.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Koo, J.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Krishnan, S. R.

B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, and R. Philip, “The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures,” Phys. Chem. Chem. Phys. 16, 8168–8177 (2014).
[Crossref]

Kuhar, K.

M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, and K. S. Thygesen, “Defect-tolerant monolayer transition metal dichalcogenides,” Nano Lett. 16, 2234–2239 (2016).
[Crossref]

Kumar, P.

P. Kumar, M. Singh, and G. B. Reddy, “Oxidized core-shell MoO2–MoS2 nanostructured thin films for hydrogen evolution,” ACS Appl. Nano Mater. 3, 711–723 (2019).
[Crossref]

Kumar, S.

A. Singh, S. Kumar, R. Das, and P. K. Sahoo, “Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods,” RSC Adv. 5, 88767–88772 (2015).
[Crossref]

Kumbhakar, P.

S. Karmakar, S. Biswas, and P. Kumbhakar, “A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures,” Appl. Surf. Sci. 455, 379–391 (2018).
[Crossref]

S. Karmakar, S. Biswas, and P. Kumbhakar, “Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication,” Opt. Mater. 73, 585–594 (2017).
[Crossref]

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

Latham, K.

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

Lee, J.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Lee, J. H.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Lee, S. Y.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Lei, L.

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

Li, B.

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

Li, J.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Li, L.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Li, P.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Li, S.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

Liang, Z.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Liaros, N.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Lin, H.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Lin, J.

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

Lin, J.-F.

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Ling, C.

Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, and J. Wang, “Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects,” Chem. Mater. 28, 4390–4396 (2016).
[Crossref]

Liu, C.

Liu, J.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Liu, Z.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Liu, Z.-T.

L.-P. Feng, J. Su, and Z.-T. Liu, “Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study,” J. Alloys Compd. 613, 122–127 (2014).
[Crossref]

Loh, K. P.

Long, H.

C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, and Y. H. Tsang, “Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet,” Opt. Mater. 101, 109694 (2020).
[Crossref]

Longo, R. C.

K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, and K. Cho, “Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers,” Nanotechnology 25, 375703 (2014).
[Crossref]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Lou, J.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Lou, X. W.

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

Lu, C.

C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
[Crossref]

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

Lu, J.

Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
[Crossref]

Lu, S. B.

Lu, Y.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Luce, A.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Ma, S.

C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, and Y. H. Tsang, “Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet,” Opt. Mater. 101, 109694 (2020).
[Crossref]

Madan, D.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

Madhvapathy, S. R.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

Makuta, S.

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

Mason, S. C.

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Matin, A.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

McEvoy, N.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Meng, X.

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

Miao, F.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Michel, T.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Miele, P.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Mignuzzi, S.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Mu, H.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Najmaei, S.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Nan, H.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Neo, S. T.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3, 785–790 (2012).
[Crossref]

Ni, Z.

Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
[Crossref]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Nunzi, J. M.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Ogletree, F.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Olsen, T.

M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, and K. S. Thygesen, “Defect-tolerant monolayer transition metal dichalcogenides,” Nano Lett. 16, 2234–2239 (2016).
[Crossref]

Ouyang, Q.

Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, “Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films,” J. Mater. Chem. C 2, 6319–6325 (2014).
[Crossref]

Ouyang, Y.

Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, and J. Wang, “Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects,” Chem. Mater. 28, 4390–4396 (2016).
[Crossref]

Pan, A.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Pandey, M.

M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, and K. S. Thygesen, “Defect-tolerant monolayer transition metal dichalcogenides,” Nano Lett. 16, 2234–2239 (2016).
[Crossref]

Pantelides, S. T.

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

Park, J.

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Park, Q. H.

G.-H. Jung, S. Yoo, and Q. H. Park, “Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions,” Nanophotonics 8, 263–270 (2018).
[Crossref]

Philip, R.

B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, and R. Philip, “The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures,” Phys. Chem. Chem. Phys. 16, 8168–8177 (2014).
[Crossref]

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16, 25093–25100 (2014).
[Crossref]

Pimenta, M. A.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Podila, R.

B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, and R. Philip, “The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures,” Phys. Chem. Chem. Phys. 16, 8168–8177 (2014).
[Crossref]

Polavarapu, L.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3, 785–790 (2012).
[Crossref]

Pollard, A. J.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Qiao, T.

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

Qin, S.

X. Zhang, R. Zhang, Y. Zhang, T. Jiang, and S. Qin, “Tunable photoluminescence of bilayer MoS2 via interlayer twist,” Opt. Mater. 94, 213–216 (2019).
[Crossref]

Qin, Z.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Qiu, J.

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

Quan, C.

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
[Crossref]

X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

Rafik, A.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

Raghunathanan, R.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Rai, A.

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

Rao, A. M.

B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, and R. Philip, “The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures,” Phys. Chem. Chem. Phys. 16, 8168–8177 (2014).
[Crossref]

Rasmussen, F. A.

M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, and K. S. Thygesen, “Defect-tolerant monolayer transition metal dichalcogenides,” Nano Lett. 16, 2234–2239 (2016).
[Crossref]

Reddy, G. B.

P. Kumar, M. Singh, and G. B. Reddy, “Oxidized core-shell MoO2–MoS2 nanostructured thin films for hydrogen evolution,” ACS Appl. Nano Mater. 3, 711–723 (2019).
[Crossref]

Register, L. F.

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

Ren, Z.

Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
[Crossref]

Richards, D.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Ries, L.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Roy, A.

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Roy, D.

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Saffarzadeh, A.

S. Salehi and A. Saffarzadeh, “Atomic defect states in monolayers of MoS2 and WS2,” Surf. Sci. 651, 215–221 (2016).
[Crossref]

Sahoo, P. K.

A. Singh, S. Kumar, R. Das, and P. K. Sahoo, “Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods,” RSC Adv. 5, 88767–88772 (2015).
[Crossref]

Sai, S. S.

B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, and R. Philip, “The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures,” Phys. Chem. Chem. Phys. 16, 8168–8177 (2014).
[Crossref]

Salameh, C.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Salehi, S.

S. Salehi and A. Saffarzadeh, “Atomic defect states in monolayers of MoS2 and WS2,” Surf. Sci. 651, 215–221 (2016).
[Crossref]

Santosh, K.

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

Santosh, K. C.

K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, and K. Cho, “Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers,” Nanotechnology 25, 375703 (2014).
[Crossref]

Saul, A.

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2 (0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

Seifert, T.

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

Senge, M. O.

M. Zawadzka, J. Wang, W. J. Blau, and M. O. Senge, “Modeling of nonlinear absorption of 5, 10-A2B2 porphyrins in the nanosecond regime,” J. Phys. Chem. A 117, 15–26 (2013).
[Crossref]

Shi, L.

Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, and J. Wang, “Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects,” Chem. Mater. 28, 4390–4396 (2016).
[Crossref]

Shi, S. F.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Shi, Y.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Shivananju, B. N.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Si, K.

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

Singh, A.

A. Singh, S. Kumar, R. Das, and P. K. Sahoo, “Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods,” RSC Adv. 5, 88767–88772 (2015).
[Crossref]

Singh, M.

P. Kumar, M. Singh, and G. B. Reddy, “Oxidized core-shell MoO2–MoS2 nanostructured thin films for hydrogen evolution,” ACS Appl. Nano Mater. 3, 711–723 (2019).
[Crossref]

Sofo, J. O.

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2 (0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

Song, Y.

K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Su, J.

L.-P. Feng, J. Su, and Z.-T. Liu, “Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study,” J. Alloys Compd. 613, 122–127 (2014).
[Crossref]

Suh, J.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Sun, X.

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

Sun, Y.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Sun, Y. Y.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

Sun, Z.

J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, and J. Wang, “Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets,” ACS Photon. 4, 3063–3070 (2017).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Szabo, T.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Szydlowska, B. M.

B. M. Szydłowska, B. Tywoniuk, and W. J. Blau, “Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime,” ACS Photon. 5, 3608–3612 (2018).
[Crossref]

Tachibana, Y.

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

Taha-Tijerina, J.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

Tan, P.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Tang, C. Y.

C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, and Y. H. Tsang, “Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet,” Opt. Mater. 101, 109694 (2020).
[Crossref]

Tang, D.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Tang, D. Y.

Teranishi, T.

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

Thygesen, K. S.

M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, and K. S. Thygesen, “Defect-tolerant monolayer transition metal dichalcogenides,” Nano Lett. 16, 2234–2239 (2016).
[Crossref]

Tian, X.

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

Tiwary, C. S.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

Tongay, S.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Tsang, Y. H.

C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, and Y. H. Tsang, “Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet,” Opt. Mater. 101, 109694 (2020).
[Crossref]

Tywoniuk, B.

B. M. Szydłowska, B. Tywoniuk, and W. J. Blau, “Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime,” ACS Photon. 5, 3608–3612 (2018).
[Crossref]

Vajtai, R.

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

Valsaraj, A.

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

Veamatahau, A.

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

Venkatesan, T.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3, 785–790 (2012).
[Crossref]

Vinod, S.

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

Voiry, D.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Wallace, R. M.

K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, and K. Cho, “Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers,” Nanotechnology 25, 375703 (2014).
[Crossref]

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, C.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Wang, F.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Wang, H.

Wang, J.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
[Crossref]

J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, and J. Wang, “Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets,” ACS Photon. 4, 3063–3070 (2017).
[Crossref]

S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, and J. Wang, “Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets,” Opt. Mater. Express 6, 3159–3168 (2016).
[Crossref]

Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, and J. Wang, “Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects,” Chem. Mater. 28, 4390–4396 (2016).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

M. Zawadzka, J. Wang, W. J. Blau, and M. O. Senge, “Modeling of nonlinear absorption of 5, 10-A2B2 porphyrins in the nanosecond regime,” J. Phys. Chem. A 117, 15–26 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Wang, K.

S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, and J. Wang, “Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets,” Opt. Mater. Express 6, 3159–3168 (2016).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Wang, L.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
[Crossref]

Wang, Q.

K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Wang, R.

X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
[Crossref]

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Wang, W.

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Wang, X.

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Wang, X. Y.

C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, and Y. H. Tsang, “Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet,” Opt. Mater. 101, 109694 (2020).
[Crossref]

Wang, Y.

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Wang, Z.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, and J. Wang, “Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects,” Chem. Mater. 28, 4390–4396 (2016).
[Crossref]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

Wei, R.

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

Wen, S. C.

Wu, J.

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Wu, K.

Wu, X. Z.

K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Wu, Z.

Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
[Crossref]

Xie, J.

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

Xie, Y.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
[Crossref]

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

Xu, Q.-H.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3, 785–790 (2012).
[Crossref]

Xu, X.

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
[Crossref]

C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
[Crossref]

X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
[Crossref]

X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
[Crossref]

Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
[Crossref]

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

Xu, Y.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Yakobson, B. I.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Yang, J.

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Yang, P.

Y. Zhou, P. Yang, H. Zu, F. Gao, and X. Zu, “Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots,” Phys. Chem. Chem. Phys. 15, 10385–10394 (2013).
[Crossref]

Yang, T.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Yao, Z.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

Ye, G.

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

Yoo, J.-B.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Yoo, S.

G.-H. Jung, S. Yoo, and Q. H. Park, “Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions,” Nanophotonics 8, 263–270 (2018).
[Crossref]

You, Y.

Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
[Crossref]

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, “Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films,” J. Mater. Chem. C 2, 6319–6325 (2014).
[Crossref]

Yu, Y.

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

Zawadzka, M.

M. Zawadzka, J. Wang, W. J. Blau, and M. O. Senge, “Modeling of nonlinear absorption of 5, 10-A2B2 porphyrins in the nanosecond regime,” J. Phys. Chem. A 117, 15–26 (2013).
[Crossref]

Zboril, R.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Zeng, G.

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

Zhan, J.

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Zhan, Y.

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

Zhang, H.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide MoS2 as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22, 7249–7260 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhang, H. L.

K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Zhang, K.

Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, “Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films,” J. Mater. Chem. C 2, 6319–6325 (2014).
[Crossref]

Zhang, L.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, and J. Wang, “Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets,” Opt. Mater. Express 6, 3159–3168 (2016).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhang, Q.

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

Zhang, R.

X. Zhang, R. Zhang, Y. Zhang, T. Jiang, and S. Qin, “Tunable photoluminescence of bilayer MoS2 via interlayer twist,” Opt. Mater. 94, 213–216 (2019).
[Crossref]

Zhang, S.

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
[Crossref]

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, and J. Wang, “Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets,” ACS Photon. 4, 3063–3070 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, and J. Wang, “Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets,” Opt. Mater. Express 6, 3159–3168 (2016).
[Crossref]

Zhang, W.

J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, and J. Wang, “Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets,” ACS Photon. 4, 3063–3070 (2017).
[Crossref]

Zhang, X.

X. Zhang, R. Zhang, Y. Zhang, T. Jiang, and S. Qin, “Tunable photoluminescence of bilayer MoS2 via interlayer twist,” Opt. Mater. 94, 213–216 (2019).
[Crossref]

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
[Crossref]

S. Zhang, X. Zhang, H. Wang, B. Chen, K. Wu, K. Wang, D. Hanlon, J. N. Coleman, J. Chen, L. Zhang, and J. Wang, “Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets,” Opt. Mater. Express 6, 3159–3168 (2016).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhang, Y.

X. Zhang, R. Zhang, Y. Zhang, T. Jiang, and S. Qin, “Tunable photoluminescence of bilayer MoS2 via interlayer twist,” Opt. Mater. 94, 213–216 (2019).
[Crossref]

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

Zhao, M.

K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

Zhao, Q.

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
[Crossref]

X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
[Crossref]

Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
[Crossref]

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

Zhao, W.

Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
[Crossref]

Zheng, J.

Zheng, T.

Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
[Crossref]

Zhou, C.

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

Zhou, J.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

Zhou, K. G.

K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Zhou, M.

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

Zhou, W.

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Zhou, Y.

Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
[Crossref]

X. Xu, M. He, C. Quan, R. Wang, C. Liu, Q. Zhao, Y. Zhou, J. Bai, and X. Xu, “Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber,” J. Lightwave Technol. 36, 5130–5136 (2018).
[Crossref]

Y. Zhou, P. Yang, H. Zu, F. Gao, and X. Zu, “Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots,” Phys. Chem. Chem. Phys. 15, 10385–10394 (2013).
[Crossref]

Zhu, L.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

Zou, X.

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

Zu, H.

Y. Zhou, P. Yang, H. Zu, F. Gao, and X. Zu, “Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots,” Phys. Chem. Chem. Phys. 15, 10385–10394 (2013).
[Crossref]

Zu, X.

Y. Zhou, P. Yang, H. Zu, F. Gao, and X. Zu, “Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots,” Phys. Chem. Chem. Phys. 15, 10385–10394 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (2)

P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, “Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers,” ACS Appl. Mater. Interfaces 9, 12759–12765 (2017).
[Crossref]

K. Chen, A. Roy, A. Rai, A. Valsaraj, X. Meng, F. He, X. Xu, L. F. Register, S. Banerjee, and Y. Wang, “Carrier trapping by oxygen impurities in molybdenum diselenide,” ACS Appl. Mater. Interfaces 10, 1125–1131 (2017).
[Crossref]

ACS Appl. Nano Mater. (1)

P. Kumar, M. Singh, and G. B. Reddy, “Oxidized core-shell MoO2–MoS2 nanostructured thin films for hydrogen evolution,” ACS Appl. Nano Mater. 3, 711–723 (2019).
[Crossref]

ACS Nano (4)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7, 9260–9267 (2013).
[Crossref]

H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, and Z. Ni, “Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,” ACS Nano 8, 5738–5745 (2014).
[Crossref]

L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry, “Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen,” ACS Nano 13, 6824–6834 (2019).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

ACS Photon. (2)

J. Huang, N. Dong, S. Zhang, Z. Sun, W. Zhang, and J. Wang, “Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets,” ACS Photon. 4, 3063–3070 (2017).
[Crossref]

B. M. Szydłowska, B. Tywoniuk, and W. J. Blau, “Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime,” ACS Photon. 5, 3608–3612 (2018).
[Crossref]

Adv. Funct. Mater. (1)

J. Koo, Y. I. Jhon, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Near-infrared saturable absorption of defective bulk-structured WTe2 for femtosecond laser mode-locking,” Adv. Funct. Mater. 26, 7454–7461 (2016).
[Crossref]

Adv. Mater. (2)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26, 3538–3544 (2014).
[Crossref]

J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater. 25, 5807–5813 (2013).
[Crossref]

Adv. Mater. Interfaces (1)

C. Quan, C. Lu, C. He, X. Xu, Y. Huang, Q. Zhao, and X. Xu, “Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance,” Adv. Mater. Interfaces 6, 1801733 (2019).
[Crossref]

Adv. Opt. Mater. (2)

P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, and P. M. Ajayan, “Nonlinear optical properties and temperature-dependent uv-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets,” Adv. Opt. Mater. 3, 828–835 (2015).
[Crossref]

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy,” Adv. Opt. Mater. 6, 800290 (2018).
[Crossref]

Appl. Surf. Sci. (2)

S. Karmakar, S. Biswas, and P. Kumbhakar, “A comparison of temperature dependent photoluminescence and photo-catalytic properties of different MoS2 nanostructures,” Appl. Surf. Sci. 455, 379–391 (2018).
[Crossref]

C. Lu, C. Quan, K. Si, X. Xu, C. He, Q. Zhao, Y. Zhan, and X. Xu, “Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films,” Appl. Surf. Sci. 479, 1161–1168 (2019).
[Crossref]

Chem. Mater. (1)

Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi, and J. Wang, “Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects,” Chem. Mater. 28, 4390–4396 (2016).
[Crossref]

Coord. Chem. Rev. (1)

L. Lei, D. Huang, G. Zeng, M. Cheng, D. Jiang, C. Zhou, S. Chen, and W. Wang, “A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties,” Coord. Chem. Rev. 399, 213020 (2019).
[Crossref]

J. Alloys Compd. (1)

L.-P. Feng, J. Su, and Z.-T. Liu, “Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study,” J. Alloys Compd. 613, 122–127 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. C (1)

Q. Ouyang, H. Yu, K. Zhang, and Y. Chen, “Saturable absorption and the changeover from saturable absorption to reverse saturable absorption of MoS2 nanoflake array films,” J. Mater. Chem. C 2, 6319–6325 (2014).
[Crossref]

J. Phys. Chem. A (1)

M. Zawadzka, J. Wang, W. J. Blau, and M. O. Senge, “Modeling of nonlinear absorption of 5, 10-A2B2 porphyrins in the nanosecond regime,” J. Phys. Chem. A 117, 15–26 (2013).
[Crossref]

J. Phys. Chem. C (4)

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao, S. Zhang, J. Bai, and X. Xu, “Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films,” J. Phys. Chem. C 121, 27147–27153 (2017).
[Crossref]

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013).
[Crossref]

Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni, “Defect activated photoluminescence in WSe2 monolayer,” J. Phys. Chem. C 121, 12294–12299 (2017).
[Crossref]

J. Phys. Chem. Lett. (1)

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3, 785–790 (2012).
[Crossref]

Laser Photon. Rev. (1)

L. Wang, S. Zhang, N. McEvoy, Y. Y. Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang, “Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2,” Laser Photon. Rev. 13, 1900052 (2019).
[Crossref]

Nano Lett. (3)

G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S. T. Pantelides, W. Zhou, R. Vajtai, and P. M. Ajayan, “Defects engineered monolayer MoS2 for improved hydrogen evolution reaction,” Nano Lett. 16, 1097–1103 (2016).
[Crossref]

W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett. 13, 2615–2622 (2013).
[Crossref]

M. Pandey, F. A. Rasmussen, K. Kuhar, T. Olsen, K. W. Jacobsen, and K. S. Thygesen, “Defect-tolerant monolayer transition metal dichalcogenides,” Nano Lett. 16, 2234–2239 (2016).
[Crossref]

Nanophotonics (1)

G.-H. Jung, S. Yoo, and Q. H. Park, “Measuring the optical permittivity of two-dimensional materials without a priori knowledge of electronic transitions,” Nanophotonics 8, 263–270 (2018).
[Crossref]

Nanoscale (4)

Q. Zhao, Y. Guo, Y. Zhou, Z. Yao, Z. Ren, J. Bai, and X. Xu, “Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications,” Nanoscale 10, 3547–3555 (2018).
[Crossref]

X. Zhang, S. Zhang, Y. Xie, J. Huang, L. Wang, Y. Cui, and J. Wang, “Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering,” Nanoscale 10, 17924–17932 (2018).
[Crossref]

R. Wei, H. Zhang, X. Tian, T. Qiao, Z. Hu, Z. Chen, X. He, Y. Yu, and J. Qiu, “MoS2 nanoflowers as high performance saturable absorbers for an all-fiber passively Q-switched erbium-doped fiber laser,” Nanoscale 8, 7704–7710 (2016).
[Crossref]

K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, and J. Wang, “Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors,” Nanoscale 6, 10530–10535 (2014).
[Crossref]

Nanotechnology (1)

K. C. Santosh, R. C. Longo, R. Addou, R. M. Wallace, and K. Cho, “Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers,” Nanotechnology 25, 375703 (2014).
[Crossref]

Nat. Commun. (1)

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Nat. Nanotechnol. (1)

X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9, 682–686 (2014).
[Crossref]

npj 2D Mater. Appl. (1)

K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C. Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y. Wang, “Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe2,” npj 2D Mater. Appl. 1, 15 (2017).
[Crossref]

Opt. Express (1)

Opt. Mater. (3)

X. Zhang, R. Zhang, Y. Zhang, T. Jiang, and S. Qin, “Tunable photoluminescence of bilayer MoS2 via interlayer twist,” Opt. Mater. 94, 213–216 (2019).
[Crossref]

S. Karmakar, S. Biswas, and P. Kumbhakar, “Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication,” Opt. Mater. 73, 585–594 (2017).
[Crossref]

C. Y. Tang, P. K. Cheng, X. Y. Wang, S. Ma, H. Long, and Y. H. Tsang, “Size-dependent nonlinear optical properties of atomically thin PtS2 nanosheet,” Opt. Mater. 101, 109694 (2020).
[Crossref]

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (4)

Y. Zhou, P. Yang, H. Zu, F. Gao, and X. Zu, “Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots,” Phys. Chem. Chem. Phys. 15, 10385–10394 (2013).
[Crossref]

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16, 25093–25100 (2014).
[Crossref]

A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, and Y. Tachibana, “Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states,” Phys. Chem. Chem. Phys. 17, 2850–2858 (2015).
[Crossref]

B. Anand, S. R. Krishnan, R. Podila, S. S. Sai, A. M. Rao, and R. Philip, “The role of defects in the nonlinear optical absorption behavior of carbon and ZnO nanostructures,” Phys. Chem. Chem. Phys. 16, 8168–8177 (2014).
[Crossref]

Phys. Rev. B (1)

S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, “Effect of disorder on Raman scattering of single-layer MoS2,” Phys. Rev. B 91, 195411 (2015).
[Crossref]

Phys. Rev. Lett. (1)

J. D. Fuhr, A. Saul, and J. O. Sofo, “Scanning tunneling microscopy chemical signature of point defects on the MoS2 (0001) surface,” Phys. Rev. Lett. 92, 026802 (2004).
[Crossref]

RSC Adv. (1)

A. Singh, S. Kumar, R. Das, and P. K. Sahoo, “Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods,” RSC Adv. 5, 88767–88772 (2015).
[Crossref]

Sci. Rep. (1)

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Science (1)

A. Matin, L. Der-Hsien, K. Daisuke, X. Jun, A. Angelica, N. Jiyoung, S. R. Madhvapathy, A. Rafik, K. Santosh, and D. Madan, “Near-unity photoluminescence quantum yield in MoS2,” Science 350, 1065–1068 (2015).
[Crossref]

Small (1)

K. G. Zhou, M. Zhao, M. J. Chang, Q. Wang, X. Z. Wu, Y. Song, and H. L. Zhang, “Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets,” Small 11, 694–701 (2015).
[Crossref]

Surf. Sci. (1)

S. Salehi and A. Saffarzadeh, “Atomic defect states in monolayers of MoS2 and WS2,” Surf. Sci. 651, 215–221 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Concentrations of MoS2 dispersion at different rotation speeds with related optical images inserted. (b) Tauc plot of MoS2 dispersions. (c) Size and height of MoS2 dispersions at different rotation speeds. (d), (g) AFM image and height profile of MoS2 at 2000 rpm. (e), (h) AFM image and height profile of  MoS2 at 4000 rpm. (f), (i) AFM image and height profile of MoS2 at 6000 rpm. The number indicates the different nanosheet.
Fig. 2.
Fig. 2. Representative TEM images of MoS2 dispersions at (a) 0, (b) 2000, (c) 4000, (d) 6000, and (e) 8000 rpm. (f) High-resolution TEM image of MoS2 nanosheet at 6000 rpm. (g) TEM image of ultrathin layer of MoS2 defect at 8000 rpm; elemental mapping of (h) Mo (i) S.
Fig. 3.
Fig. 3. (a) High-resolution XPS spectra of MoS2 films. (b) XRD patterns of MoS2 films. (c) Raman spectra of MoS2 films. (d) Raman shift of E2g1 and A1g. (e) UV-Vis absorption spectra of MoS2 films. (f) Tauc plot obtained from UV-Vis absorption spectra of MoS2 films with an increase in centrifugation speed.
Fig. 4.
Fig. 4. Open-aperture Z-scan results of MoS2 dispersions (a) at 0 rpm with different pulse energies, (b) at 6000 rpm with different pulse energies, and (c) at different rotation speeds. Z-scan results of MoS2 films (d) at 8000 rpm and different pulse energies, at different rotation speeds (e) with 45 nm thickness and (f) 75 nm thickness.
Fig. 5.
Fig. 5. (a) Calculated results of α0 (red dot) and βeff (blue square), respectively. (b) Imχ(3) and FOM from MoS2 dispersions in red dot and blue square, respectively. (c) Measured α0 (red dot) and βeff (blue square). (d) Imχ(3) and FOM from films with different sizes, which are shown using red dot and blue square, respectively.
Fig. 6.
Fig. 6. Band structure and DOS results for monolayer MoS2: (a) perfect; (b) with monosulfur vacancy; and (c) with disulfur vacancy.
Fig. 7.
Fig. 7. (a) Three-energy-level model of few or few-defect MoS2. (b) Three-energy-level model combined with defect state of S vacancies in MoS2. (c) Three-defect-energy-level diagram at a high concentration of S vacancies in MoS2. Fitting results of (d) MoS2 dispersions at different rotation speeds, MoS2 films (e) with 45 nm thickness and (f) with 75 nm thickness.

Tables (1)

Tables Icon

Table 1. Parameters of MoS2 Dispersions and Films

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

α(I)=α01+(I/Is)+βeffI,
Imχ(3)(esu)=(107cλn296π2)βeff,
dIdz=α(I)I.
dN0dt=N0σ0Ihν+N1τ0,
dN1dt=N0σ0IhνN1τ0,
dIdz=σ0N0Iσ1N1I,
N=N0+N1.
dN0dt=N0σ0IhνN0σ2Ihν+N1τ0+Ndτ2,
dN1dt=N0σ0Ihν+Ndσ3IhνN1τ0N1τ1,
dNddt=N0σ2IhνNdσ3Ihν+N1τ1Ndτ2,
N=N0+N1+Nd.
dN0dt=N0σ2Ihν+Ndτ2,
dNddt=N0σ2IhνNdσ3Ihν+N1τ1Ndτ2,
dN1dt=Ndσ3IhνN1τ1,
N=N0+N1+Nd.