Abstract

The electronic paper (E-paper) displays features such as flexibility, sunlight visibility, and low power consumption, which makes it ideal for Internet of Things (IoT) applications where the goal is to eliminate bulky power modules. Here, we report a unique self-powered E-paper (SPEP), where information inputs and energy supplies are all converted from mechanical motion by a triboelectric nanogenerator (TENG). The operation of an electrophoretic E-paper is first investigated, identifying the current density as a determinative parameter for driving pigment particle motion and color change. Electrical and optical responses of the E-paper driven by a sliding-mode TENG are then found to be consistent with that under a current source mode. All-in-one monochromic and chromatic SPEPs integrated with a flexible transparent TENG are finally demonstrated, and a pixelated SPEP is discussed for future research. The sliding-driven mechanism of SPEP allows for a potential handwriting function, is free of an extra power supply, and promises undoubtedly a wide range of future applications.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite

Yifan Li, Yating Zhang, Zhiliang Chen, Qingyan Li, Tengteng Li, Mengyao Li, Hongliang Zhao, Quan Sheng, Wei Shi, and Jianquan Yao
Photon. Res. 8(8) 1301-1308 (2020)

Optimizing an interleaved p-n junction to reduce energy dissipation in silicon slow-light modulators

Marco Passoni, Dario Gerace, Liam O’Faolain, and Lucio Claudio Andreani
Photon. Res. 8(4) 457-467 (2020)

Laser-induced rotary micromotor with high energy conversion efficiency

Yu Zhang, Siyu Lin, Zhihai Liu, Yaxun Zhang, Jianzhong Zhang, Jun Yang, and Libo Yuan
Photon. Res. 8(4) 534-538 (2020)

References

  • View by:
  • |
  • |
  • |

  1. Z. L. Wang, “On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators,” Mater. Today 20, 74–82 (2017).
    [Crossref]
  2. Z. L. Wang, “Entropy theory of distributed energy for internet of things,” Nano Energy 58, 669–672 (2019).
    [Crossref]
  3. J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review paper: a critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Display 19, 129–156 (2011).
    [Crossref]
  4. P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, and H. Z. Chen, “CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays,” J. Mater. Chem. C 1, 843–849 (2013).
    [Crossref]
  5. I. D. Morrison, “Electrical charges in nonaqueous media,” Colloid Surf. A 71, 1–37 (1993).
    [Crossref]
  6. Y. Rong, H. Z. Chen, H. Y. Li, and M. Wang, “Encapsulation of titanium dioxide particles by polystyrene via radical polymerization,” Colloid Surf. A 253, 193–197 (2005).
    [Crossref]
  7. C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, and F. Beunis, “Single charging events on colloidal particles in a nonpolar liquid with surfactant,” J. Appl. Phys. 123, 015105 (2018).
    [Crossref]
  8. W.-C. Kao, W.-T. Chang, and J.-A. Ye, “Driving waveform design based on response latency analysis of electrophoretic displays,” J. Display Technol. 8, 596–601 (2012).
    [Crossref]
  9. W. C. Kao and J. C. Tsai, “Driving method of three-particle electrophoretic displays,” IEEE Trans. Electron Devices 65, 1023–1028 (2018).
    [Crossref]
  10. S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
    [Crossref]
  11. M. Wang, C. Lin, H. Du, H. Zang, and M. McCreary, “59.1: Invited paper: electrophoretic display platform comprising B, W, R particles,” SID Symposium Digest of Technical Papers 45, 857–860 (2014).
    [Crossref]
  12. F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, “Flexible triboelectric generator,” Nano Energy 1, 328–334 (2012).
    [Crossref]
  13. Z. L. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS Nano 7, 9533–9557 (2013).
    [Crossref]
  14. H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia, and Z. L. Wang, “Piezoelectric and triboelectric nanogenerators: trends and impacts,” Nano Today 22, 10–13 (2018).
    [Crossref]
  15. Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, “Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,” ACS Nano 10, 4797–4805 (2016).
    [Crossref]
  16. Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
    [Crossref]
  17. J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
    [Crossref]
  18. R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
    [Crossref]
  19. Q. Shi, Z. Zhang, T. Chen, and C. Lee, “Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch,” Nano Energy 62, 355–366 (2019).
    [Crossref]
  20. F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
    [Crossref]
  21. D. W. Kim, S.-W. Kim, and U. Jeong, “Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting,” Adv. Mater. 30, 1804949 (2018).
    [Crossref]
  22. W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
    [Crossref]
  23. M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
    [Crossref]
  24. X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
    [Crossref]
  25. F. R. Fan, W. Tang, and Z. L. Wang, “Flexible nanogenerators for energy harvesting and self-powered electronics,” Adv. Mater. 28, 4283–4305 (2016).
    [Crossref]
  26. K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
    [Crossref]
  27. Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
    [Crossref]
  28. T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
    [Crossref]
  29. G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
    [Crossref]
  30. M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
    [Crossref]
  31. W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
    [Crossref]
  32. C. Garcia, I. Trendafilova, and J. Sanchez del Rio, “Detection and measurement of impacts in composite structures using a self-powered triboelectric sensor,” Nano Energy 56, 443–453 (2019).
    [Crossref]
  33. S. Parandeh, M. Kharaziha, and F. Karimzadeh, “An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper,” Nano Energy 59, 412–421 (2019).
    [Crossref]
  34. L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, and S. Soh, “Controlling surface charge generated by contact electrification: strategies and applications,” Adv. Mater. 30, 1802405 (2018).
    [Crossref]
  35. F. Ershad, K. Sim, A. Thukral, Y. S. Zhang, and C. Yu, “Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment,” APL Mater. 7, 031301 (2019).
    [Crossref]
  36. Q. Shi, T. He, and C. Lee, “More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems,” Nano Energy 57, 851–871 (2019).
    [Crossref]
  37. H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
    [Crossref]
  38. X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
    [Crossref]
  39. X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
    [Crossref]
  40. Z. L. Wang, J. Chen, and L. Lin, “Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors,” Energy Environ. Sci. 8, 2250–2282 (2015).
    [Crossref]
  41. T. Bert, F. Beunis, H. D. Smet, and K. Neyts, “Steady state current in EPIDs,” Displays 27, 35–38 (2006).
    [Crossref]
  42. R. M. Webber, “10.4: Image stability in active-matrix microencapsulated electrophoretic displays,” SID Symposium Digest of Technical Papers 33, 126–129 (2002).
    [Crossref]
  43. C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, “Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy,” Adv. Mater. 26, 3580–3591 (2014).
    [Crossref]
  44. T. Bert and H. De Smet, “The microscopic physics of electronic paper revealed,” Displays 24, 103–110 (2003).
    [Crossref]
  45. S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
    [Crossref]
  46. X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
    [Crossref]
  47. Z. L. Wang and A. C. Wang, “On the origin of contact-electrification,” Mater. Today30, 34–51 (2019).
    [Crossref]

2019 (14)

Z. L. Wang, “Entropy theory of distributed energy for internet of things,” Nano Energy 58, 669–672 (2019).
[Crossref]

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
[Crossref]

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
[Crossref]

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

C. Garcia, I. Trendafilova, and J. Sanchez del Rio, “Detection and measurement of impacts in composite structures using a self-powered triboelectric sensor,” Nano Energy 56, 443–453 (2019).
[Crossref]

S. Parandeh, M. Kharaziha, and F. Karimzadeh, “An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper,” Nano Energy 59, 412–421 (2019).
[Crossref]

F. Ershad, K. Sim, A. Thukral, Y. S. Zhang, and C. Yu, “Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment,” APL Mater. 7, 031301 (2019).
[Crossref]

Q. Shi, T. He, and C. Lee, “More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems,” Nano Energy 57, 851–871 (2019).
[Crossref]

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
[Crossref]

Q. Shi, Z. Zhang, T. Chen, and C. Lee, “Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch,” Nano Energy 62, 355–366 (2019).
[Crossref]

2018 (9)

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

D. W. Kim, S.-W. Kim, and U. Jeong, “Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting,” Adv. Mater. 30, 1804949 (2018).
[Crossref]

L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, and S. Soh, “Controlling surface charge generated by contact electrification: strategies and applications,” Adv. Mater. 30, 1802405 (2018).
[Crossref]

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, and F. Beunis, “Single charging events on colloidal particles in a nonpolar liquid with surfactant,” J. Appl. Phys. 123, 015105 (2018).
[Crossref]

W. C. Kao and J. C. Tsai, “Driving method of three-particle electrophoretic displays,” IEEE Trans. Electron Devices 65, 1023–1028 (2018).
[Crossref]

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia, and Z. L. Wang, “Piezoelectric and triboelectric nanogenerators: trends and impacts,” Nano Today 22, 10–13 (2018).
[Crossref]

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
[Crossref]

2017 (2)

Z. L. Wang, “On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators,” Mater. Today 20, 74–82 (2017).
[Crossref]

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

2016 (6)

F. R. Fan, W. Tang, and Z. L. Wang, “Flexible nanogenerators for energy harvesting and self-powered electronics,” Adv. Mater. 28, 4283–4305 (2016).
[Crossref]

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, “Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,” ACS Nano 10, 4797–4805 (2016).
[Crossref]

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

2015 (1)

Z. L. Wang, J. Chen, and L. Lin, “Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors,” Energy Environ. Sci. 8, 2250–2282 (2015).
[Crossref]

2014 (3)

C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, “Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy,” Adv. Mater. 26, 3580–3591 (2014).
[Crossref]

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

M. Wang, C. Lin, H. Du, H. Zang, and M. McCreary, “59.1: Invited paper: electrophoretic display platform comprising B, W, R particles,” SID Symposium Digest of Technical Papers 45, 857–860 (2014).
[Crossref]

2013 (3)

Z. L. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS Nano 7, 9533–9557 (2013).
[Crossref]

P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, and H. Z. Chen, “CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays,” J. Mater. Chem. C 1, 843–849 (2013).
[Crossref]

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
[Crossref]

2012 (2)

2011 (1)

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review paper: a critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Display 19, 129–156 (2011).
[Crossref]

2006 (1)

T. Bert, F. Beunis, H. D. Smet, and K. Neyts, “Steady state current in EPIDs,” Displays 27, 35–38 (2006).
[Crossref]

2005 (1)

Y. Rong, H. Z. Chen, H. Y. Li, and M. Wang, “Encapsulation of titanium dioxide particles by polystyrene via radical polymerization,” Colloid Surf. A 253, 193–197 (2005).
[Crossref]

2003 (1)

T. Bert and H. De Smet, “The microscopic physics of electronic paper revealed,” Displays 24, 103–110 (2003).
[Crossref]

2002 (1)

R. M. Webber, “10.4: Image stability in active-matrix microencapsulated electrophoretic displays,” SID Symposium Digest of Technical Papers 33, 126–129 (2002).
[Crossref]

1993 (1)

I. D. Morrison, “Electrical charges in nonaqueous media,” Colloid Surf. A 71, 1–37 (1993).
[Crossref]

Anaya, D. V.

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Askari, H.

H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia, and Z. L. Wang, “Piezoelectric and triboelectric nanogenerators: trends and impacts,” Nano Today 22, 10–13 (2018).
[Crossref]

Bert, T.

T. Bert, F. Beunis, H. D. Smet, and K. Neyts, “Steady state current in EPIDs,” Displays 27, 35–38 (2006).
[Crossref]

T. Bert and H. De Smet, “The microscopic physics of electronic paper revealed,” Displays 24, 103–110 (2003).
[Crossref]

Beunis, F.

C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, and F. Beunis, “Single charging events on colloidal particles in a nonpolar liquid with surfactant,” J. Appl. Phys. 123, 015105 (2018).
[Crossref]

T. Bert, F. Beunis, H. D. Smet, and K. Neyts, “Steady state current in EPIDs,” Displays 27, 35–38 (2006).
[Crossref]

Brans, T.

C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, and F. Beunis, “Single charging events on colloidal particles in a nonpolar liquid with surfactant,” J. Appl. Phys. 123, 015105 (2018).
[Crossref]

Byun, K.-E.

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Cai, G.

K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
[Crossref]

Chandrasekhar, A.

G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
[Crossref]

Chang, W.-T.

Chen, H. Z.

P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, and H. Z. Chen, “CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays,” J. Mater. Chem. C 1, 843–849 (2013).
[Crossref]

Y. Rong, H. Z. Chen, H. Y. Li, and M. Wang, “Encapsulation of titanium dioxide particles by polystyrene via radical polymerization,” Colloid Surf. A 253, 193–197 (2005).
[Crossref]

Chen, J.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Z. L. Wang, J. Chen, and L. Lin, “Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors,” Energy Environ. Sci. 8, 2250–2282 (2015).
[Crossref]

Chen, L.

L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, and S. Soh, “Controlling surface charge generated by contact electrification: strategies and applications,” Adv. Mater. 30, 1802405 (2018).
[Crossref]

Chen, T.

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Q. Shi, Z. Zhang, T. Chen, and C. Lee, “Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch,” Nano Energy 62, 355–366 (2019).
[Crossref]

Chen, X.

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
[Crossref]

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

Chen, X. Q.

P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, and H. Z. Chen, “CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays,” J. Mater. Chem. C 1, 843–849 (2013).
[Crossref]

Chen, Y.

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

Cheng, J.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Cho, Y.

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Choi, E.-K.

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
[Crossref]

Cong, Z.

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

Cui, P.

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
[Crossref]

Dai, J.

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

De Smet, H.

T. Bert and H. De Smet, “The microscopic physics of electronic paper revealed,” Displays 24, 103–110 (2003).
[Crossref]

Dong, G.

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

Drzaic, P.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review paper: a critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Display 19, 129–156 (2011).
[Crossref]

Du, C.

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

Du, H.

M. Wang, C. Lin, H. Du, H. Zang, and M. McCreary, “59.1: Invited paper: electrophoretic display platform comprising B, W, R particles,” SID Symposium Digest of Technical Papers 45, 857–860 (2014).
[Crossref]

Ershad, F.

F. Ershad, K. Sim, A. Thukral, Y. S. Zhang, and C. Yu, “Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment,” APL Mater. 7, 031301 (2019).
[Crossref]

Fan, F.

C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, “Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy,” Adv. Mater. 26, 3580–3591 (2014).
[Crossref]

Fan, F. R.

F. R. Fan, W. Tang, and Z. L. Wang, “Flexible nanogenerators for energy harvesting and self-powered electronics,” Adv. Mater. 28, 4283–4305 (2016).
[Crossref]

Fan, F.-R.

F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, “Flexible triboelectric generator,” Nano Energy 1, 328–334 (2012).
[Crossref]

Fang, H.

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

Garcia, C.

C. Garcia, I. Trendafilova, and J. Sanchez del Rio, “Detection and measurement of impacts in composite structures using a self-powered triboelectric sensor,” Nano Energy 56, 443–453 (2019).
[Crossref]

Gong, W.

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

Gong, Y. X.

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

Guo, H.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, “Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,” ACS Nano 10, 4797–4805 (2016).
[Crossref]

Guo, W.

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

Guo, Y.

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

Gupta, S. C.

G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
[Crossref]

Han, C.

C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, “Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy,” Adv. Mater. 26, 3580–3591 (2014).
[Crossref]

He, T.

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Q. Shi, T. He, and C. Lee, “More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems,” Nano Energy 57, 851–871 (2019).
[Crossref]

Heikenfeld, J.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review paper: a critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Display 19, 129–156 (2011).
[Crossref]

Hinchet, R.

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
[Crossref]

Hou, C.

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

Hu, C.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, “Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,” ACS Nano 10, 4797–4805 (2016).
[Crossref]

Hu, W.

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

Hu, Y.

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
[Crossref]

Hua, Q.

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

Huang, X.

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

Jeong, U.

D. W. Kim, S.-W. Kim, and U. Jeong, “Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting,” Adv. Mater. 30, 1804949 (2018).
[Crossref]

Jia, Z.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Jiang, C.

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

Jiang, L.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Jin, M. L.

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

Jing, Q.

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

Kao, W. C.

W. C. Kao and J. C. Tsai, “Driving method of three-particle electrophoretic displays,” IEEE Trans. Electron Devices 65, 1023–1028 (2018).
[Crossref]

Kao, W.-C.

Karimzadeh, F.

S. Parandeh, M. Kharaziha, and F. Karimzadeh, “An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper,” Nano Energy 59, 412–421 (2019).
[Crossref]

Khajepour, A.

H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia, and Z. L. Wang, “Piezoelectric and triboelectric nanogenerators: trends and impacts,” Nano Today 22, 10–13 (2018).
[Crossref]

Khamesee, M. B.

H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia, and Z. L. Wang, “Piezoelectric and triboelectric nanogenerators: trends and impacts,” Nano Today 22, 10–13 (2018).
[Crossref]

Khandelwal, G.

G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
[Crossref]

Kharaziha, M.

S. Parandeh, M. Kharaziha, and F. Karimzadeh, “An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper,” Nano Energy 59, 412–421 (2019).
[Crossref]

Kim, D. W.

D. W. Kim, S.-W. Kim, and U. Jeong, “Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting,” Adv. Mater. 30, 1804949 (2018).
[Crossref]

Kim, D.-S.

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
[Crossref]

Kim, H.

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Kim, J.

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Kim, M.-K.

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
[Crossref]

Kim, S.

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Kim, S. K.

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Kim, S.-J.

G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
[Crossref]

Kim, S.-W.

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
[Crossref]

D. W. Kim, S.-W. Kim, and U. Jeong, “Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting,” Adv. Mater. 30, 1804949 (2018).
[Crossref]

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Koch, T.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review paper: a critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Display 19, 129–156 (2011).
[Crossref]

Kuang, S.

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

Kuang, S. Y.

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Lee, C.

Q. Shi, T. He, and C. Lee, “More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems,” Nano Energy 57, 851–871 (2019).
[Crossref]

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Q. Shi, Z. Zhang, T. Chen, and C. Lee, “Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch,” Nano Energy 62, 355–366 (2019).
[Crossref]

L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, and S. Soh, “Controlling surface charge generated by contact electrification: strategies and applications,” Adv. Mater. 30, 1802405 (2018).
[Crossref]

Lee, P. S.

K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
[Crossref]

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
[Crossref]

Li, H. Y.

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Y. Rong, H. Z. Chen, H. Y. Li, and M. Wang, “Encapsulation of titanium dioxide particles by polystyrene via radical polymerization,” Colloid Surf. A 253, 193–197 (2005).
[Crossref]

Li, J.

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

Li, Q.

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

Li, S.

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Li, T.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Li, Y.

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

Liang, Z.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Liao, Q.

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Lin, C.

M. Wang, C. Lin, H. Du, H. Zang, and M. McCreary, “59.1: Invited paper: electrophoretic display platform comprising B, W, R particles,” SID Symposium Digest of Technical Papers 45, 857–860 (2014).
[Crossref]

Lin, L.

Z. L. Wang, J. Chen, and L. Lin, “Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors,” Energy Environ. Sci. 8, 2250–2282 (2015).
[Crossref]

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
[Crossref]

Lin, M.-F.

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
[Crossref]

Liu, G.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Liu, L.

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

Liu, M.

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

Liu, W.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Liu, Y.

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
[Crossref]

Maria Joseph Raj, N. P.

G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
[Crossref]

McCreary, M.

M. Wang, C. Lin, H. Du, H. Zang, and M. McCreary, “59.1: Invited paper: electrophoretic display platform comprising B, W, R particles,” SID Symposium Digest of Technical Papers 45, 857–860 (2014).
[Crossref]

Minocha, T.

G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
[Crossref]

Morrison, I. D.

I. D. Morrison, “Electrical charges in nonaqueous media,” Colloid Surf. A 71, 1–37 (1993).
[Crossref]

Neyts, K.

C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, and F. Beunis, “Single charging events on colloidal particles in a nonpolar liquid with surfactant,” J. Appl. Phys. 123, 015105 (2018).
[Crossref]

T. Bert, F. Beunis, H. D. Smet, and K. Neyts, “Steady state current in EPIDs,” Displays 27, 35–38 (2006).
[Crossref]

Nguyen, T.

L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, and S. Soh, “Controlling surface charge generated by contact electrification: strategies and applications,” Adv. Mater. 30, 1802405 (2018).
[Crossref]

Niu, S.

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
[Crossref]

Pan, C.

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Parandeh, S.

S. Parandeh, M. Kharaziha, and F. Karimzadeh, “An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper,” Nano Energy 59, 412–421 (2019).
[Crossref]

Parida, K.

K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
[Crossref]

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
[Crossref]

Park, S.

K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
[Crossref]

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Peng, M.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Pu, X.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

Qin, W. L.

P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, and H. Z. Chen, “CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays,” J. Mater. Chem. C 1, 843–849 (2013).
[Crossref]

Ren, T.-L.

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

Rong, Y.

Y. Rong, H. Z. Chen, H. Y. Li, and M. Wang, “Encapsulation of titanium dioxide particles by polystyrene via radical polymerization,” Colloid Surf. A 253, 193–197 (2005).
[Crossref]

Ryu, H.

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
[Crossref]

Saadatnia, Z.

H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia, and Z. L. Wang, “Piezoelectric and triboelectric nanogenerators: trends and impacts,” Nano Today 22, 10–13 (2018).
[Crossref]

Sanchez del Rio, J.

C. Garcia, I. Trendafilova, and J. Sanchez del Rio, “Detection and measurement of impacts in composite structures using a self-powered triboelectric sensor,” Nano Energy 56, 443–453 (2019).
[Crossref]

Schreuer, C.

C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, and F. Beunis, “Single charging events on colloidal particles in a nonpolar liquid with surfactant,” J. Appl. Phys. 123, 015105 (2018).
[Crossref]

Seol, M.

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Shen, S. T.

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

Shi, D.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Shi, Q.

Q. Shi, Z. Zhang, T. Chen, and C. Lee, “Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch,” Nano Energy 62, 355–366 (2019).
[Crossref]

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Q. Shi, T. He, and C. Lee, “More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems,” Nano Energy 57, 851–871 (2019).
[Crossref]

L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, and S. Soh, “Controlling surface charge generated by contact electrification: strategies and applications,” Adv. Mater. 30, 1802405 (2018).
[Crossref]

Shin, H.-J.

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

Shui, L. L.

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

Sim, K.

F. Ershad, K. Sim, A. Thukral, Y. S. Zhang, and C. Yu, “Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment,” APL Mater. 7, 031301 (2019).
[Crossref]

Smet, H. D.

T. Bert, F. Beunis, H. D. Smet, and K. Neyts, “Steady state current in EPIDs,” Displays 27, 35–38 (2006).
[Crossref]

Soh, S.

L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, and S. Soh, “Controlling surface charge generated by contact electrification: strategies and applications,” Adv. Mater. 30, 1802405 (2018).
[Crossref]

Song, W.

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

Strubbe, F.

C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, and F. Beunis, “Single charging events on colloidal particles in a nonpolar liquid with surfactant,” J. Appl. Phys. 123, 015105 (2018).
[Crossref]

Su, L.

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Sun, C.

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

Sun, J.

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

Sun, Y.

L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, and S. Soh, “Controlling surface charge generated by contact electrification: strategies and applications,” Adv. Mater. 30, 1802405 (2018).
[Crossref]

Sun, Z.

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Tang, W.

F. R. Fan, W. Tang, and Z. L. Wang, “Flexible nanogenerators for energy harvesting and self-powered electronics,” Adv. Mater. 28, 4283–4305 (2016).
[Crossref]

C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, “Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy,” Adv. Mater. 26, 3580–3591 (2014).
[Crossref]

Thangavel, G.

K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
[Crossref]

Thean, A. V.-Y.

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Thukral, A.

F. Ershad, K. Sim, A. Thukral, Y. S. Zhang, and C. Yu, “Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment,” APL Mater. 7, 031301 (2019).
[Crossref]

Tian, H.

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

Tian, Z.-Q.

F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, “Flexible triboelectric generator,” Nano Energy 1, 328–334 (2012).
[Crossref]

Trendafilova, I.

C. Garcia, I. Trendafilova, and J. Sanchez del Rio, “Detection and measurement of impacts in composite structures using a self-powered triboelectric sensor,” Nano Energy 56, 443–453 (2019).
[Crossref]

Tsai, J. C.

W. C. Kao and J. C. Tsai, “Driving method of three-particle electrophoretic displays,” IEEE Trans. Electron Devices 65, 1023–1028 (2018).
[Crossref]

Vandewiele, S.

C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, and F. Beunis, “Single charging events on colloidal particles in a nonpolar liquid with surfactant,” J. Appl. Phys. 123, 015105 (2018).
[Crossref]

Wang, A. C.

Z. L. Wang and A. C. Wang, “On the origin of contact-electrification,” Mater. Today30, 34–51 (2019).
[Crossref]

Wang, G.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Wang, H.

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

Wang, H. L.

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

Wang, J.

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
[Crossref]

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Wang, M.

M. Wang, C. Lin, H. Du, H. Zang, and M. McCreary, “59.1: Invited paper: electrophoretic display platform comprising B, W, R particles,” SID Symposium Digest of Technical Papers 45, 857–860 (2014).
[Crossref]

P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, and H. Z. Chen, “CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays,” J. Mater. Chem. C 1, 843–849 (2013).
[Crossref]

Y. Rong, H. Z. Chen, H. Y. Li, and M. Wang, “Encapsulation of titanium dioxide particles by polystyrene via radical polymerization,” Colloid Surf. A 253, 193–197 (2005).
[Crossref]

Wang, S.

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
[Crossref]

Wang, X.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Wang, Y.

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Wang, Z.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Wang, Z. L.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

Z. L. Wang, “Entropy theory of distributed energy for internet of things,” Nano Energy 58, 669–672 (2019).
[Crossref]

H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia, and Z. L. Wang, “Piezoelectric and triboelectric nanogenerators: trends and impacts,” Nano Today 22, 10–13 (2018).
[Crossref]

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

Z. L. Wang, “On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators,” Mater. Today 20, 74–82 (2017).
[Crossref]

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

F. R. Fan, W. Tang, and Z. L. Wang, “Flexible nanogenerators for energy harvesting and self-powered electronics,” Adv. Mater. 28, 4283–4305 (2016).
[Crossref]

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, “Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,” ACS Nano 10, 4797–4805 (2016).
[Crossref]

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Z. L. Wang, J. Chen, and L. Lin, “Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors,” Energy Environ. Sci. 8, 2250–2282 (2015).
[Crossref]

C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, “Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy,” Adv. Mater. 26, 3580–3591 (2014).
[Crossref]

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

Z. L. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS Nano 7, 9533–9557 (2013).
[Crossref]

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
[Crossref]

F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, “Flexible triboelectric generator,” Nano Energy 1, 328–334 (2012).
[Crossref]

Z. L. Wang and A. C. Wang, “On the origin of contact-electrification,” Mater. Today30, 34–51 (2019).
[Crossref]

Webber, R. M.

R. M. Webber, “10.4: Image stability in active-matrix microencapsulated electrophoretic displays,” SID Symposium Digest of Technical Papers 33, 126–129 (2002).
[Crossref]

Wei, X. Y.

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Wen, Z.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, “Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,” ACS Nano 10, 4797–4805 (2016).
[Crossref]

Wu, G.

P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, and H. Z. Chen, “CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays,” J. Mater. Chem. C 1, 843–849 (2013).
[Crossref]

Wu, Z.

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

Xi, Y.

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

Xie, L.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Xie, Y.

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

Xiong, J.

K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
[Crossref]

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
[Crossref]

Xu, C.

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

Xu, M.

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Xu, Y.

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Yadav, S. K.

G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
[Crossref]

Yan, Q.

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

Yan, Z. B.

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

Yang, J.

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

Ye, J.-A.

Yeh, M.-H.

Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, “Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,” ACS Nano 10, 4797–4805 (2016).
[Crossref]

Yeo, J.-S.

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review paper: a critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Display 19, 129–156 (2011).
[Crossref]

Yi, F.

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Yi, Z. C.

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

Yin, P. P.

P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, and H. Z. Chen, “CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays,” J. Mater. Chem. C 1, 843–849 (2013).
[Crossref]

Yoon, H.-J.

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
[Crossref]

You, Z.

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Yu, C.

F. Ershad, K. Sim, A. Thukral, Y. S. Zhang, and C. Yu, “Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment,” APL Mater. 7, 031301 (2019).
[Crossref]

Yuce, M. R.

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Zang, H.

M. Wang, C. Lin, H. Du, H. Zang, and M. McCreary, “59.1: Invited paper: electrophoretic display platform comprising B, W, R particles,” SID Symposium Digest of Technical Papers 45, 857–860 (2014).
[Crossref]

Zeng, H.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Zhai, J.

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

Zhang, C.

C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, “Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy,” Adv. Mater. 26, 3580–3591 (2014).
[Crossref]

Zhang, P.

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

Zhang, Q.

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

Zhang, W.

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

Zhang, Y.

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Zhang, Y. S.

F. Ershad, K. Sim, A. Thukral, Y. S. Zhang, and C. Yu, “Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment,” APL Mater. 7, 031301 (2019).
[Crossref]

Zhang, Z.

Q. Shi, Z. Zhang, T. Chen, and C. Lee, “Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch,” Nano Energy 62, 355–366 (2019).
[Crossref]

Zhao, B.

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

Zhou, G. F.

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

Zhou, J.

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

Zhou, X.

K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
[Crossref]

Zhou, Y. S.

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
[Crossref]

Zhu, G.

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

Zhu, M.

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

Zhu, X.

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

Zi, Y.

Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, “Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,” ACS Nano 10, 4797–4805 (2016).
[Crossref]

Zou, D.

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

ACS Nano (4)

Z. L. Wang, “Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,” ACS Nano 7, 9533–9557 (2013).
[Crossref]

Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, “Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,” ACS Nano 10, 4797–4805 (2016).
[Crossref]

F. Yi, J. Wang, X. Wang, S. Niu, S. Li, Q. Liao, Y. Xu, Z. You, Y. Zhang, and Z. L. Wang, “Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics,” ACS Nano 10, 6519–6525 (2016).
[Crossref]

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang, Q. Hua, Z. Cong, W. Guo, W. Hu, and Z. L. Wang, “Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification,” ACS Nano 13, 8936–8945 (2019).
[Crossref]

Adv. Energy Mater. (1)

X. Pu, W. Song, M. Liu, C. Sun, C. Du, C. Jiang, X. Huang, D. Zou, W. Hu, and Z. L. Wang, “Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells,” Adv. Energy Mater. 6, 1601048 (2016).
[Crossref]

Adv. Mater. (9)

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou, Y. Hu, and Z. L. Wang, “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater. 25, 6184–6193 (2013).
[Crossref]

X. Y. Wei, X. Wang, S. Y. Kuang, L. Su, H. Y. Li, Y. Wang, C. Pan, Z. L. Wang, and G. Zhu, “Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing,” Adv. Mater. 28, 6656–6664 (2016).
[Crossref]

C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, “Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy,” Adv. Mater. 26, 3580–3591 (2014).
[Crossref]

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, and S. Park, “Triboelectric series of 2D layered materials,” Adv. Mater. 30, 1801210 (2018).
[Crossref]

L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, and S. Soh, “Controlling surface charge generated by contact electrification: strategies and applications,” Adv. Mater. 30, 1802405 (2018).
[Crossref]

D. W. Kim, S.-W. Kim, and U. Jeong, “Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting,” Adv. Mater. 30, 1804949 (2018).
[Crossref]

M. Peng, Z. Wen, L. Xie, J. Cheng, Z. Jia, D. Shi, H. Zeng, B. Zhao, Z. Liang, T. Li, and L. Jiang, “3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience,” Adv. Mater. 31, 1902930 (2019).
[Crossref]

F. R. Fan, W. Tang, and Z. L. Wang, “Flexible nanogenerators for energy harvesting and self-powered electronics,” Adv. Mater. 28, 4283–4305 (2016).
[Crossref]

Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, “Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency,” Adv. Mater. 26, 6599–6607 (2014).
[Crossref]

Adv. Mater. Interfaces (1)

X. Y. Wei, L. Liu, H. L. Wang, S. Y. Kuang, X. Zhu, Z. L. Wang, Y. Zhang, and G. Zhu, “High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination,” Adv. Mater. Interfaces 5, 1701063 (2018).
[Crossref]

APL Mater. (1)

F. Ershad, K. Sim, A. Thukral, Y. S. Zhang, and C. Yu, “Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment,” APL Mater. 7, 031301 (2019).
[Crossref]

Colloid Surf. A (2)

I. D. Morrison, “Electrical charges in nonaqueous media,” Colloid Surf. A 71, 1–37 (1993).
[Crossref]

Y. Rong, H. Z. Chen, H. Y. Li, and M. Wang, “Encapsulation of titanium dioxide particles by polystyrene via radical polymerization,” Colloid Surf. A 253, 193–197 (2005).
[Crossref]

Displays (2)

T. Bert and H. De Smet, “The microscopic physics of electronic paper revealed,” Displays 24, 103–110 (2003).
[Crossref]

T. Bert, F. Beunis, H. D. Smet, and K. Neyts, “Steady state current in EPIDs,” Displays 27, 35–38 (2006).
[Crossref]

Energy Environ. Sci. (1)

Z. L. Wang, J. Chen, and L. Lin, “Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors,” Energy Environ. Sci. 8, 2250–2282 (2015).
[Crossref]

IEEE Trans. Electron Devices (1)

W. C. Kao and J. C. Tsai, “Driving method of three-particle electrophoretic displays,” IEEE Trans. Electron Devices 65, 1023–1028 (2018).
[Crossref]

J. Appl. Phys. (1)

C. Schreuer, S. Vandewiele, T. Brans, F. Strubbe, K. Neyts, and F. Beunis, “Single charging events on colloidal particles in a nonpolar liquid with surfactant,” J. Appl. Phys. 123, 015105 (2018).
[Crossref]

J. Display Technol. (1)

J. Mater. Chem. C (1)

P. P. Yin, G. Wu, W. L. Qin, X. Q. Chen, M. Wang, and H. Z. Chen, “CYM and RGB colored electronic inks based on silica-coated organic pigments for full-color electrophoretic displays,” J. Mater. Chem. C 1, 843–849 (2013).
[Crossref]

J. Soc. Inf. Display (1)

J. Heikenfeld, P. Drzaic, J.-S. Yeo, and T. Koch, “Review paper: a critical review of the present and future prospects for electronic paper,” J. Soc. Inf. Display 19, 129–156 (2011).
[Crossref]

Mater. Today (1)

Z. L. Wang, “On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators,” Mater. Today 20, 74–82 (2017).
[Crossref]

Micromachines (1)

S. T. Shen, Y. X. Gong, M. L. Jin, Z. B. Yan, C. Xu, Z. C. Yi, G. F. Zhou, and L. L. Shui, “Improving electrophoretic particle motion control in electrophoretic displays by eliminating the fringing effect via driving waveform design,” Micromachines 9, 143–154 (2018).
[Crossref]

Nano Energy (9)

Z. L. Wang, “Entropy theory of distributed energy for internet of things,” Nano Energy 58, 669–672 (2019).
[Crossref]

Q. Shi, T. He, and C. Lee, “More than energy harvesting—combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems,” Nano Energy 57, 851–871 (2019).
[Crossref]

H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G. Dong, and Q. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy 20, 48–56 (2016).
[Crossref]

T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, A. V.-Y. Thean, and C. Lee, “Self-powered glove-based intuitive interface for diversified control applications in real/cyber space,” Nano Energy 58, 641–651 (2019).
[Crossref]

G. Khandelwal, T. Minocha, S. K. Yadav, A. Chandrasekhar, N. P. Maria Joseph Raj, S. C. Gupta, and S.-J. Kim, “All edible materials derived biocompatible and biodegradable triboelectric nanogenerator,” Nano Energy 65, 104016 (2019).
[Crossref]

F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, “Flexible triboelectric generator,” Nano Energy 1, 328–334 (2012).
[Crossref]

Q. Shi, Z. Zhang, T. Chen, and C. Lee, “Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch,” Nano Energy 62, 355–366 (2019).
[Crossref]

C. Garcia, I. Trendafilova, and J. Sanchez del Rio, “Detection and measurement of impacts in composite structures using a self-powered triboelectric sensor,” Nano Energy 56, 443–453 (2019).
[Crossref]

S. Parandeh, M. Kharaziha, and F. Karimzadeh, “An eco-friendly triboelectric hybrid nanogenerators based on graphene oxide incorporated polycaprolactone fibers and cellulose paper,” Nano Energy 59, 412–421 (2019).
[Crossref]

Nano Today (1)

H. Askari, A. Khajepour, M. B. Khamesee, Z. Saadatnia, and Z. L. Wang, “Piezoelectric and triboelectric nanogenerators: trends and impacts,” Nano Today 22, 10–13 (2018).
[Crossref]

Nat. Commun. (4)

J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M.-F. Lin, and P. S. Lee, “Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting,” Nat. Commun. 9, 4280 (2018).
[Crossref]

W. Liu, Z. Wang, G. Wang, G. Liu, J. Chen, X. Pu, Y. Xi, X. Wang, H. Guo, C. Hu, and Z. L. Wang, “Integrated charge excitation triboelectric nanogenerator,” Nat. Commun. 10, 1426 (2019).
[Crossref]

K. Parida, G. Thangavel, G. Cai, X. Zhou, S. Park, J. Xiong, and P. S. Lee, “Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator,” Nat. Commun. 10, 2158 (2019).
[Crossref]

W. Gong, C. Hou, J. Zhou, Y. Guo, W. Zhang, Y. Li, Q. Zhang, and H. Wang, “Continuous and scalable manufacture of amphibious energy yarns and textiles,” Nat. Commun. 10, 868 (2019).
[Crossref]

Sci. Adv. (1)

X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, “Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing,” Sci. Adv. 3, e1700015 (2017).
[Crossref]

Science (1)

R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim, and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology,” Science 365, 491–494 (2019).
[Crossref]

SID Symposium Digest of Technical Papers (2)

M. Wang, C. Lin, H. Du, H. Zang, and M. McCreary, “59.1: Invited paper: electrophoretic display platform comprising B, W, R particles,” SID Symposium Digest of Technical Papers 45, 857–860 (2014).
[Crossref]

R. M. Webber, “10.4: Image stability in active-matrix microencapsulated electrophoretic displays,” SID Symposium Digest of Technical Papers 33, 126–129 (2002).
[Crossref]

Other (1)

Z. L. Wang and A. C. Wang, “On the origin of contact-electrification,” Mater. Today30, 34–51 (2019).
[Crossref]

Supplementary Material (4)

NameDescription
» Visualization 1       Observation of pigment particle motions
» Visualization 2       E-paper driven by TENG
» Visualization 3       Driving self-powered E-paper
» Visualization 4       Flexibility of E-paper

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Concept of self-powered E-paper (SPEP). (a) Schematical illustration of an SPEP with handwriting input and its structure in a pixel. (b) Prototype of the chromatic type SPEP before and after one-time color changing. (c) Possible applications of the SPEP in various fields.
Fig. 2.
Fig. 2. Operational characteristics of a monochromic E-paper under the voltage pulse mode. (a) Profiles of driving current, equivalent impedance, and intensity of reflective light during each driving process by a constant voltage. (b) Schematic diagrams of the identified five stages and in situ optical microscopy photos of an individual microcapsule. Profiles of (c) current and (d) equivalent impedance of the E-paper driven by different voltages.
Fig. 3.
Fig. 3. Comparison of the E-paper driven by constant current and voltage sources. V-t and I-t plots of various sizes of E-papers under (a) current source mode and (b) voltage source mode, respectively. The inset photos show their correspondent grayscales. Equivalent electrical circuits and schematic diagrams of the E-paper driven by (c) a constant current source and (d) a constant voltage source are illustrated, respectively.
Fig. 4.
Fig. 4. Characteristics of the sliding-mode TENG and typical responses of the E-paper driven by the TENG. (a) Working mechanism of the sliding-mode TENG and its photo. (b) The output short-circuit current of a TENG. (c) The summarized maximum amplitude of a short-circuit current of TENG with different structural parameters and sliding speeds. (d) The peak current of the TENG at different external loading resistance. (e) The rectified short-circuit current of the TENG. (f) Peak output power of a TENG (w=2  mm and v=0.5  m/s) at different external loading resistance. (g)‒(i) Current (inset is the peak current), voltage (inset is the valley value of voltage), and grayscale change (insets are photos of E-papers) of an E-paper driven by the TENG, respectively. Other than (c), all are measured with TENG parameters of w=2  mm and v=0.5  m/s.
Fig. 5.
Fig. 5. Influential parameters for driving E-papers with the TENG. (a) Grayscale changes of the E-paper driven by TENGs with different electrode widths (v=0.25  m/s, A=12  cm2). (b) Grayscale changes of the E-paper driven by TENGs at different sliding speeds (w=1  mm, A=16  cm2). (c) Grayscale changes of the E-paper with different sizes (w=1  mm, v=0.25  m/s). (d) Photos of grayscale changing of monochromic and chromatic E-papers (A=12  cm2) along with sliding motion times of the TENG.
Fig. 6.
Fig. 6. Self-powered E-paper (SPEP) integrated with a transparent TENG. (a) Schematic illustration of an all-in-one SPEP with a transparent TENG on the top. (b) The rectified short-circuit current of the TENG with hand sliding (w=1  mm). (c) Transmittance and photos (inset) of the transparent TENG. (d) The grayscale changes and inset photos of the SPEP driven by hand sliding. (e) The grayscale of the E-paper before and after bending.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F=is|Zo|qAdE.
ITm=nσvl,
f=v2(d+w).
IEm=DSpixel(qpnpvp+qmnmvm)Spixel,
ITm=nσvlSpixel.

Metrics