M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, “Quantum state tomography across the exceptional point in a single dissipative qubit,” Nat. Phys. 15, 1232–1236 (2019).

[Crossref]

C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, and A. Zeilinger, “Tailored complex potentials and Friedel’s law in atom optics,” Phys. Rev. Lett. 79, 3327–3330 (1997).

[Crossref]

M.-A. Miri and A. Alù, “Exceptional points in optics and photonics,” Science 363, eaar7709 (2019).

[Crossref]

Z. Xiao, H. Li, T. Kottos, and A. Alù, “Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point,” Phys. Rev. Lett. 123, 213901 (2019).

[Crossref]

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1, 297–304 (2018).

[Crossref]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, and I. Rotter, “Effective Hamiltonian for a microwave billiard with attached waveguide,” Phys. Rev. E 65, 066211 (2002).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998).

[Crossref]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennio, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).

[Crossref]

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).

[Crossref]

C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, and A. Zeilinger, “Tailored complex potentials and Friedel’s law in atom optics,” Phys. Rev. Lett. 79, 3327–3330 (1997).

[Crossref]

M. V. Berry, “Physics of nonhermitian degeneracies,” Czech. J. Phys. 54, 1039–1047 (2004).

[Crossref]

M. V. Berry, “Mode degeneracies and the Petermann excess-noise factor for unstable lasers,” J. Mod. Opt. 50, 63–81 (2003).

[Crossref]

M. V. Berry and D. H. J. O’Dell, “Diffraction by volume gratings with imaginary potentials,” J. Phys. A 31, 2093–2101 (1998).

[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[Crossref]

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998).

[Crossref]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering-gallery mode biosensors,” Appl. Phys. Lett. 97, 123704 (2010).

[Crossref]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nat. Nanotechnol. 5, 641–645 (2010).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).

[Crossref]

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).

[Crossref]

Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, and Y.-F. Xiao, “Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems,” Sci. Bull. 63, 1096–1100 (2018).

[Crossref]

H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548, 187–191 (2017).

[Crossref]

G. L. Celardo and L. Kaplan, “Superradiance transition in one-dimensional nanostructures: an effective non-Hermitian Hamiltonian formalism,” Phys. Rev. B 79, 155108 (2009).

[Crossref]

S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T. Chan, “Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators,” Nat. Commun. 10, 832 (2019).

[Crossref]

C. Chen, L. Jin, and R.-B. Liu, “Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system,” New J. Phys. 21, 083002 (2019).

[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).

[Crossref]

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High-performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory Simul. 1, 1800070 (2018).

[Crossref]

J. Liu, L. Chen, and K.-D. Zhu, “Enhanced sensing of non-Newtonian effects at ultrashort range with exceptional points in optomechanical systems,” arXiv:191205732 (2019).

J. Liu, L. Chen, F. He, and K.-D. Zhu, “Gravitational waves detection with exceptional points in micro cavities,” arXiv:2001.09462 (2019).

M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung, and P.-Y. Chen, “Ultrasensitive, parity-time-symmetric wireless reactive and resistive sensors,” IEEE Sens. J. 18, 9548–9555 (2018).

[Crossref]

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1, 297–304 (2018).

[Crossref]

W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor,” Photon. Res. 6, A23–A30 (2018).

[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T. Chan, “Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators,” Nat. Commun. 10, 832 (2019).

[Crossref]

H. Zhao, Z. Chen, R. Zhao, and L. Feng, “Exceptional points engineered glass slide for microscopic thermal mapping,” Nat. Commun. 9, 1764 (2018).

[Crossref]

M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung, and P.-Y. Chen, “Ultrasensitive, parity-time-symmetric wireless reactive and resistive sensors,” IEEE Sens. J. 18, 9548–9555 (2018).

[Crossref]

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1, 297–304 (2018).

[Crossref]

F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, “Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps,” Phys. Rev. A 100, 062131 (2019).

[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).

[Crossref]

J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559 (2017).

[Crossref]

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).

[Crossref]

J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559 (2017).

[Crossref]

H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548, 187–191 (2017).

[Crossref]

A. Hassan, H. Hodaei, W. Hayenga, M. Khajavikhan, and D. Christodoulides, “Enhanced sensitivity in parity-time-symmetric microcavity sensors,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2015), paper SeT4C.3.

Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, and R. El-Ganainy, “Sensing with exceptional surfaces in order to combine sensitivity with robustness,” Phys. Rev. Lett. 122, 153902 (2019).

[Crossref]

M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, and M. Khajavikhan, “Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity,” Nature 576, 70–74 (2019).

[Crossref]

N. A. Mortensen, P. A. D. Gonçalves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis, and C. Wolff, “Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems,” Optica 5, 1342–1346 (2018).

[Crossref]

R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2018).

[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

H.-K. Lau and A. A. Clerk, “Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing,” Nat. Commun. 9, 4320 (2018).

[Crossref]

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1, 297–304 (2018).

[Crossref]

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Encircling an exceptional point,” Phys. Rev. E 69, 056216 (2004).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett. 90, 034101 (2003).

[Crossref]

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86, 787–790 (2001).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer, and C. A. Stafford, “Rabi oscillations at exceptional points in microwave billiards,” Phys. Rev. E 75, 027201 (2007).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Encircling an exceptional point,” Phys. Rev. E 69, 056216 (2004).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett. 90, 034101 (2003).

[Crossref]

Z. Dong, Z. Li, F. Yang, C.-W. Qiu, and J. S. Ho, “Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point,” Nat. Electron. 2, 335–342 (2019).

[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).

[Crossref]

Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, and R. El-Ganainy, “Sensing with exceptional surfaces in order to combine sensitivity with robustness,” Phys. Rev. Lett. 122, 153902 (2019).

[Crossref]

Q. Zhong, S. Nelson, Ş. K. Özdemir, and R. El-Ganainy, “Controlling direction absorption with chiral exceptional surfaces,” Opt. Lett. 44, 5242–5245 (2019).

[Crossref]

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1, 297–304 (2018).

[Crossref]

R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2018).

[Crossref]

L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity-time symmetry,” Nat. Photonics 11, 752–762 (2017).

[Crossref]

H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548, 187–191 (2017).

[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

H. Zhao, Z. Chen, R. Zhao, and L. Feng, “Exceptional points engineered glass slide for microscopic thermal mapping,” Nat. Commun. 9, 1764 (2018).

[Crossref]

L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity-time symmetry,” Nat. Photonics 11, 752–762 (2017).

[Crossref]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nat. Nanotechnol. 5, 641–645 (2010).

[Crossref]

B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer, and C. A. Stafford, “Rabi oscillations at exceptional points in microwave billiards,” Phys. Rev. E 75, 027201 (2007).

[Crossref]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nat. Nanotechnol. 5, 641–645 (2010).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity-time symmetry,” Nat. Photonics 11, 752–762 (2017).

[Crossref]

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).

[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).

[Crossref]

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nat. Nanotechnol. 5, 641–645 (2010).

[Crossref]

Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, and Y.-F. Xiao, “Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems,” Sci. Bull. 63, 1096–1100 (2018).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

M. Goryachev, B. McAllister, and M. E. Tobar, “Probing dark universe with exceptional points,” Phys. Dark Univ. 23, 100244 (2018).

[Crossref]

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Encircling an exceptional point,” Phys. Rev. E 69, 056216 (2004).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett. 90, 034101 (2003).

[Crossref]

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86, 787–790 (2001).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1, 297–304 (2018).

[Crossref]

M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung, and P.-Y. Chen, “Ultrasensitive, parity-time-symmetric wireless reactive and resistive sensors,” IEEE Sens. J. 18, 9548–9555 (2018).

[Crossref]

J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559 (2017).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Encircling an exceptional point,” Phys. Rev. E 69, 056216 (2004).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett. 90, 034101 (2003).

[Crossref]

W. D. Heiss and H. L. Harney, “The chirality of exceptional points,” Eur. Phys. J. D 17, 149–151 (2001).

[Crossref]

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86, 787–790 (2001).

[Crossref]

H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548, 187–191 (2017).

[Crossref]

A. Hassan, H. Hodaei, W. Hayenga, M. Khajavikhan, and D. Christodoulides, “Enhanced sensitivity in parity-time-symmetric microcavity sensors,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2015), paper SeT4C.3.

J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559 (2017).

[Crossref]

A. Hassan, H. Hodaei, W. Hayenga, M. Khajavikhan, and D. Christodoulides, “Enhanced sensitivity in parity-time-symmetric microcavity sensors,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2015), paper SeT4C.3.

J. Liu, L. Chen, F. He, and K.-D. Zhu, “Gravitational waves detection with exceptional points in micro cavities,” arXiv:2001.09462 (2019).

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).

[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).

[Crossref]

J. Zhu, Ş. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18, 23535–23543 (2010).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).

[Crossref]

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6, 24487 (2015).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Encircling an exceptional point,” Phys. Rev. E 69, 056216 (2004).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett. 90, 034101 (2003).

[Crossref]

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86, 787–790 (2001).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Encircling an exceptional point,” Phys. Rev. E 69, 056216 (2004).

[Crossref]

W. D. Heiss, “Exceptional points of non-Hermitian operators,” J. Phys. A 37, 2455–2464 (2004).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett. 90, 034101 (2003).

[Crossref]

W. D. Heiss and H. L. Harney, “The chirality of exceptional points,” Eur. Phys. J. D 17, 149–151 (2001).

[Crossref]

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86, 787–790 (2001).

[Crossref]

W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E 61, 929–932 (2000).

[Crossref]

J. Kullig, M. Yi, C.-H. Hentschel, and J. Wiersig, “Exceptional points of third-order in a layered optical microdisk cavity,” New J. Phys. 20, 083016 (2018).

[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).

[Crossref]

J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).

[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).

[Crossref]

Z. Dong, Z. Li, F. Yang, C.-W. Qiu, and J. S. Ho, “Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point,” Nat. Electron. 2, 335–342 (2019).

[Crossref]

H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548, 187–191 (2017).

[Crossref]

J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559 (2017).

[Crossref]

A. Hassan, H. Hodaei, W. Hayenga, M. Khajavikhan, and D. Christodoulides, “Enhanced sensitivity in parity-time-symmetric microcavity sensors,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2015), paper SeT4C.3.

U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann, “Resonance widths in open microwave cavities studied by harmonic inversion,” Phys. Rev. Lett. 100, 254101 (2008).

[Crossref]

M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, and M. Khajavikhan, “Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity,” Nature 576, 70–74 (2019).

[Crossref]

S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T. Chan, “Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators,” Nat. Commun. 10, 832 (2019).

[Crossref]

C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, and L. Yang, “Electromagnetically induced transparency at a chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

[Crossref]

M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L. Jiang, “Quantum noise theory of exceptional point amplifying sensors,” Phys. Rev. Lett. 123, 180501 (2019).

[Crossref]

J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B. Kanté, “Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing,” Nat. Phys. 16, 462–468 (2020).

[Crossref]

M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung, and P.-Y. Chen, “Ultrasensitive, parity-time-symmetric wireless reactive and resistive sensors,” IEEE Sens. J. 18, 9548–9555 (2018).

[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L. Jiang, “Quantum noise theory of exceptional point amplifying sensors,” Phys. Rev. Lett. 123, 180501 (2019).

[Crossref]

C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, and L. Yang, “Electromagnetically induced transparency at a chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High-performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory Simul. 1, 1800070 (2018).

[Crossref]

C. Chen, L. Jin, and R.-B. Liu, “Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system,” New J. Phys. 21, 083002 (2019).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, “Quantum state tomography across the exceptional point in a single dissipative qubit,” Nat. Phys. 15, 1232–1236 (2019).

[Crossref]

J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B. Kanté, “Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing,” Nat. Phys. 16, 462–468 (2020).

[Crossref]

G. L. Celardo and L. Kaplan, “Superradiance transition in one-dimensional nanostructures: an effective non-Hermitian Hamiltonian formalism,” Phys. Rev. B 79, 155108 (2009).

[Crossref]

T. Kato, Perturbation Theory for Linear Operators (Springer, 1966).

C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, and A. Zeilinger, “Tailored complex potentials and Friedel’s law in atom optics,” Phys. Rev. Lett. 79, 3327–3330 (1997).

[Crossref]

M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, and M. Khajavikhan, “Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity,” Nature 576, 70–74 (2019).

[Crossref]

Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, and R. El-Ganainy, “Sensing with exceptional surfaces in order to combine sensitivity with robustness,” Phys. Rev. Lett. 122, 153902 (2019).

[Crossref]

N. A. Mortensen, P. A. D. Gonçalves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis, and C. Wolff, “Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems,” Optica 5, 1342–1346 (2018).

[Crossref]

R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2018).

[Crossref]

J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559 (2017).

[Crossref]

H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548, 187–191 (2017).

[Crossref]

A. Hassan, H. Hodaei, W. Hayenga, M. Khajavikhan, and D. Christodoulides, “Enhanced sensitivity in parity-time-symmetric microcavity sensors,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2015), paper SeT4C.3.

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

[Crossref]

J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).

[Crossref]

H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, and I. Rotter, “Effective Hamiltonian for a microwave billiard with attached waveguide,” Phys. Rev. E 65, 066211 (2002).

[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).

[Crossref]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering-gallery mode biosensors,” Appl. Phys. Lett. 97, 123704 (2010).

[Crossref]

J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B. Kanté, “Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing,” Nat. Phys. 16, 462–468 (2020).

[Crossref]

Z. Xiao, H. Li, T. Kottos, and A. Alù, “Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point,” Phys. Rev. Lett. 123, 213901 (2019).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann, “Resonance widths in open microwave cavities studied by harmonic inversion,” Phys. Rev. Lett. 100, 254101 (2008).

[Crossref]

H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, and I. Rotter, “Effective Hamiltonian for a microwave billiard with attached waveguide,” Phys. Rev. E 65, 066211 (2002).

[Crossref]

J. Kullig and J. Wiersig, “High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities,” Phys. Rev. A 100, 043837 (2019).

[Crossref]

J. Kullig, M. Yi, C.-H. Hentschel, and J. Wiersig, “Exceptional points of third-order in a layered optical microdisk cavity,” New J. Phys. 20, 083016 (2018).

[Crossref]

H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, and K. Vahala, “Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope,” Nat. Commun. 11, 1610 (2020).

[Crossref]

Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala, “Observation of the exceptional-point-enhanced Sagnac effect,” Nature 576, 65–69 (2019).

[Crossref]

W. Langbein, “No exceptional precision of exceptional-point sensors,” Phys. Rev. A 98, 023805 (2018).

[Crossref]

H.-K. Lau and A. A. Clerk, “Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing,” Nat. Commun. 9, 4320 (2018).

[Crossref]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

[Crossref]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering-gallery mode biosensors,” Appl. Phys. Lett. 97, 123704 (2010).

[Crossref]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

[Crossref]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B. Kanté, “Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing,” Nat. Phys. 16, 462–468 (2020).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

Z. Xiao, H. Li, T. Kottos, and A. Alù, “Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point,” Phys. Rev. Lett. 123, 213901 (2019).

[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).

[Crossref]

C. Zeng, Y. Sun, G. Li, Y. Li, H. Jiang, Y. Yang, and H. Chen, “Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system,” Opt. Express 27, 27562–27572 (2019).

[Crossref]

M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung, and P.-Y. Chen, “Ultrasensitive, parity-time-symmetric wireless reactive and resistive sensors,” IEEE Sens. J. 18, 9548–9555 (2018).

[Crossref]

Z. Dong, Z. Li, F. Yang, C.-W. Qiu, and J. S. Ho, “Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point,” Nat. Electron. 2, 335–342 (2019).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

J. Liu, L. Chen, and K.-D. Zhu, “Enhanced sensing of non-Newtonian effects at ultrashort range with exceptional points in optomechanical systems,” arXiv:191205732 (2019).

J. Liu, L. Chen, F. He, and K.-D. Zhu, “Gravitational waves detection with exceptional points in micro cavities,” arXiv:2001.09462 (2019).

C. Chen, L. Jin, and R.-B. Liu, “Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system,” New J. Phys. 21, 083002 (2019).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennio, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B. Kanté, “Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing,” Nat. Phys. 16, 462–468 (2020).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T. Chan, “Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators,” Nat. Commun. 10, 832 (2019).

[Crossref]

Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala, “Observation of the exceptional-point-enhanced Sagnac effect,” Nature 576, 65–69 (2019).

[Crossref]

Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, and Y.-F. Xiao, “Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems,” Sci. Bull. 63, 1096–1100 (2018).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann, “Resonance widths in open microwave cavities studied by harmonic inversion,” Phys. Rev. Lett. 100, 254101 (2008).

[Crossref]

R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2018).

[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).

[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).

[Crossref]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nat. Nanotechnol. 5, 641–645 (2010).

[Crossref]

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).

[Crossref]

M. Goryachev, B. McAllister, and M. E. Tobar, “Probing dark universe with exceptional points,” Phys. Dark Univ. 23, 100244 (2018).

[Crossref]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering-gallery mode biosensors,” Appl. Phys. Lett. 97, 123704 (2010).

[Crossref]

B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer, and C. A. Stafford, “Rabi oscillations at exceptional points in microwave billiards,” Phys. Rev. E 75, 027201 (2007).

[Crossref]

J. Miller, “Exceptional points make for exceptional sensors,” Phys. Today 70, 23–26 (2017).

[Crossref]

F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, “Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps,” Phys. Rev. A 100, 062131 (2019).

[Crossref]

F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, “Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps,” Phys. Rev. A 100, 062131 (2019).

[Crossref]

M.-A. Miri and A. Alù, “Exceptional points in optics and photonics,” Science 363, eaar7709 (2019).

[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[Crossref]

B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer, and C. A. Stafford, “Rabi oscillations at exceptional points in microwave billiards,” Phys. Rev. E 75, 027201 (2007).

[Crossref]

G. E. Mitchell, A. Richter, and H. A. Weidenmüller, “Random matrices and chaos in nuclear physics: nuclear reactions,” Rev. Mod. Phys. 82, 2845–2901 (2010).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

[Crossref]

C. Wolff, C. Tserkezis, and N. A. Mortensen, “On the time evolution at a fluctuating exceptional point,” Nanophotonics 8, 1319–1326 (2019).

[Crossref]

N. A. Mortensen, P. A. D. Gonçalves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis, and C. Wolff, “Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems,” Optica 5, 1342–1346 (2018).

[Crossref]

M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, “Quantum state tomography across the exceptional point in a single dissipative qubit,” Nat. Phys. 15, 1232–1236 (2019).

[Crossref]

R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2018).

[Crossref]

M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, “Quantum state tomography across the exceptional point in a single dissipative qubit,” Nat. Phys. 15, 1232–1236 (2019).

[Crossref]

J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B. Kanté, “Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing,” Nat. Phys. 16, 462–468 (2020).

[Crossref]

F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, “Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps,” Phys. Rev. A 100, 062131 (2019).

[Crossref]

Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18, 783–798 (2019).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

M. V. Berry and D. H. J. O’Dell, “Diffraction by volume gratings with imaginary potentials,” J. Phys. A 31, 2093–2101 (1998).

[Crossref]

C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, and A. Zeilinger, “Tailored complex potentials and Friedel’s law in atom optics,” Phys. Rev. Lett. 79, 3327–3330 (1997).

[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[Crossref]

Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18, 783–798 (2019).

[Crossref]

Q. Zhong, S. Nelson, Ş. K. Özdemir, and R. El-Ganainy, “Controlling direction absorption with chiral exceptional surfaces,” Opt. Lett. 44, 5242–5245 (2019).

[Crossref]

Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, and R. El-Ganainy, “Sensing with exceptional surfaces in order to combine sensitivity with robustness,” Phys. Rev. Lett. 122, 153902 (2019).

[Crossref]

W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor,” Photon. Res. 6, A23–A30 (2018).

[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).

[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).

[Crossref]

J. Zhu, Ş. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18, 23535–23543 (2010).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).

[Crossref]

J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B. Kanté, “Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing,” Nat. Phys. 16, 462–468 (2020).

[Crossref]

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).

[Crossref]

C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, and L. Yang, “Electromagnetically induced transparency at a chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

[Crossref]

W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor,” Photon. Res. 6, A23–A30 (2018).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, and Y.-F. Xiao, “Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems,” Sci. Bull. 63, 1096–1100 (2018).

[Crossref]

H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, and I. Rotter, “Effective Hamiltonian for a microwave billiard with attached waveguide,” Phys. Rev. E 65, 066211 (2002).

[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[Crossref]

K. Petermann, “Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding,” IEEE J. Quantum Electron. 15, 566–570 (1979).

[Crossref]

Z. Dong, Z. Li, F. Yang, C.-W. Qiu, and J. S. Ho, “Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point,” Nat. Electron. 2, 335–342 (2019).

[Crossref]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nat. Nanotechnol. 5, 641–645 (2010).

[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[Crossref]

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86, 787–790 (2001).

[Crossref]

W. P. Reinhardt, “Complex coordinates in the theory of atomic and molecular structure and dynamics,” Ann. Rev. Phys. Chem. 33, 223–255 (1982).

[Crossref]

Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, and R. El-Ganainy, “Sensing with exceptional surfaces in order to combine sensitivity with robustness,” Phys. Rev. Lett. 122, 153902 (2019).

[Crossref]

J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559 (2017).

[Crossref]

G. E. Mitchell, A. Richter, and H. A. Weidenmüller, “Random matrices and chaos in nuclear physics: nuclear reactions,” Rev. Mod. Phys. 82, 2845–2901 (2010).

[Crossref]

B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer, and C. A. Stafford, “Rabi oscillations at exceptional points in microwave billiards,” Phys. Rev. E 75, 027201 (2007).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Encircling an exceptional point,” Phys. Rev. E 69, 056216 (2004).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett. 90, 034101 (2003).

[Crossref]

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86, 787–790 (2001).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).

[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, and I. Rotter, “Effective Hamiltonian for a microwave billiard with attached waveguide,” Phys. Rev. E 65, 066211 (2002).

[Crossref]

Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18, 783–798 (2019).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).

[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).

[Crossref]

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1, 297–304 (2018).

[Crossref]

M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung, and P.-Y. Chen, “Ultrasensitive, parity-time-symmetric wireless reactive and resistive sensors,” IEEE Sens. J. 18, 9548–9555 (2018).

[Crossref]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nat. Nanotechnol. 5, 641–645 (2010).

[Crossref]

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).

[Crossref]

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).

[Crossref]

B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer, and C. A. Stafford, “Rabi oscillations at exceptional points in microwave billiards,” Phys. Rev. E 75, 027201 (2007).

[Crossref]

S. Scheel and A. Szameit, “PT-symmetric photonic quantum systems with gain and loss do not exit,” Eur. Phys. Lett. 122, 34001 (2018).

[Crossref]

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, and A. Zeilinger, “Tailored complex potentials and Friedel’s law in atom optics,” Phys. Rev. Lett. 79, 3327–3330 (1997).

[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).

[Crossref]

H. Schomerus, “Excess quantum noise due to mode orthogonality in dielectric microresonators,” Phys. Rev. A 79, 061801 (2009).

[Crossref]

M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, and M. Khajavikhan, “Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity,” Nature 576, 70–74 (2019).

[Crossref]

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).

[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).

[Crossref]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).

[Crossref]

A. E. Siegman, “Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers,” Phys. Rev. A 39, 1253–1263 (1989).

[Crossref]

A. E. Siegman, “Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators,” Phys. Rev. A 39, 1264–1268 (1989).

[Crossref]

J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559 (2017).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer, and C. A. Stafford, “Rabi oscillations at exceptional points in microwave billiards,” Phys. Rev. E 75, 027201 (2007).

[Crossref]

U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann, “Resonance widths in open microwave cavities studied by harmonic inversion,” Phys. Rev. Lett. 100, 254101 (2008).

[Crossref]

H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, and I. Rotter, “Effective Hamiltonian for a microwave billiard with attached waveguide,” Phys. Rev. E 65, 066211 (2002).

[Crossref]

C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, and L. Yang, “Electromagnetically induced transparency at a chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

[Crossref]

M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L. Jiang, “Quantum noise theory of exceptional point amplifying sensors,” Phys. Rev. Lett. 123, 180501 (2019).

[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, and K. Vahala, “Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope,” Nat. Commun. 11, 1610 (2020).

[Crossref]

Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala, “Observation of the exceptional-point-enhanced Sagnac effect,” Nature 576, 65–69 (2019).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L. Jiang, “Quantum noise theory of exceptional point amplifying sensors,” Phys. Rev. Lett. 123, 180501 (2019).

[Crossref]

S. Scheel and A. Szameit, “PT-symmetric photonic quantum systems with gain and loss do not exit,” Eur. Phys. Lett. 122, 34001 (2018).

[Crossref]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nat. Nanotechnol. 5, 641–645 (2010).

[Crossref]

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High-performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory Simul. 1, 1800070 (2018).

[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).

[Crossref]

M. Goryachev, B. McAllister, and M. E. Tobar, “Probing dark universe with exceptional points,” Phys. Dark Univ. 23, 100244 (2018).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

C. Wolff, C. Tserkezis, and N. A. Mortensen, “On the time evolution at a fluctuating exceptional point,” Nanophotonics 8, 1319–1326 (2019).

[Crossref]

N. A. Mortensen, P. A. D. Gonçalves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis, and C. Wolff, “Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems,” Optica 5, 1342–1346 (2018).

[Crossref]

H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, and K. Vahala, “Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope,” Nat. Commun. 11, 1610 (2020).

[Crossref]

Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala, “Observation of the exceptional-point-enhanced Sagnac effect,” Nature 576, 65–69 (2019).

[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).

[Crossref]

C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, and L. Yang, “Electromagnetically induced transparency at a chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

[Crossref]

H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, and K. Vahala, “Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope,” Nat. Commun. 11, 1610 (2020).

[Crossref]

S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T. Chan, “Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators,” Nat. Commun. 10, 832 (2019).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

G. E. Mitchell, A. Richter, and H. A. Weidenmüller, “Random matrices and chaos in nuclear physics: nuclear reactions,” Rev. Mod. Phys. 82, 2845–2901 (2010).

[Crossref]

J. Wiersig, “Robustness of exceptional-point-based sensors against parametric noise: the role of Hamiltonian and Liouvillian degeneracies,” Phys. Rev. A 101, 053846 (2020).

[Crossref]

J. Wiersig, “Nonorthogonality constraints in open quantum and wave systems,” Phys. Rev. Res. 1, 033182 (2019).

[Crossref]

J. Kullig and J. Wiersig, “High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities,” Phys. Rev. A 100, 043837 (2019).

[Crossref]

J. Kullig, M. Yi, C.-H. Hentschel, and J. Wiersig, “Exceptional points of third-order in a layered optical microdisk cavity,” New J. Phys. 20, 083016 (2018).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, and Y.-F. Xiao, “Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems,” Sci. Bull. 63, 1096–1100 (2018).

[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

J. Wiersig, “Sensors operating at exceptional points: general theory,” Phys. Rev. A 93, 033809 (2016).

[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).

[Crossref]

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).

[Crossref]

J. Wiersig, “Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves,” Phys. Rev. A 89, 012119 (2014).

[Crossref]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).

[Crossref]

J. Wiersig, “Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles,” Phys. Rev. A 84, 063828 (2011).

[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).

[Crossref]

J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).

[Crossref]

J. Wiersig, “Non-Hermitian effects due to asymmetric backscattering of light in whispering-gallery microcavities,” in Parity-time Symmetry and Its Applications, D. Christodoulides and J. Yang, eds. (Springer, 2018), pp. 155–184.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennio, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).

[Crossref]

H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548, 187–191 (2017).

[Crossref]

C. Wolff, C. Tserkezis, and N. A. Mortensen, “On the time evolution at a fluctuating exceptional point,” Nanophotonics 8, 1319–1326 (2019).

[Crossref]

N. A. Mortensen, P. A. D. Gonçalves, M. Khajavikhan, D. N. Christodoulides, C. Tserkezis, and C. Wolff, “Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems,” Optica 5, 1342–1346 (2018).

[Crossref]

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High-performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory Simul. 1, 1800070 (2018).

[Crossref]

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High-performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory Simul. 1, 1800070 (2018).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, and Y.-F. Xiao, “Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems,” Sci. Bull. 63, 1096–1100 (2018).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).

[Crossref]

Z. Xiao, H. Li, T. Kottos, and A. Alù, “Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point,” Phys. Rev. Lett. 123, 213901 (2019).

[Crossref]

Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, and Y.-F. Xiao, “Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems,” Sci. Bull. 63, 1096–1100 (2018).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

Z. Dong, Z. Li, F. Yang, C.-W. Qiu, and J. S. Ho, “Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point,” Nat. Electron. 2, 335–342 (2019).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

[Crossref]

C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, and L. Yang, “Electromagnetically induced transparency at a chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

[Crossref]

Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18, 783–798 (2019).

[Crossref]

M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L. Jiang, “Quantum noise theory of exceptional point amplifying sensors,” Phys. Rev. Lett. 123, 180501 (2019).

[Crossref]

W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor,” Photon. Res. 6, A23–A30 (2018).

[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).

[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).

[Crossref]

J. Zhu, Ş. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18, 23535–23543 (2010).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).

[Crossref]

J. Kullig, M. Yi, C.-H. Hentschel, and J. Wiersig, “Exceptional points of third-order in a layered optical microdisk cavity,” New J. Phys. 20, 083016 (2018).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6, 24487 (2015).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, and K. Vahala, “Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope,” Nat. Commun. 11, 1610 (2020).

[Crossref]

Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala, “Observation of the exceptional-point-enhanced Sagnac effect,” Nature 576, 65–69 (2019).

[Crossref]

C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, and A. Zeilinger, “Tailored complex potentials and Friedel’s law in atom optics,” Phys. Rev. Lett. 79, 3327–3330 (1997).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High-performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory Simul. 1, 1800070 (2018).

[Crossref]

W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, and L. Yang, “Parity-time-symmetric whispering-gallery mode nanoparticle sensor,” Photon. Res. 6, A23–A30 (2018).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennio, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).

[Crossref]

C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, and L. Yang, “Electromagnetically induced transparency at a chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

[Crossref]

M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L. Jiang, “Quantum noise theory of exceptional point amplifying sensors,” Phys. Rev. Lett. 123, 180501 (2019).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High-performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory Simul. 1, 1800070 (2018).

[Crossref]

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6, 24487 (2015).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6, 24487 (2015).

[Crossref]

S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T. Chan, “Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators,” Nat. Commun. 10, 832 (2019).

[Crossref]

C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, and L. Yang, “Electromagnetically induced transparency at a chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).

[Crossref]

H. Zhao, Z. Chen, R. Zhao, and L. Feng, “Exceptional points engineered glass slide for microscopic thermal mapping,” Nat. Commun. 9, 1764 (2018).

[Crossref]

H. Zhao, Z. Chen, R. Zhao, and L. Feng, “Exceptional points engineered glass slide for microscopic thermal mapping,” Nat. Commun. 9, 1764 (2018).

[Crossref]

Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, and R. El-Ganainy, “Sensing with exceptional surfaces in order to combine sensitivity with robustness,” Phys. Rev. Lett. 122, 153902 (2019).

[Crossref]

Q. Zhong, S. Nelson, Ş. K. Özdemir, and R. El-Ganainy, “Controlling direction absorption with chiral exceptional surfaces,” Opt. Lett. 44, 5242–5245 (2019).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).

[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).

[Crossref]

J. Zhu, Ş. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18, 23535–23543 (2010).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).

[Crossref]

J. Liu, L. Chen, and K.-D. Zhu, “Enhanced sensing of non-Newtonian effects at ultrashort range with exceptional points in optomechanical systems,” arXiv:191205732 (2019).

J. Liu, L. Chen, F. He, and K.-D. Zhu, “Gravitational waves detection with exceptional points in micro cavities,” arXiv:2001.09462 (2019).

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).

[Crossref]

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High-performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory Simul. 1, 1800070 (2018).

[Crossref]

W. P. Reinhardt, “Complex coordinates in the theory of atomic and molecular structure and dynamics,” Ann. Rev. Phys. Chem. 33, 223–255 (1982).

[Crossref]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering-gallery mode biosensors,” Appl. Phys. Lett. 97, 123704 (2010).

[Crossref]

M. V. Berry, “Physics of nonhermitian degeneracies,” Czech. J. Phys. 54, 1039–1047 (2004).

[Crossref]

W. D. Heiss and H. L. Harney, “The chirality of exceptional points,” Eur. Phys. J. D 17, 149–151 (2001).

[Crossref]

S. Scheel and A. Szameit, “PT-symmetric photonic quantum systems with gain and loss do not exit,” Eur. Phys. Lett. 122, 34001 (2018).

[Crossref]

K. Petermann, “Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding,” IEEE J. Quantum Electron. 15, 566–570 (1979).

[Crossref]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennio, “Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating,” IEEE Photon. Technol. Lett. 12, 531–533 (2000).

[Crossref]

M. Sakhdari, M. Hajizadegan, Y. Li, M. M.-C. Cheng, J. C. H. Hung, and P.-Y. Chen, “Ultrasensitive, parity-time-symmetric wireless reactive and resistive sensors,” IEEE Sens. J. 18, 9548–9555 (2018).

[Crossref]

M. V. Berry, “Mode degeneracies and the Petermann excess-noise factor for unstable lasers,” J. Mod. Opt. 50, 63–81 (2003).

[Crossref]

M. V. Berry and D. H. J. O’Dell, “Diffraction by volume gratings with imaginary potentials,” J. Phys. A 31, 2093–2101 (1998).

[Crossref]

W. D. Heiss, “Exceptional points of non-Hermitian operators,” J. Phys. A 37, 2455–2464 (2004).

[Crossref]

S. Liu, J. Wiersig, W. Sun, Y. Fan, L. Ge, J. Yang, S. Xiao, Q. Song, and H. Cao, “Transporting the optical chirality through the dynamical barriers in optical microcavities,” Laser Photon. Rev. 12, 1800027 (2018).

[Crossref]

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).

[Crossref]

C. Wolff, C. Tserkezis, and N. A. Mortensen, “On the time evolution at a fluctuating exceptional point,” Nanophotonics 8, 1319–1326 (2019).

[Crossref]

S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, and C. T. Chan, “Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators,” Nat. Commun. 10, 832 (2019).

[Crossref]

H. Zhao, Z. Chen, R. Zhao, and L. Feng, “Exceptional points engineered glass slide for microscopic thermal mapping,” Nat. Commun. 9, 1764 (2018).

[Crossref]

H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, and K. Vahala, “Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope,” Nat. Commun. 11, 1610 (2020).

[Crossref]

H.-K. Lau and A. A. Clerk, “Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing,” Nat. Commun. 9, 4320 (2018).

[Crossref]

P.-Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nat. Electron. 1, 297–304 (2018).

[Crossref]

Z. Dong, Z. Li, F. Yang, C.-W. Qiu, and J. S. Ho, “Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point,” Nat. Electron. 2, 335–342 (2019).

[Crossref]

Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity-time symmetry and exceptional points in photonics,” Nat. Mater. 18, 783–798 (2019).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).

[Crossref]

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, A. San Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nat. Nanotechnol. 5, 641–645 (2010).

[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).

[Crossref]

L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity-time symmetry,” Nat. Photonics 11, 752–762 (2017).

[Crossref]

B. Peng, Ş. K. Özdemir, F. Lei, F. Monfi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10, 394–398 (2014).

[Crossref]

R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14, 11–19 (2018).

[Crossref]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010).

[Crossref]

C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, and L. Yang, “Electromagnetically induced transparency at a chiral exceptional point,” Nat. Phys. 16, 334–340 (2020).

[Crossref]

J.-H. Park, A. Ndao, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, and B. Kanté, “Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing,” Nat. Phys. 16, 462–468 (2020).

[Crossref]

M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. W. Murch, “Quantum state tomography across the exceptional point in a single dissipative qubit,” Nat. Phys. 15, 1232–1236 (2019).

[Crossref]

M. P. Hokmabadi, A. Schumer, D. N. Christodoulides, and M. Khajavikhan, “Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity,” Nature 576, 70–74 (2019).

[Crossref]

Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala, “Observation of the exceptional-point-enhanced Sagnac effect,” Nature 576, 65–69 (2019).

[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).

[Crossref]

H. Hodaei, A. Hassan, S. Wittek, H. Carcia-Cracia, R. El-Ganainy, D. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature 548, 187–191 (2017).

[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).

[Crossref]

A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012).

[Crossref]

J. Kullig, M. Yi, C.-H. Hentschel, and J. Wiersig, “Exceptional points of third-order in a layered optical microdisk cavity,” New J. Phys. 20, 083016 (2018).

[Crossref]

C. Chen, L. Jin, and R.-B. Liu, “Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system,” New J. Phys. 21, 083002 (2019).

[Crossref]

A. Jian, F. Liu, G. Bai, B. Zhang, Y. Zhang, Q. Zhang, X. Xue, S. Sang, and X. Zhang, “Parity-time symmetry based on resonant optical tunneling effect for biosensing,” Opt. Commun. 475, 125815 (2020).

[Crossref]

S. Sunada and T. Harayama, “Design of resonant microcavities: application to optical gyroscopes,” Opt. Express 15, 16245–16254 (2007).

[Crossref]

J. Zhu, Ş. K. Özdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Opt. Express 18, 23535–23543 (2010).

[Crossref]

C. Zeng, Y. Sun, G. Li, Y. Li, H. Jiang, Y. Yang, and H. Chen, “Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system,” Opt. Express 27, 27562–27572 (2019).

[Crossref]

Q. Zhong, S. Nelson, Ş. K. Özdemir, and R. El-Ganainy, “Controlling direction absorption with chiral exceptional surfaces,” Opt. Lett. 44, 5242–5245 (2019).

[Crossref]

J. Ren, H. Hodaei, G. Harari, A. U. Hassan, W. Chow, M. Soltani, D. Christodoulides, and M. Khajavikhan, “Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope,” Opt. Lett. 42, 1556–1559 (2017).

[Crossref]

M. Goryachev, B. McAllister, and M. E. Tobar, “Probing dark universe with exceptional points,” Phys. Dark Univ. 23, 100244 (2018).

[Crossref]

S. Sunada, “Large Sagnac frequency splitting in a ring resonator operating at an exceptional point,” Phys. Rev. A 96, 033842 (2017).

[Crossref]

J. Kullig and J. Wiersig, “High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities,” Phys. Rev. A 100, 043837 (2019).

[Crossref]

W. Langbein, “No exceptional precision of exceptional-point sensors,” Phys. Rev. A 98, 023805 (2018).

[Crossref]

J. Wiersig, S. W. Kim, and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 78, 053809 (2008).

[Crossref]

J. Wiersig, A. Eberspächer, J.-B. Shim, J.-W. Ryu, S. Shinohara, M. Hentschel, and H. Schomerus, “Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities,” Phys. Rev. A 84, 023845 (2011).

[Crossref]

J. Wiersig, “Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves,” Phys. Rev. A 89, 012119 (2014).

[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82, 053810 (2010).

[Crossref]

J. Wiersig, “Sensors operating at exceptional points: general theory,” Phys. Rev. A 93, 033809 (2016).

[Crossref]

J. Wiersig, “Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles,” Phys. Rev. A 84, 063828 (2011).

[Crossref]

J. Wiersig, “Robustness of exceptional-point-based sensors against parametric noise: the role of Hamiltonian and Liouvillian degeneracies,” Phys. Rev. A 101, 053846 (2020).

[Crossref]

F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori, “Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps,” Phys. Rev. A 100, 062131 (2019).

[Crossref]

S. Sunada, “Enhanced response of non-Hermitian photonic systems near exceptional points,” Phys. Rev. A 97, 043804 (2018).

[Crossref]

A. E. Siegman, “Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers,” Phys. Rev. A 39, 1253–1263 (1989).

[Crossref]

A. E. Siegman, “Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators,” Phys. Rev. A 39, 1264–1268 (1989).

[Crossref]

H. Schomerus, “Excess quantum noise due to mode orthogonality in dielectric microresonators,” Phys. Rev. A 79, 061801 (2009).

[Crossref]

L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures,” Phys. Rev. A 85, 023802 (2012).

[Crossref]

G. L. Celardo and L. Kaplan, “Superradiance transition in one-dimensional nanostructures: an effective non-Hermitian Hamiltonian formalism,” Phys. Rev. B 79, 155108 (2009).

[Crossref]

H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, and I. Rotter, “Effective Hamiltonian for a microwave billiard with attached waveguide,” Phys. Rev. E 65, 066211 (2002).

[Crossref]

W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E 61, 929–932 (2000).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Encircling an exceptional point,” Phys. Rev. E 69, 056216 (2004).

[Crossref]

B. Dietz, T. Friedrich, J. Metz, M. Miski-Oglu, A. Richter, F. Schäfer, and C. A. Stafford, “Rabi oscillations at exceptional points in microwave billiards,” Phys. Rev. E 75, 027201 (2007).

[Crossref]

S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim, J.-H. Lee, and K. An, “Observation of an exceptional point in a chaotic optical microcavity,” Phys. Rev. Lett. 103, 134101 (2009).

[Crossref]

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, “Experimental observation of the topological structure of exceptional points,” Phys. Rev. Lett. 86, 787–790 (2001).

[Crossref]

S. Richter, H.-G. Zirnstein, J. Zúñiga-Pérez, E. Krüger, C. Deparis, L. Trefflich, C. Sturm, B. Rosenow, M. Grundmann, and R. Schmidt-Grund, “Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity,” Phys. Rev. Lett. 123, 227401 (2019).

[Crossref]

J. Wiersig, “Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection,” Phys. Rev. Lett. 112, 203901 (2014).

[Crossref]

C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243–5246 (1998).

[Crossref]

C. Keller, M. K. Oberthaler, R. Abfalterer, S. Bernet, J. Schmiedmayer, and A. Zeilinger, “Tailored complex potentials and Friedel’s law in atom optics,” Phys. Rev. Lett. 79, 3327–3330 (1997).

[Crossref]

A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).

[Crossref]

U. Kuhl, R. Höhmann, J. Main, and H.-J. Stöckmann, “Resonance widths in open microwave cavities studied by harmonic inversion,” Phys. Rev. Lett. 100, 254101 (2008).

[Crossref]

C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, “Observation of a chiral state in a microwave cavity,” Phys. Rev. Lett. 90, 034101 (2003).

[Crossref]

R. Sarma, L. Ge, J. Wiersig, and H. Cao, “Rotating optical microcavities with broken chiral symmetry,” Phys. Rev. Lett. 114, 053903 (2015).

[Crossref]

Z.-P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, “Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition,” Phys. Rev. Lett. 117, 110802 (2016).

[Crossref]

Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, and R. El-Ganainy, “Sensing with exceptional surfaces in order to combine sensitivity with robustness,” Phys. Rev. Lett. 122, 153902 (2019).

[Crossref]

M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L. Jiang, “Quantum noise theory of exceptional point amplifying sensors,” Phys. Rev. Lett. 123, 180501 (2019).

[Crossref]

Z. Xiao, H. Li, T. Kottos, and A. Alù, “Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point,” Phys. Rev. Lett. 123, 213901 (2019).

[Crossref]

J. Wiersig, “Nonorthogonality constraints in open quantum and wave systems,” Phys. Rev. Res. 1, 033182 (2019).

[Crossref]

J. Miller, “Exceptional points make for exceptional sensors,” Phys. Today 70, 23–26 (2017).

[Crossref]

B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, “Chiral modes and directional lasing at exceptional points,” Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016).

[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77, 056503 (2014).

[Crossref]

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61–104 (1985).

[Crossref]

G. E. Mitchell, A. Richter, and H. A. Weidenmüller, “Random matrices and chaos in nuclear physics: nuclear reactions,” Rev. Mod. Phys. 82, 2845–2901 (2010).

[Crossref]

H. Cao and J. Wiersig, “Dielectric microcavities: model systems for wave chaos and non-Hermitian physics,” Rev. Mod. Phys. 87, 61–111 (2015).

[Crossref]

Y.-K. Lu, P. Peng, Q.-T. Cao, D. Xu, J. Wiersig, Q. Gong, and Y.-F. Xiao, “Spontaneous T-symmetry breaking and exceptional points in cavity quantum electrodynamics systems,” Sci. Bull. 63, 1096–1100 (2018).

[Crossref]

S. Zhang, Z. Yong, Y. Zhang, and S. He, “Parity-time symmetry breaking in coupled nanobeam cavities,” Sci. Rep. 6, 24487 (2015).

[Crossref]

M.-A. Miri and A. Alù, “Exceptional points in optics and photonics,” Science 363, eaar7709 (2019).

[Crossref]

T. Kato, Perturbation Theory for Linear Operators (Springer, 1966).

A. Hassan, H. Hodaei, W. Hayenga, M. Khajavikhan, and D. Christodoulides, “Enhanced sensitivity in parity-time-symmetric microcavity sensors,” in Advanced Photonics, OSA Technical Digest (online) (Optical Society of America, 2015), paper SeT4C.3.

J. Liu, L. Chen, and K.-D. Zhu, “Enhanced sensing of non-Newtonian effects at ultrashort range with exceptional points in optomechanical systems,” arXiv:191205732 (2019).

J. Liu, L. Chen, F. He, and K.-D. Zhu, “Gravitational waves detection with exceptional points in micro cavities,” arXiv:2001.09462 (2019).

J. Wiersig, “Non-Hermitian effects due to asymmetric backscattering of light in whispering-gallery microcavities,” in Parity-time Symmetry and Its Applications, D. Christodoulides and J. Yang, eds. (Springer, 2018), pp. 155–184.