Abstract

Quantum dot lasers are excellent on-chip light sources, offering high defect tolerance, low threshold, low temperature variation, and high feedback insensitivity. Yet a monolithic integration technique combining epitaxial quantum dot lasers with passive waveguides has not been demonstrated and is needed for complex photonic integrated circuits. We present here, for the first time to our knowledge, a monolithc offset quantum dot integration platform that permits formation of a laser cavity utilizing both the robust quantum dot active region and the versatility of passive GaAs waveguide structures. This platform is substrate agnostic and therefore compatible with the quantum dot lasers directly grown on Si. As an illustration of the potential of this platform, we designed and fabricated a 20 GHz mode-locked laser with a dispersion-engineered on-chip waveguide mirror. Due to the dispersion compensation effect of the waveguide mirror, the pulse width of the mode-locked laser is reduced by a factor of 2.8.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
    [Crossref]
  2. T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.
  3. D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
    [Crossref]
  4. J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
    [Crossref]
  5. H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
    [Crossref]
  6. Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
    [Crossref]
  7. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
    [Crossref]
  8. J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
    [Crossref]
  9. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  10. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
    [Crossref]
  11. Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, and J. Wu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
    [Crossref]
  12. S. Liu, X. Wu, D. Jung, J. C. Norman, M. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
    [Crossref]
  13. Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, and A. Torres, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
    [Crossref]
  14. Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
    [Crossref]
  15. Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25, 27715–27723 (2017).
    [Crossref]
  16. S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 24, 6100612 (2017).
    [Crossref]
  17. T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
    [Crossref]
  18. C. Xiang, W. Jin, J. Guo, J. D. Peters, M. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration,” Optica 7, 20–21 (2020).
    [Crossref]
  19. G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in 2018 IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.
  20. A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
    [Crossref]
  21. H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
    [Crossref]
  22. W. W. Chow, M. Lorke, and F. Jahnke, “Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers?” IEEE J. Sel. Top. Quantum Electron. 17, 1349–1355 (2011).
    [Crossref]
  23. J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
    [Crossref]
  24. S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
    [Crossref]
  25. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [Crossref]
  26. K. Sato, A. Hirano, and H. Ishii, “Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
    [Crossref]
  27. P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
    [Crossref]
  28. A. Hou, R. Tucker, and G. Eisenstein, “Pulse compression of an actively modelocked diode laser using linear dispersion in fiber,” IEEE Photon. Technol. Lett. 2, 322–324 (1990).
    [Crossref]
  29. J. Wiesenfeld, M. Kuznetsov, and A. Hou, “Tunable, picosecond pulse generation using a compressed, modelocked laser diode source,” IEEE Photon. Technol. Lett. 2, 319–321 (1990).
    [Crossref]
  30. M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
    [Crossref]
  31. Y. Silberberg and P. Smith, “Subpicosecond pulses from a mode-locked semiconductor laser,” IEEE J. Quantum Electron. 22, 759–761 (1986).
    [Crossref]
  32. T. Schrans, R. Salvatore, S. Sanders, and A. Yariv, “Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers,” Electron. Lett. 28, 1480–1482 (1992).
    [Crossref]
  33. M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96, 211907 (2010).
    [Crossref]
  34. Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, and J. Faist, “Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 29, 2246–2249 (2017).
    [Crossref]
  35. D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Mart, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
    [Crossref]
  36. W. W. Chow, S. Liu, Z. Zhang, J. E. Bowers, and M. Sargent, “Multimode description of self-mode locking in a single-section quantum-dot laser,” Opt. Express 28, 5317–5330 (2020).
    [Crossref]

2020 (2)

2019 (3)

2018 (6)

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, and J. Wu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[Crossref]

H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
[Crossref]

2017 (5)

Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, and J. Faist, “Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 29, 2246–2249 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, and A. Torres, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25, 27715–27723 (2017).
[Crossref]

S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 24, 6100612 (2017).
[Crossref]

2016 (2)

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

2015 (1)

2011 (3)

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[Crossref]

W. W. Chow, M. Lorke, and F. Jahnke, “Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers?” IEEE J. Sel. Top. Quantum Electron. 17, 1349–1355 (2011).
[Crossref]

2010 (1)

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96, 211907 (2010).
[Crossref]

2006 (1)

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

2000 (1)

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

1999 (1)

K. Sato, A. Hirano, and H. Ishii, “Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[Crossref]

1996 (1)

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Mart, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[Crossref]

1995 (1)

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

1992 (1)

T. Schrans, R. Salvatore, S. Sanders, and A. Yariv, “Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers,” Electron. Lett. 28, 1480–1482 (1992).
[Crossref]

1990 (2)

A. Hou, R. Tucker, and G. Eisenstein, “Pulse compression of an actively modelocked diode laser using linear dispersion in fiber,” IEEE Photon. Technol. Lett. 2, 322–324 (1990).
[Crossref]

J. Wiesenfeld, M. Kuznetsov, and A. Hou, “Tunable, picosecond pulse generation using a compressed, modelocked laser diode source,” IEEE Photon. Technol. Lett. 2, 319–321 (1990).
[Crossref]

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

1986 (1)

Y. Silberberg and P. Smith, “Subpicosecond pulses from a mode-locked semiconductor laser,” IEEE J. Quantum Electron. 22, 759–761 (1986).
[Crossref]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Arafin, S.

S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 24, 6100612 (2017).
[Crossref]

Arakawa, Y.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Ardey, A.

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96, 211907 (2010).
[Crossref]

Bagnell, M.

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96, 211907 (2010).
[Crossref]

Beausoleil, R.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in 2018 IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.

Bidaux, Y.

Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, and J. Faist, “Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 29, 2246–2249 (2017).
[Crossref]

Bimberg, D.

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

Bowers, J.

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[Crossref]

Bowers, J. E.

W. W. Chow, S. Liu, Z. Zhang, J. E. Bowers, and M. Sargent, “Multimode description of self-mode locking in a single-section quantum-dot laser,” Opt. Express 28, 5317–5330 (2020).
[Crossref]

C. Xiang, W. Jin, J. Guo, J. D. Peters, M. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration,” Optica 7, 20–21 (2020).
[Crossref]

S. Liu, X. Wu, D. Jung, J. C. Norman, M. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25, 27715–27723 (2017).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

Brunelli, S. T. Š.

H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
[Crossref]

Capmany, J.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Mart, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[Crossref]

Cataluna, M. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Chao, R.

Chen, S.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, and J. Wu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Chow, W. W.

W. W. Chow, S. Liu, Z. Zhang, J. E. Bowers, and M. Sargent, “Multimode description of self-mode locking in a single-section quantum-dot laser,” Opt. Express 28, 5317–5330 (2020).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

W. W. Chow, M. Lorke, and F. Jahnke, “Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers?” IEEE J. Sel. Top. Quantum Electron. 17, 1349–1355 (2011).
[Crossref]

Clayton, F.

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

Coldren, L. A.

H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
[Crossref]

S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 24, 6100612 (2017).
[Crossref]

Davenport, M.

Davila-Rodriguez, J.

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96, 211907 (2010).
[Crossref]

Delfyett, P.

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96, 211907 (2010).
[Crossref]

Descos, A.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in 2018 IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.

Devre, M.

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

Duan, J.

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

Eisenstein, G.

A. Hou, R. Tucker, and G. Eisenstein, “Pulse compression of an actively modelocked diode laser using linear dispersion in fiber,” IEEE Photon. Technol. Lett. 2, 322–324 (1990).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Erdogan, T.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Faist, J.

Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, and J. Faist, “Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 29, 2246–2249 (2017).
[Crossref]

Fedorova, K. A.

Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, and J. Faist, “Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 29, 2246–2249 (2017).
[Crossref]

Fiorentino, M.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in 2018 IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.

Flynn, M. B.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Gossard, A. C.

Grillot, F.

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

Guo, J.

Harvey, G.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Hays, D.

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

He, J.-J.

He, W.

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Hirano, A.

K. Sato, A. Hirano, and H. Ishii, “Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[Crossref]

Hou, A.

A. Hou, R. Tucker, and G. Eisenstein, “Pulse compression of an actively modelocked diode laser using linear dispersion in fiber,” IEEE Photon. Technol. Lett. 2, 322–324 (1990).
[Crossref]

J. Wiesenfeld, M. Kuznetsov, and A. Hou, “Tunable, picosecond pulse generation using a compressed, modelocked laser diode source,” IEEE Photon. Technol. Lett. 2, 319–321 (1990).
[Crossref]

Huang, D.

Huang, H.

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

Hulme, J.

Ishii, H.

K. Sato, A. Hirano, and H. Ishii, “Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[Crossref]

Jahnke, F.

W. W. Chow, M. Lorke, and F. Jahnke, “Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers?” IEEE J. Sel. Top. Quantum Electron. 17, 1349–1355 (2011).
[Crossref]

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jin, W.

Johnson, D.

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

Jung, D.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25, 27715–27723 (2017).
[Crossref]

Kageyama, T.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Kennedy, M.

Klamkin, J.

H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
[Crossref]

Komljenovic, T.

Kotlyar, M. V.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Krauss, T. F.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Kurczveil, G.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in 2018 IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.

Kuznetsov, M.

J. Wiesenfeld, M. Kuznetsov, and A. Hou, “Tunable, picosecond pulse generation using a compressed, modelocked laser diode source,” IEEE Photon. Technol. Lett. 2, 319–321 (1990).
[Crossref]

Lau, K. M.

Lee, J.

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

Li, Q.

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

Liao, M.

Liu, A. Y.

Liu, L.

Liu, S.

Liu, Z.

Livshits, D. A.

Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, and J. Faist, “Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 29, 2246–2249 (2017).
[Crossref]

Logan, R.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Lorke, M.

W. W. Chow, M. Lorke, and F. Jahnke, “Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers?” IEEE J. Sel. Top. Quantum Electron. 17, 1349–1355 (2011).
[Crossref]

Maeda, Y.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Mart, J.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Mart, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[Crossref]

Megalini, L.

H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
[Crossref]

Mizrahi, V.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Mochida, R.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Mollenauer, L.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Moore, S. A.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Morton, P.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Morton, P. A.

Nishi, K.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Norman, J.

Norman, J. C.

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

S. Liu, X. Wu, D. Jung, J. C. Norman, M. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6, 128–134 (2019).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

O’Faolain, L.

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Ortega, D.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Mart, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[Crossref]

Pastor, D.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Mart, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[Crossref]

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Pearton, S.

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

Peters, J. D.

Pinna, S.

H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
[Crossref]

Pohl, U. W.

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

Presby, H.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Rafailov, E. U.

Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, and J. Faist, “Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 29, 2246–2249 (2017).
[Crossref]

Reelfs, B.

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

Salvatore, R.

T. Schrans, R. Salvatore, S. Sanders, and A. Yariv, “Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers,” Electron. Lett. 28, 1480–1482 (1992).
[Crossref]

Sanders, S.

T. Schrans, R. Salvatore, S. Sanders, and A. Yariv, “Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers,” Electron. Lett. 28, 1480–1482 (1992).
[Crossref]

Santis, C. T.

Sargent, M.

Sasserath, J.

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

Sato, K.

K. Sato, A. Hirano, and H. Ishii, “Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[Crossref]

Schrans, T.

T. Schrans, R. Salvatore, S. Sanders, and A. Yariv, “Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers,” Electron. Lett. 28, 1480–1482 (1992).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Selvidge, J.

Sergent, A.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Shang, C.

Shi, J.-W.

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Silberberg, Y.

Y. Silberberg and P. Smith, “Subpicosecond pulses from a mode-locked semiconductor laser,” IEEE J. Quantum Electron. 22, 759–761 (1986).
[Crossref]

Smith, P.

Y. Silberberg and P. Smith, “Subpicosecond pulses from a mode-locked semiconductor laser,” IEEE J. Quantum Electron. 22, 759–761 (1986).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Song, B.

H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
[Crossref]

Sorel, M.

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[Crossref]

Spott, A.

Srinivasan, S.

Stanton, E. J.

Stolarz, P. M.

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[Crossref]

Strain, M. J.

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[Crossref]

Sugawara, M.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Takemasa, K.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Tanaka, Y.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Tanbun-Ek, T.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Tang, M.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, and J. Wu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Tatay, V.

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Mart, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[Crossref]

Torres, A.

Tsang, H. K.

Tucker, R.

A. Hou, R. Tucker, and G. Eisenstein, “Pulse compression of an actively modelocked diode laser using linear dispersion in fiber,” IEEE Photon. Technol. Lett. 2, 322–324 (1990).
[Crossref]

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Wan, Y.

Wang, Y.

Wecht, K.

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

Wiesenfeld, J.

J. Wiesenfeld, M. Kuznetsov, and A. Hou, “Tunable, picosecond pulse generation using a compressed, modelocked laser diode source,” IEEE Photon. Technol. Lett. 2, 319–321 (1990).
[Crossref]

Wu, J.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, and J. Wu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Wu, X.

Xiang, C.

Yamaguchi, M.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Yamamoto, T.

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

Yang, C.

Yariv, A.

T. Schrans, R. Salvatore, S. Sanders, and A. Yariv, “Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers,” Electron. Lett. 28, 1480–1482 (1992).
[Crossref]

Yu, Y.

Zhang, C.

Zhang, S.

Zhang, Z.

W. W. Chow, S. Liu, Z. Zhang, J. E. Bowers, and M. Sargent, “Multimode description of self-mode locking in a single-section quantum-dot laser,” Opt. Express 28, 5317–5330 (2020).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, and A. Torres, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, “Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates,” Opt. Express 25, 27715–27723 (2017).
[Crossref]

Zhao, H.

H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
[Crossref]

Zhou, L.

ACS Photon. (1)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2017).
[Crossref]

APL Photon. (1)

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: the future of quantum dot photonic integrated circuits,” APL Photon. 3, 030901 (2018).
[Crossref]

Appl. Phys. Lett. (3)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

M. Bagnell, J. Davila-Rodriguez, A. Ardey, and P. Delfyett, “Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth,” Appl. Phys. Lett. 96, 211907 (2010).
[Crossref]

Electron. Lett. (1)

T. Schrans, R. Salvatore, S. Sanders, and A. Yariv, “Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers,” Electron. Lett. 28, 1480–1482 (1992).
[Crossref]

IEEE J. Quantum Electron. (3)

M. J. Strain, P. M. Stolarz, and M. Sorel, “Passively mode-locked lasers with integrated chirped bragg grating reflectors,” IEEE J. Quantum Electron. 47, 492–499 (2011).
[Crossref]

Y. Silberberg and P. Smith, “Subpicosecond pulses from a mode-locked semiconductor laser,” IEEE J. Quantum Electron. 22, 759–761 (1986).
[Crossref]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (6)

K. Sato, A. Hirano, and H. Ishii, “Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings,” IEEE J. Sel. Top. Quantum Electron. 5, 590–595 (1999).
[Crossref]

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[Crossref]

H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. Š. Brunelli, L. A. Coldren, and J. Klamkin, “Indium phosphide photonic integrated circuits for free space optical links,” IEEE J. Sel. Top. Quantum Electron. 24, 6101806 (2018).
[Crossref]

W. W. Chow, M. Lorke, and F. Jahnke, “Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers?” IEEE J. Sel. Top. Quantum Electron. 17, 1349–1355 (2011).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

S. Arafin and L. A. Coldren, “Advanced InP photonic integrated circuits for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 24, 6100612 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (5)

P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent, and K. Wecht, “Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995).
[Crossref]

A. Hou, R. Tucker, and G. Eisenstein, “Pulse compression of an actively modelocked diode laser using linear dispersion in fiber,” IEEE Photon. Technol. Lett. 2, 322–324 (1990).
[Crossref]

J. Wiesenfeld, M. Kuznetsov, and A. Hou, “Tunable, picosecond pulse generation using a compressed, modelocked laser diode source,” IEEE Photon. Technol. Lett. 2, 319–321 (1990).
[Crossref]

Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov, and J. Faist, “Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 29, 2246–2249 (2017).
[Crossref]

S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar, and T. F. Krauss, “Reduced surface sidewall recombination and diffusion in quantum-dot lasers,” IEEE Photon. Technol. Lett. 18, 1861–1863 (2006).
[Crossref]

J. Lightwave Technol. (2)

D. Pastor, J. Capmany, D. Ortega, V. Tatay, and J. Mart, “Design of apodized linearly chirped fiber gratings for dispersion compensation,” J. Lightwave Technol. 14, 2581–2588 (1996).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. A (1)

J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays, and S. Pearton, “Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas,” J. Vac. Sci. Technol. A 18, 1220–1224 (2000).
[Crossref]

Mater. Today (1)

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, and I. Ross, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Opt. Express (2)

Optica (5)

Photon. Res. (1)

Other (2)

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in European Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper PDA_1.

G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino, and R. Beausoleil, “On-chip hybrid silicon quantum dot comb laser with 14 error-free channels,” in 2018 IEEE International Semiconductor Laser Conference (ISLC) (IEEE, 2018), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of the epitaxial structure of OQD devices. (b) Optical confinement as functions of passive GaAs WG thickness.
Fig. 2.
Fig. 2. (a) Schematic diagram of OQD MLL above the bottom cladding. The rendering is not to scale. The WG spiral termination is not illustrated here for simplicity. Scanning electron microscope (SEM) images of (b) mesa cross section after the nonselective GaAs etch, (c) passive GaAs WG cross section with 1 μm thick silicon dioxide upper cladding, (d) GaAs WG with gratings etched on the sidewall, and (e) taper transition from the active to the passive WG section.
Fig. 3.
Fig. 3. (a) Reflectivities and (b) group delay responses of several grating designs simulated with the transmission matrix technique. Red: uniform grating, κ=162cm1. Pink: linearly chirped grating, CR=0.032nm/μm. Blue and green: chirped and apodized gratings, CR=0.032nm/μm. For pink and blue, κ=162cm1 at the half length of the grating. For green, κ=243cm1 at the half length.
Fig. 4.
Fig. 4. (a) CW LIV curves for 20 GHz OQD MLL with SA in a floating state. Blue: laser A. Pink: laser B. Green: laser C. (b) Optical spectra under the bias conditions Igain=129mA, 179 mA, 94 mA and VSA=5.6V, 2.7 V, 4.3 V for lasers A–C, respectively. (c) RF spectrum for laser C under the same bias condition in 50 GHz span view.
Fig. 5.
Fig. 5. Pulse width mapping as a function of gain section current and SA section reverse bias voltage under passive mode-locking operation for laser C. Regions marked by white indicate unsuccessful PML.
Fig. 6.
Fig. 6. (a) Autocorrelator traces of the narrowest pulses of OQD MLLs with various grating designs. Blue, red, green, pink, and brown circles represent lasers A–E, respectively. Sech2 fitting gives pulse widths of 12.8, 14.4, 5.3, 7.6, and 4.5 ps. The bias conditions for narrowest pulses are Igain=129mA, 179 mA, 94 mA, 108 mA, 101 mA and VSA=5.6V, 2.7 V, 4.3 V, 0 V, 6.2 V, for lasers A–E, respectively.

Tables (1)

Tables Icon

Table 1. MLL Design and Performance Parameters

Metrics