Abstract

Hybrid perovskite materials are widely researched due to their high absorptivity, inexpensive synthesis, and promise in photovoltaic devices. These materials are also of interest as highly sensitive photodetectors. In this study, their potential for use in visible light communication is explored in a configuration that allows for simultaneous energy and data harvesting. Using a triple-cation material and appropriate device design, a new record data rate for perovskite photodetectors of 56 Mbps and power conversion efficiencies above 20% under white LED illumination are achieved. With this device design, the 3  dB bandwidth is increased by minimizing the dominating time constant of the system. This correlation between the bandwidth and time constant is proved using measurements of time-resolved photoluminescence, transient photovoltage, and device resistance.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. NREL, “Best research-cell efficiencies,” https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf .
  2. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
    [Crossref]
  3. C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
    [Crossref]
  4. L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
    [Crossref]
  5. M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
    [Crossref]
  6. L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
    [Crossref]
  7. Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
    [Crossref]
  8. S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
    [Crossref]
  9. S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
    [Crossref]
  10. J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
    [Crossref]
  11. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.
  12. C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
    [Crossref]
  13. M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
    [Crossref]
  14. G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
    [Crossref]
  15. C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
    [Crossref]
  16. E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
    [Crossref]
  17. L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
    [Crossref]
  18. C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
    [Crossref]
  19. Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
    [Crossref]
  20. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
    [Crossref]
  21. A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
    [Crossref]
  22. H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
    [Crossref]
  23. T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
    [Crossref]
  24. D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
    [Crossref]
  25. J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
    [Crossref]
  26. X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
    [Crossref]
  27. R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
    [Crossref]
  28. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017).
    [Crossref]
  29. L. M. Zhang and F. R. Kschischang, “Staircase codes with 6% to 33% overhead,” J. Lightwave Technol. 32, 1999–2002 (2014).
    [Crossref]
  30. G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
    [Crossref]
  31. D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
    [Crossref]
  32. H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
    [Crossref]
  33. S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
    [Crossref]
  34. H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
    [Crossref]

2020 (2)

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

2019 (8)

R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
[Crossref]

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

2018 (6)

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

2017 (4)

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017).
[Crossref]

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

2016 (2)

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

2015 (5)

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

2014 (4)

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

L. M. Zhang and F. R. Kschischang, “Staircase codes with 6% to 33% overhead,” J. Lightwave Technol. 32, 1999–2002 (2014).
[Crossref]

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

2013 (1)

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

Abate, A.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Armin, A.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Arredondo, B.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Asiri, A. M.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Ávila, J.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Bai, S.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Baig, H.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Bakr, O. M.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Ball, A.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Bamiedakis, N.

Bao, C.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Bawendi, M. G.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Beck, F. J.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Beeby, S. P.

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Bian, R.

Bin Song, T.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Blaszczyk, O.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Bolink, H. J.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Brunetti, F.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Burn, P. L.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Cameron, P. J.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Catchpole, K. R.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Cattley, R.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Cen, G.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Chang, J.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Chang, J. H.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Chang, W. H.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Chen, C. Y.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Chen, D.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Chen, H.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Chen, Q.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Chiang, K. M.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Cinà, L.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Correa-Baena, J. P.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Correa-Baena, J.-P.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Das, S.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

Dawson, M. D.

De Angelis, F.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

De Marco, N.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

del Pozo, G.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Di Carlo, A.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Di Giacomo, F.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Di Natali, M.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Domanski, K.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Dou, L.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Dursun, I.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Erodici, M. P.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Fakidis, J.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

Fang, Y.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Fazolo, C.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Ferreira, R. X.

Foster, J. M.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Freunek, M.

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

Fu, Y.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Galagan, Y.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Gao, F.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Ghosh, S.

Gil-Escrig, L.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Glowienka, D.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Grabham, N. J.

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Graetzel, M.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Grancini, G.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Grätzel, M.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Gu, E.

Gu, F.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Haas, H.

R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” J. Lightwave Technol. 37, 2418–2424 (2019).
[Crossref]

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Hagfeldt, A.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

He, X.

Helmers, H.

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

Hong, Z.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Hou, Y.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Hsiao, S. Y.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Hu, Y.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Huang, W.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Islim, M. S.

Jacobs, D. A.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Jagadamma, L. K.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Juárez-Santiesteban, H.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Kanda, H.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Kang, C. H.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Kelly, A. E.

Kong, M.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Koster, L. J. A.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Kschischang, F. R.

La Notte, L.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Lee, X.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Li, C.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Li, G.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Lin, H. L.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Lin, H. W.

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Lin, Q.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

Lin, Z.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Liu, G.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Liu, J.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Liu, Y.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

López-Fraguas, E.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Lou, Z.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Lu, J.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Lyons, D. M.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

Ma, X.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Ma, Y.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Mai, W.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Maiello, S.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Maity, P.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Mallick, T.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Martineau, D.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Martín-Martín, D.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Mathew, X.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Matiko, J. W.

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Matsui, T.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Matteocci, F.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Mattiello, L.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Mayer, M. T.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Meredith, P.

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Mohammed, O. F.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Momblona, C.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Mosconi, E.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Müller, M. F.

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

Najafi, M.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Narbey, S.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Nazeeruddin, M. K.

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Ng, T. K.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Nia, N. Y.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Niemann, R. G.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Nienhaus, L.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

O’Kane, S. E. J.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Ooi, B. S.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Ooi, E. N.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Oswald, F.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Pan, J.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Peltola, T. A.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Peng, J.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Penty, R. V.

Pfeffer, F.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Pivrikas, A.

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Pizzoleo, A.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Poves, E.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

Reale, A.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Reindl, L. M.

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

Richardson, G.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Roldán-Carmona, C.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Romero, B.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Ruseckas, A.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Sajjad, M. T.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Salamandra, L.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Saliba, M.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Samuel, I. D. W.

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Sánchez-Pena, J. M.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Seo, J.-Y.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Sessolo, M.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Shen, H.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Shen, L.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Sher, M. J.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Sherkar, T. S.

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

Sinatra, L.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Song, L.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Sparks, A.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

St Louis, Z.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Su, C.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Sun, L.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Sun, P.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Sun, X.

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Susanna, G.

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Szmytkowski, J.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Tang, S.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Tang, X.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Tavakkolnia, I.

Teng, F.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Tress, W.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Tsonev, D.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Tudor, M. J.

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Turnbull, G. A.

Turren-Cruz, S. H.

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

Veenstra, S.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Vega-Colado, C.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Velusamy, M.

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Vergaz, R.

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

Videv, S.

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. Gu, H. Haas, and M. D. Dawson, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res. 5, A35–A43 (2017).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Viola, S.

Walker, A. B.

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

Wang, G.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Wang, H.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Wang, H. H.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Wang, X.

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Wang, Y.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Wang, Z.

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Watson, S.

White, I. H.

White, T. P.

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

Wolfer, P.

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Xi, H.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Xie, E.

Xu, Q.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Xu, W.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Yan, G.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Yan, Z.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Yang, J.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Yang, Y.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Yang, Y. M.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

You, J.

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

Yuan, Y.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Zakeeruddin, S. M.

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

Zhang, C.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Zhang, D.

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Zhang, F.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Zhang, L. M.

Zhang, M.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Zhang, S.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G. A. Turnbull, I. D. W. Samuel, and H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica 2, 607–610 (2015).
[Crossref]

Zhang, W.

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Zhang, Y.

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Zhao, C.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Zhao, Y.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Zhao, Z.

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

Zhong, P.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

Zhou, H.

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Zhou, J.

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Zhu, L.

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Zimmermann, I.

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

ACS Energy Lett. (1)

T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H. J. Bolink, and L. J. A. Koster, “Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions,” ACS Energy Lett. 2, 1214–1222 (2017).
[Crossref]

ACS Omega (1)

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2, 326–336 (2017).
[Crossref]

ACS Photon. (1)

A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P. L. Burn, P. Meredith, and A. Pivrikas, “Quantum efficiency of organic solar cells: electro-optical cavity considerations,” ACS Photon. 1, 173–181 (2014).
[Crossref]

Adv. Funct. Mater. (1)

C. Y. Chen, J. H. Chang, K. M. Chiang, H. L. Lin, S. Y. Hsiao, and H. W. Lin, “Perovskite photovoltaics for dim-light applications,” Adv. Funct. Mater. 25, 7064–7070 (2015).
[Crossref]

Adv. Mater. (2)

Q. Lin, A. Armin, D. M. Lyons, P. L. Burn, and P. Meredith, “Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging,” Adv. Mater. 27, 2060–2064 (2015).
[Crossref]

C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang, and F. Gao, “High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications,” Adv. Mater. 30, 1803422 (2018).
[Crossref]

Energies (1)

S. Das, E. Poves, J. Fakidis, A. Sparks, S. Videv, and H. Haas, “Towards energy neutral wireless communications: photovoltaic cells to connect remote areas,” Energies 12, 3772 (2019).
[Crossref]

Energy Environ. Sci. (3)

G. Richardson, S. E. J. O’Kane, R. G. Niemann, T. A. Peltola, J. M. Foster, P. J. Cameron, and A. B. Walker, “Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?” Energy Environ. Sci. 9, 1476–1485 (2016).
[Crossref]

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy Environ. Sci. 9, 1989–1997 (2016).
[Crossref]

S. H. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. J. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, and J. P. Correa-Baena, “Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells,” Energy Environ. Sci. 11, 78–86 (2018).
[Crossref]

IEEE J. Photovoltaics (1)

M. F. Müller, M. Freunek, and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. Photovoltaics 3, 59–64 (2013).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting,” IEEE J. Sel. Areas Commun. 33, 1612–1623 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Fakidis, S. Videv, H. Helmers, and H. Haas, “0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell,” IEEE Photon. Technol. Lett. 30, 841–844 (2018).
[Crossref]

J. Appl. Phys. (1)

D. A. Jacobs, H. Shen, F. Pfeffer, J. Peng, T. P. White, F. J. Beck, and K. R. Catchpole, “The two faces of capacitance: new interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis,” J. Appl. Phys. 124, 225702 (2018).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Chem. A (1)

H. H. Wang, Q. Chen, H. Zhou, L. Song, Z. St Louis, N. De Marco, Y. Fang, P. Sun, T. Bin Song, H. Chen, and Y. Yang, “Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives,” J. Mater. Chem. A 3, 9108–9115 (2015).
[Crossref]

Light Sci. Appl. (1)

C. H. Kang, I. Dursun, G. Liu, L. Sinatra, X. Sun, M. Kong, J. Pan, P. Maity, E. N. Ooi, T. K. Ng, O. F. Mohammed, O. M. Bakr, and B. S. Ooi, “High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication,” Light Sci. Appl. 8, 94 (2019).
[Crossref]

Meas. Sci. Technol. (1)

J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, “Review of the application of energy harvesting in buildings,” Meas. Sci. Technol. 25, 012002 (2014).
[Crossref]

Nano Energy (1)

D. Głowienka, D. Zhang, F. Di Giacomo, M. Najafi, S. Veenstra, J. Szmytkowski, and Y. Galagan, “Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3,” Nano Energy 67, 104186 (2020).
[Crossref]

Nat. Commun. (2)

L. Dou, Y. M. Yang, J. You, Z. Hong, W. H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nat. Commun. 5, 5404 (2014).
[Crossref]

G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, and M. K. Nazeeruddin, “One-year stable perovskite solar cells by 2D/3D interface engineering,” Nat. Commun. 8, 15684 (2017).
[Crossref]

Optica (1)

Org. Electron. (2)

E. López-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martín-Martín, Y. Galagan, J. M. Sánchez-Pena, R. Vergaz, and B. Romero, “Visible light communication system using an organic emitter and a perovskite photodetector,” Org. Electron. 73, 292–298 (2019).
[Crossref]

L. Salamandra, N. Y. Nia, M. Di Natali, C. Fazolo, S. Maiello, L. La Notte, G. Susanna, A. Pizzoleo, F. Matteocci, L. Cinà, L. Mattiello, F. Brunetti, A. Di Carlo, and A. Reale, “Perovskite photo-detectors (PVSK-PDs) for visible light communication,” Org. Electron. 69, 220–226 (2019).
[Crossref]

Photon. Res. (1)

Sci. Rep. (1)

M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, and F. Teng, “High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films,” Sci. Rep. 8, 1 (2018).
[Crossref]

Sensors (1)

X. Tang, X. Wang, R. Cattley, F. Gu, and A. Ball, “Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review,” Sensors 18, 4113 (2018).
[Crossref]

Small (2)

G. Cen, Y. Liu, C. Zhao, G. Wang, Y. Fu, G. Yan, Y. Yuan, C. Su, Z. Zhao, and W. Mai, “Atomic‐layer deposition‐assisted double‐side interfacial engineering for high‐performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications,” Small 15, 1902135 (2019).
[Crossref]

C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, and W. Huang, “Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system,” Small 15, 1903599 (2019).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

L. K. Jagadamma, O. Blaszczyk, M. T. Sajjad, A. Ruseckas, and I. D. W. Samuel, “Efficient indoor p-i-n hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layers,” Sol. Energy Mater. Sol. Cells 201, 110071 (2019).
[Crossref]

Sustain. Energy Fuels (1)

H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustain. Energy Fuels 4, 528–537 (2020).
[Crossref]

Other (2)

NREL, “Best research-cell efficiencies,” https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf .

Z. Wang, D. Tsonev, S. Videv, and H. Haas, “Towards self-powered solar panel receiver for optical wireless communication,” in IEEE International Conference on Communications (ICC) (2014), pp. 3348–3353.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. SEM images of triple-cation perovskite films for all thicknesses. The red bar corresponds to a length of 2 μm.
Fig. 2.
Fig. 2. Triple-cation perovskite devices with their (a) best J-V curves under 0.9  mW/cm2 indoor white LED illumination, (b) EQE, and (c) I-V curves under 50 mW red laser (660 nm) illumination.
Fig. 3.
Fig. 3. Low-magnification SEM images of the three thickest triple-cation perovskite films. The blue scale bar represents a length of 10 μm.
Fig. 4.
Fig. 4. (a) Box and whisker distributions of the 3  dB bandwidth and (b) achieved data rate for perovskite devices with varied active layer thickness. Here, the mean of the data is represented as a square, the median a solid line, and the ends of the box represent the 25%–75% range.
Fig. 5.
Fig. 5. (a) Transient photovoltage measurements for triple-cation perovskite solar cells with varied thickness. (b) Fitted RC time constant from this measurement.
Fig. 6.
Fig. 6. Example frequency response for each perovskite thickness device.
Fig. 7.
Fig. 7. Example of bit loading from one measurement of each thickness: (a) 60 nm, (b) 170 nm, (c) 250 nm, (d) 640 nm, (e) 840 nm, (f) 965 nm.

Tables (7)

Tables Icon

Table 1. Cell Performance of Triple-Cation Devices with Varied Active Layer Thickness Using a White LED with an Incident Optical Power of 0.9  mW/cm2a,b

Tables Icon

Table 2. External Quantum Efficiency of Triple-Cation Solar Cells under 660 nm Low Intensity and Laser Illumination, and Power Conversion Efficiency and Power Generated under 50 mW Laser Power

Tables Icon

Table 3. Average and Standard Deviation of 3  dB Bandwidth, Data Rate, BER, and Number of Measured Samples of Triple-Cation Photodetectors with Varied Active Layer Thickness

Tables Icon

Table 4. Coefficients (B1,B2) and Lifetimes (τ1,τ2) Extracted from the Two-Exponential Fit of TRPL Data for All Perovskite Devices of Varied Active Layer Thicknessa

Tables Icon

Table 5. Measured Device Resistance, Calculated Capacitance, and RC Time Constant for Triple-Cation Devices of Varied Active Layer Thickness Using Two Methods: Bandwidth Estimation and Transient Photovoltage

Tables Icon

Table 6. Spin Coating Conditions for the Triple-Cation Perovskite Film Formationa

Tables Icon

Table 7. Solar Cell Performance of Triple-Cation Perovskite Devices in Forward and Reverse Scans, under AM 1.5 Solar Simulator Illumination

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R=R0(Voc/Vload1).
I=I0(eqVnkBT1)Iph,