Abstract

The operation of quantum dot lasers epitaxially grown on silicon is investigated through a quantum-corrected Poisson-drift-diffusion model. This in-house developed simulation framework completes the traditional rate equation approach, which models the intersubband transitions involved into simultaneous ground-state and excited-state lasing, with a physics-based description of carrier transport and electrostatic effects. The code is applied to look into some of the most relevant mechanisms affecting the lasing operation. We analyze the impact of threading dislocations on non-radiative recombination and laser threshold current. We demonstrate that asymmetric carrier transport in the barrier explains the ground-state power quenching above the excited-state lasing threshold. Finally, we study p-type modulation doping and its benefits/contraindications. The observation of an optimum doping level, minimizing the ground-state lasing threshold current, stems from the reduction of the electron density, which counteracts the benefits from the expected increase of the hole density. This reduction is due to electrostatic effects hindering electron injection.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
    [Crossref]
  2. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  3. Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
    [Crossref]
  4. A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
    [Crossref]
  5. J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
    [Crossref]
  6. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
    [Crossref]
  7. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
    [Crossref]
  8. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
    [Crossref]
  9. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
    [Crossref]
  10. J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
    [Crossref]
  11. Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J. Park, M. Liao, S. Pan, A. M. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. J. Seeds, I. White, R. Penty, and H. Liu, “Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon,” J. Lightwave Technol. 38, 240–248 (2019).
    [Crossref]
  12. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
    [Crossref]
  13. W. W. Chow and F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
    [Crossref]
  14. M. Gioannini, “Ground-state power quenching in two-state lasing quantum dot lasers,” J. Appl. Phys. 111, 043108 (2012).
    [Crossref]
  15. V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102, 112101 (2013).
    [Crossref]
  16. H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAS/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
    [Crossref]
  17. P. M. Smowton and I. C. Sandall, “Gain in p-doped quantum dot lasers,” J. Appl. Phys. 101, 013107 (2007).
    [Crossref]
  18. V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
    [Crossref]
  19. Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
    [Crossref]
  20. Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
    [Crossref]
  21. M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi, and F. Cappelluti, “Simulation of quantum dot solar cells including carrier intersubband dynamics and transport,” IEEE J. Photovoltaics 3, 1271–1278 (2013).
    [Crossref]
  22. A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
    [Crossref]
  23. D. Gready and G. Eisenstein, “Carrier dynamics and modulation capabilities of 1.55-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).
    [Crossref]
  24. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
    [Crossref]
  25. D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
    [Crossref]
  26. I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91, 071111 (2007).
    [Crossref]
  27. A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik, and P. Debernardi, “Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator,” IEEE J. Sel. Top. Quantum Electron. 25, 1500212 (2019).
    [Crossref]
  28. M. Yamaguchi, A. Yamamoto, and Y. Itoh, “Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 59, 1751–1753 (1986).
    [Crossref]
  29. C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
    [Crossref]
  30. M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116, 194504 (2014).
    [Crossref]
  31. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, A Phenomenological Approach to Diode Lasers (Wiley, 2012), Chap. 2, pp. 45–90.
  32. D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
    [Crossref]
  33. M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
    [Crossref]
  34. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
    [Crossref]
  35. J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
    [Crossref]
  36. J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
    [Crossref]

2020 (1)

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

2019 (4)

J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik, and P. Debernardi, “Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator,” IEEE J. Sel. Top. Quantum Electron. 25, 1500212 (2019).
[Crossref]

Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J. Park, M. Liao, S. Pan, A. M. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. J. Seeds, I. White, R. Penty, and H. Liu, “Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon,” J. Lightwave Technol. 38, 240–248 (2019).
[Crossref]

2018 (8)

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAS/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

2017 (7)

V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
[Crossref]

Y. Shi, Z. Wang, J. V. Campenhout, M. Pantouvaki, W. Guo, B. Kunert, and D. V. Thourhout, “Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer,” Optica 4, 1468–1473 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

2016 (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

2015 (1)

2014 (1)

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116, 194504 (2014).
[Crossref]

2013 (4)

D. Gready and G. Eisenstein, “Carrier dynamics and modulation capabilities of 1.55-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).
[Crossref]

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102, 112101 (2013).
[Crossref]

W. W. Chow and F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
[Crossref]

M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi, and F. Cappelluti, “Simulation of quantum dot solar cells including carrier intersubband dynamics and transport,” IEEE J. Photovoltaics 3, 1271–1278 (2013).
[Crossref]

2012 (1)

M. Gioannini, “Ground-state power quenching in two-state lasing quantum dot lasers,” J. Appl. Phys. 111, 043108 (2012).
[Crossref]

2007 (2)

P. M. Smowton and I. C. Sandall, “Gain in p-doped quantum dot lasers,” J. Appl. Phys. 101, 013107 (2007).
[Crossref]

I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91, 071111 (2007).
[Crossref]

2004 (1)

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

2003 (2)

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[Crossref]

1996 (1)

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

1986 (1)

M. Yamaguchi, A. Yamamoto, and Y. Itoh, “Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 59, 1751–1753 (1986).
[Crossref]

Andre, C.

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Arai, S.

Arakawa, Y.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

Baron, T.

Beanland, R.

Bertazzi, F.

A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik, and P. Debernardi, “Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator,” IEEE J. Sel. Top. Quantum Electron. 25, 1500212 (2019).
[Crossref]

M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi, and F. Cappelluti, “Simulation of quantum dot solar cells including carrier intersubband dynamics and transport,” IEEE J. Photovoltaics 3, 1271–1278 (2013).
[Crossref]

Boeckl, J.

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Bowers, J.

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[Crossref]

Bowers, J. E.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAS/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

Buffolo, M.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

Cabrol, O.

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Callahan, P. G.

Campenhout, J. V.

Cappelluti, F.

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi, and F. Cappelluti, “Simulation of quantum dot solar cells including carrier intersubband dynamics and transport,” IEEE J. Photovoltaics 3, 1271–1278 (2013).
[Crossref]

Cédola, A. P.

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi, and F. Cappelluti, “Simulation of quantum dot solar cells including carrier intersubband dynamics and transport,” IEEE J. Photovoltaics 3, 1271–1278 (2013).
[Crossref]

Chen, H.

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Chen, J. X.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[Crossref]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[Crossref]

Chen, S.

Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J. Park, M. Liao, S. Pan, A. M. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. J. Seeds, I. White, R. Penty, and H. Liu, “Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon,” J. Lightwave Technol. 38, 240–248 (2019).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Chow, W. W.

Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

W. W. Chow and F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
[Crossref]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, A Phenomenological Approach to Diode Lasers (Wiley, 2012), Chap. 2, pp. 45–90.

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, A Phenomenological Approach to Diode Lasers (Wiley, 2012), Chap. 2, pp. 45–90.

De Santi, C.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

Debernardi, P.

A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik, and P. Debernardi, “Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator,” IEEE J. Sel. Top. Quantum Electron. 25, 1500212 (2019).
[Crossref]

Dong, B.

Duan, J.

Dumont, M.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

Echlin, M. P.

Eisenstein, G.

D. Gready and G. Eisenstein, “Carrier dynamics and modulation capabilities of 1.55-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Feng, K.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Fiore, A.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[Crossref]

Fitzgerald, E.

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[Crossref]

Geisz, J. F.

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116, 194504 (2014).
[Crossref]

Gérard, J. M.

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Gioannini, M.

M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi, and F. Cappelluti, “Simulation of quantum dot solar cells including carrier intersubband dynamics and transport,” IEEE J. Photovoltaics 3, 1271–1278 (2013).
[Crossref]

M. Gioannini, “Ground-state power quenching in two-state lasing quantum dot lasers,” J. Appl. Phys. 111, 043108 (2012).
[Crossref]

Goano, M.

A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik, and P. Debernardi, “Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator,” IEEE J. Sel. Top. Quantum Electron. 25, 1500212 (2019).
[Crossref]

Gossard, A. C.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

Gready, D.

D. Gready and G. Eisenstein, “Carrier dynamics and modulation capabilities of 1.55-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).
[Crossref]

Grillot, F.

Guo, W.

Hantschmann, C.

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Herrick, R. W.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

Hou, C.

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Houlihan, J.

I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91, 071111 (2007).
[Crossref]

Hu, E. L.

Huang, D.

Huang, H.

Huang, X.

Huang, Y.

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Huyet, G.

I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91, 071111 (2007).
[Crossref]

Inoue, D.

Itoh, Y.

M. Yamaguchi, A. Yamamoto, and Y. Itoh, “Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 59, 1751–1753 (1986).
[Crossref]

Jahnke, F.

W. W. Chow and F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
[Crossref]

Jan, C.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jung, D.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAS/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Kennedy, M.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

Kennedy, M. J.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

Keyes, B.

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Khalili, A.

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

Kim, D.

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

Korenev, V. V.

V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
[Crossref]

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102, 112101 (2013).
[Crossref]

Kulagina, M. M.

V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
[Crossref]

Kunert, B.

Lau, K. M.

Lee, M. L.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Li, Q.

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

Liao, M.

Liu, A. Y.

Liu, H.

Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J. Park, M. Liao, S. Pan, A. M. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. J. Seeds, I. White, R. Penty, and H. Liu, “Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon,” J. Lightwave Technol. 38, 240–248 (2019).
[Crossref]

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liu, Z.

Lu, Y.

Lumb, M. P.

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116, 194504 (2014).
[Crossref]

Manning, R.

I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91, 071111 (2007).
[Crossref]

Markus, A.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[Crossref]

Martin, M.

Masanovic, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, A Phenomenological Approach to Diode Lasers (Wiley, 2012), Chap. 2, pp. 45–90.

Maximov, M. V.

V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
[Crossref]

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102, 112101 (2013).
[Crossref]

Meneghesso, G.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

Meneghini, M.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

Michalzik, R.

A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik, and P. Debernardi, “Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator,” IEEE J. Sel. Top. Quantum Electron. 25, 1500212 (2019).
[Crossref]

Min, J.

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Ning, J.

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Nishi, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

Nishiyama, N.

Norman, J.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama, S. Arai, A. C. Gossard, and J. E. Bowers, “Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 26, 7022–7033 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAS/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25, 3927–3934 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3, B1–B9 (2015).
[Crossref]

Norman, J. C.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]

Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

O’Driscoll, I.

I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91, 071111 (2007).
[Crossref]

Omelchenko, A. V.

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102, 112101 (2013).
[Crossref]

Pan, S.

Pantouvaki, M.

Paranthoen, C.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[Crossref]

Paranthoën, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[Crossref]

Park, J.

Patel, P.

Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Penty, R.

Peters, J.

Pitera, A.

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Piwonski, T.

I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91, 071111 (2007).
[Crossref]

Platz, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[Crossref]

Pollock, T. M.

Provost, J.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[Crossref]

Ringel, S.

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Rovere, L.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

Samparisi, F.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

Sanchez, A. M.

Sandall, I. C.

P. M. Smowton and I. C. Sandall, “Gain in p-doped quantum dot lasers,” J. Appl. Phys. 101, 013107 (2007).
[Crossref]

Santo, N. D.

M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi, and F. Cappelluti, “Simulation of quantum dot solar cells including carrier intersubband dynamics and transport,” IEEE J. Photovoltaics 3, 1271–1278 (2013).
[Crossref]

Savelyev, A. V.

V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
[Crossref]

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102, 112101 (2013).
[Crossref]

Schleussner, C.-F.

I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91, 071111 (2007).
[Crossref]

Seeds, A. J.

Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J. Park, M. Liao, S. Pan, A. M. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. J. Seeds, I. White, R. Penty, and H. Liu, “Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon,” J. Lightwave Technol. 38, 240–248 (2019).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Selvidge, J.

Sermage, B.

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

Shang, C.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shernyakov, Y. M.

V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
[Crossref]

Shi, Y.

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

P. M. Smowton and I. C. Sandall, “Gain in p-doped quantum dot lasers,” J. Appl. Phys. 101, 013107 (2007).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Srinivasan, S.

Steiner, M. A.

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116, 194504 (2014).
[Crossref]

Sugawara, M.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

Takemasa, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

Tang, M.

Z. Liu, C. Hantschmann, M. Tang, Y. Lu, J. Park, M. Liao, S. Pan, A. M. Sanchez, R. Beanland, M. Martin, T. Baron, S. Chen, A. J. Seeds, I. White, R. Penty, and H. Liu, “Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon,” J. Lightwave Technol. 38, 240–248 (2019).
[Crossref]

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Thourhout, D. V.

Tibaldi, A.

A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik, and P. Debernardi, “Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator,” IEEE J. Sel. Top. Quantum Electron. 25, 1500212 (2019).
[Crossref]

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

Torres, A.

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

Walters, R. J.

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116, 194504 (2014).
[Crossref]

Wan, Y.

Wang, J.

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Wang, X.

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Wang, Z.

White, I.

Wilt, D.

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

Wu, J.

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Yamaguchi, M.

M. Yamaguchi, A. Yamamoto, and Y. Itoh, “Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 59, 1751–1753 (1986).
[Crossref]

Yamamoto, A.

M. Yamaguchi, A. Yamamoto, and Y. Itoh, “Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 59, 1751–1753 (1986).
[Crossref]

Zanoni, E.

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

Zhang, C.

Zhang, R.

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Zhang, Z.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, J. C. Norman, Z. Zhang, J. E. Bowers, and F. Grillot, “Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration,” Photon. Res. 7, 1222–1228 (2019).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAS/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4, 940–944 (2017).
[Crossref]

Zhang, Z. Z.

Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Zheng, C.

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Zhukov, A. E.

V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
[Crossref]

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102, 112101 (2013).
[Crossref]

Zubov, F. I.

V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
[Crossref]

ACS Photonics (2)

Q. Li, X. Wang, Z. Zhang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity Fabry-Perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Appl. Phys. Lett. (9)

I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R. Manning, “Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 91, 071111 (2007).
[Crossref]

Z. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68, 3123–3125 (1996).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[Crossref]

V. V. Korenev, A. V. Savelyev, A. E. Zhukov, A. V. Omelchenko, and M. V. Maximov, “Analytical approach to the multi-state lasing phenomenon in quantum dot lasers,” Appl. Phys. Lett. 102, 112101 (2013).
[Crossref]

V. V. Korenev, A. V. Savelyev, M. V. Maximov, F. I. Zubov, Y. M. Shernyakov, M. M. Kulagina, and A. E. Zhukov, “Effect of modulation p-doping level on multi-state lasing in InAs/InGaAs quantum dot lasers having different external loss,” Appl. Phys. Lett. 111, 132103 (2017).
[Crossref]

C. Andre, J. Boeckl, D. Wilt, A. Pitera, M. L. Lee, E. Fitzgerald, B. Keyes, and S. Ringel, “Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates,” Appl. Phys. Lett. 84, 3447–3449 (2004).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112, 153507 (2018).
[Crossref]

IEEE J. Photovoltaics (1)

M. Gioannini, A. P. Cédola, N. D. Santo, F. Bertazzi, and F. Cappelluti, “Simulation of quantum dot solar cells including carrier intersubband dynamics and transport,” IEEE J. Photovoltaics 3, 1271–1278 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy, M. Dumont, R. W. Herrick, A. C. Gossard, and J. E. Bowers, “The importance of p-doping for quantum dot laser on silicon performance,” IEEE J. Quantum Electron. 55, 2001111 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (6)

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

A. Y. Liu and J. Bowers, “Photonic integration with epitaxial III-V on silicon,” IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).
[Crossref]

M. Buffolo, F. Samparisi, L. Rovere, C. De Santi, D. Jung, J. Norman, J. E. Bowers, R. W. Herrick, G. Meneghesso, E. Zanoni, and M. Meneghini, “Investigation of current-driven degradation of 1.3 μm quantum-dot lasers epitaxially grown on silicon,” IEEE J. Sel. Top. Quantum Electron. 26, 1900208 (2020).
[Crossref]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[Crossref]

D. Gready and G. Eisenstein, “Carrier dynamics and modulation capabilities of 1.55-μm quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900307 (2013).
[Crossref]

A. Tibaldi, F. Bertazzi, M. Goano, R. Michalzik, and P. Debernardi, “Venus: a vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator,” IEEE J. Sel. Top. Quantum Electron. 25, 1500212 (2019).
[Crossref]

Int. J. Photoenergy (1)

A. P. Cédola, D. Kim, A. Tibaldi, M. Tang, A. Khalili, J. Wu, H. Liu, and F. Cappelluti, “Physics-based modeling and experimental study of Si-doped InAs/GaAs quantum dot solar cells,” Int. J. Photoenergy 2018, 7215843 (2018).
[Crossref]

J. Appl. Phys. (4)

M. Yamaguchi, A. Yamamoto, and Y. Itoh, “Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates,” J. Appl. Phys. 59, 1751–1753 (1986).
[Crossref]

M. Gioannini, “Ground-state power quenching in two-state lasing quantum dot lasers,” J. Appl. Phys. 111, 043108 (2012).
[Crossref]

P. M. Smowton and I. C. Sandall, “Gain in p-doped quantum dot lasers,” J. Appl. Phys. 101, 013107 (2007).
[Crossref]

M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, “Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells,” J. Appl. Phys. 116, 194504 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III-V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (2)

Photon. Res. (2)

Prog. Quantum Electron. (1)

W. W. Chow and F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics,” Prog. Quantum Electron. 37, 109–184 (2013).
[Crossref]

Other (1)

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, A Phenomenological Approach to Diode Lasers (Wiley, 2012), Chap. 2, pp. 45–90.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Schematic representation of the epitaxial structure of the studied QD lasers, similar to those in Refs. [24,25]. The growth direction is from the bottom to the top.
Fig. 2.
Fig. 2. Band diagram at thermodynamic equilibrium, with the conduction band (blue), the valence band (red), and the Fermi level (dashed, black). The dotted, vertical lines delimit the SCH region.
Fig. 3.
Fig. 3. Schematic representation of the QD energy states and intersubband transitions.
Fig. 4.
Fig. 4. Calculated GS modal gain versus current density for different levels of TDD and experimental gain (circles) from Ref. [24].
Fig. 5.
Fig. 5. (a) GS threshold current density and (c) optical power as a function of TDDbulk, for fixed DWELL SRH lifetime corresponding to TDDWL=105  cm2. The solid lines are almost overlapped. (b) GS threshold current density and slope efficiency and (d) optical power as a function of TDD in the barrier and DWELL layers (TDDWL=TDDbulk).
Fig. 6.
Fig. 6. GS (solid) and ES (dotted) optical power with (a) μn=8500  cm2/(V·s) and μp=350  cm2/(V·s) and (b) μn=μp=8500  cm2/(V·s) in the SCH region.
Fig. 7.
Fig. 7. Net capture rate from the bulk states to the WL with (a) μn=8500  cm2/(V·s) and μp=350  cm2/(V·s) and (b) μn=μp=8500  cm2/(V·s) in the SCH region. Layer 1 (5) is the closest to the p-contact (n-contact).
Fig. 8.
Fig. 8. Contribution of (a) electrons and (b) holes to the GS modal gain: solid line is the overall contribution, whereas colored dashed lines are the contribution of the different layers (color legend is the same as in Fig. 6). Vertical lines indicate GS and ES threshold currents. (c) GS electrons and (d) holes occupation probability. The mobility of electrons and holes in the SCH region is μn=8500  cm2/(V·s) and μp=350  cm2/(V·s). Layer 1 (5) is the closest to the p-contact (n-contact).
Fig. 9.
Fig. 9. GS (solid) and ES (dotted) optical power with (a) no p-type modulation doping and a p-type modulation doping of (b) 5×1017  cm3 and (c) 30×1017  cm3.
Fig. 10.
Fig. 10. (a) GS (blue) and ES (red) threshold current density as functions of the p-type modulation doping density. (b) Total radiative and SRH recombination rates as functions of p-type modulation doping density calculated at the JthGS values in (a).
Fig. 11.
Fig. 11. (a) GS modal gain versus current density and (b) holes (GGSmod,p, dashed) and electrons (GGSmod,n, solid) contributions to the modal gain.
Fig. 12.
Fig. 12. (a) Contribution of electrons (blue) and holes (red) to the GS modal gain at J=580  A/cm2 versus p-doping density and (b) corresponding GS modal gain.
Fig. 13.
Fig. 13. (a) Conduction band (solid) and electron quasi-Fermi level (dashed) for the bulk states of the SCH region at J=580  A/cm2. (b) Valence band (solid) and hole quasi-Fermi level (dashed) for the bulk states of the SCH region at J=580  A/cm2.
Fig. 14.
Fig. 14. Net capture rate from the bulk states to the WL at J=580  A/cm2 for each layer of QDs.
Fig. 15.
Fig. 15. Total SRH recombination rate versus voltage at three different doping levels. The vertical dashed lines indicate the voltage value corresponding to the lasing threshold.

Tables (1)

Tables Icon

Table 1. Simulation Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

nt=1qJnxUBi(Rn,CAPBWL,iRn,ESCWL,iB)δ(xxi),
2ϕx2=qϵ[pn+N+k,i(pk,ink,i)δ(xxi)],
nk,it=(Rn,CAPk+1,ik,iRn,ESCk,ik+1,i)(Rn,CAPk,ik1,iRn,ESCk1,ik,i)Uk,iRstk,i,
Uradk,i=Bradk(nk,ipk,ink0,ipk0,i),
USRHk,i=nk,ipk,ink0,ipk0,iτn,SRHk(pk,i+pk0,i)+τp,SRHk(nk,i+nk0,i),
1τn(p),SRH=1τn(p),SRH0+π3Dn(p)TDD4,
Rstk,i=vgG0kΓi(ρnk,i+ρpk,i1)Sk,
Skt=βspRspk+vgGkmodSkSkτp,
Gkmod=G0kiΓi(ρnk,i+ρpk,i1)=G0kiΓiρnk,iGkmod,n+G0kiΓiρpk,iGkmod,pG0kiΓi,