Abstract

Constructing two-dimensional (2D) layered materials with traditional three-dimensional (3D) semiconductors into complex heterostructures has opened a new platform for the development of optoelectronic devices. Herein, large-area high performance self-driven photodetectors based on monolayer WS2/GaAs heterostructures were successfully fabricated with a wide response spectrum band ranging from the ultraviolet to near-infrared region. The detector exhibits an overall high performance, including high photoresponsivity of 65.58 A/W at 365 nm and 28.50 A/W at 880 nm, low noise equivalent power of 1.97×1015  W/Hz1/2, high detectivity of 4.47×1012  Jones, and fast response speed of 30/10 ms. This work suggests that the WS2/GaAs heterostructure is promising in future novel optoelectronic device applications, and also provides a low-cost, easy-to-process method for the preparation of 2D/3D heterojunction-based devices.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  2. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
    [Crossref]
  3. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
    [Crossref]
  4. C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
    [Crossref]
  5. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, and J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  6. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
    [Crossref]
  7. C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical properties of 2D semiconductor WS2,” Adv. Opt. Mater. 6, 1700767 (2018).
    [Crossref]
  8. W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, and H. Qi, “Investigation of the band alignment at MoS2/PtSe2 heterojunctions,” Appl. Phys. Lett. 114, 201601 (2019).
    [Crossref]
  9. L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
    [Crossref]
  10. Y.-C. Wu and W.-R. Liu, “Few-layered MoSe2 ultrathin nanosheets as anode materials for lithium ion batteries,” J. Alloys Compd. 813, 152074 (2020).
    [Crossref]
  11. H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
    [Crossref]
  12. J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, and J. M. Wu, “Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor,” Nano Energy 31, 575–581 (2017).
    [Crossref]
  13. L. Yuan and L. Huang, “Exciton dynamics and annihilation in WS2 2D semiconductors,” Nanoscale 7, 7402–7408 (2015).
    [Crossref]
  14. J. D. Yao, Z. Q. Zheng, J. M. Shao, and G. W. Yang, “Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition,” Nanoscale 7, 14974–14981 (2015).
    [Crossref]
  15. H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano 10, 7866–7873 (2016).
    [Crossref]
  16. C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
    [Crossref]
  17. Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
    [Crossref]
  18. D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
    [Crossref]
  19. P. Gehring, R. Urcuyo, D. L. Duong, M. Burghard, and K. Kern, “Thin-layer black phosphorus/GaAs heterojunction p-n diodes,” Appl. Phys. Lett. 106, 233110 (2015).
    [Crossref]
  20. Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
    [Crossref]
  21. H.-S. Kim, M. Patel, J. Kim, and M. S. Jeong, “Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible–NIR optoelectronic devices,” ACS Appl. Mater. Interfaces 10, 3964–3974 (2018).
    [Crossref]
  22. Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
    [Crossref]
  23. K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
    [Crossref]
  24. T. Kato and T. Kaneko, “Transport dynamics of neutral excitons and trions in monolayer WS2,” ACS Nano 10, 9687–9694 (2016).
    [Crossref]
  25. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
    [Crossref]
  26. K. Li, K.-W. Ang, Y. Lv, and X. Liu, “Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus,” Appl. Phys. Lett. 109, 261901 (2016).
    [Crossref]
  27. K. Li, T. Wang, W. Wang, and X. Gao, “Lattice vibration properties of MoS2/PtSe2 heterostructures,” J. Alloys Compd. 820, 153192 (2020).
    [Crossref]
  28. X. Cong, M. Lin, and P.-H. Tan, “Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure,” J. Semicond. 40, 091001 (2019).
    [Crossref]
  29. W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3, 025016 (2016).
    [Crossref]
  30. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
    [Crossref]
  31. A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
    [Crossref]
  32. X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
    [Crossref]
  33. L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
    [Crossref]
  34. L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
    [Crossref]
  35. E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
    [Crossref]
  36. W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
    [Crossref]
  37. Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
    [Crossref]
  38. N. T. Shelke and B. R. Karche, “Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector,” J. Alloys Compd. 653, 298–303 (2015).
    [Crossref]
  39. P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
    [Crossref]
  40. L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
    [Crossref]
  41. J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
    [Crossref]
  42. J. Yao, Z. Zheng, and G. Yang, “Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm,” J. Mater. Chem. C 4, 7831–7840 (2016).
    [Crossref]
  43. Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, and D. Li, “Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors,” Photon. Res. 7, 1127–1133 (2019).
    [Crossref]
  44. C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
    [Crossref]

2020 (4)

Y.-C. Wu and W.-R. Liu, “Few-layered MoSe2 ultrathin nanosheets as anode materials for lithium ion batteries,” J. Alloys Compd. 813, 152074 (2020).
[Crossref]

K. Li, T. Wang, W. Wang, and X. Gao, “Lattice vibration properties of MoS2/PtSe2 heterostructures,” J. Alloys Compd. 820, 153192 (2020).
[Crossref]

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

2019 (7)

Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, and D. Li, “Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors,” Photon. Res. 7, 1127–1133 (2019).
[Crossref]

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

X. Cong, M. Lin, and P.-H. Tan, “Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure,” J. Semicond. 40, 091001 (2019).
[Crossref]

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
[Crossref]

W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, and H. Qi, “Investigation of the band alignment at MoS2/PtSe2 heterojunctions,” Appl. Phys. Lett. 114, 201601 (2019).
[Crossref]

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

2018 (8)

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical properties of 2D semiconductor WS2,” Adv. Opt. Mater. 6, 1700767 (2018).
[Crossref]

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

H.-S. Kim, M. Patel, J. Kim, and M. S. Jeong, “Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible–NIR optoelectronic devices,” ACS Appl. Mater. Interfaces 10, 3964–3974 (2018).
[Crossref]

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

2017 (4)

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, and J. M. Wu, “Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor,” Nano Energy 31, 575–581 (2017).
[Crossref]

2016 (7)

H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano 10, 7866–7873 (2016).
[Crossref]

T. Kato and T. Kaneko, “Transport dynamics of neutral excitons and trions in monolayer WS2,” ACS Nano 10, 9687–9694 (2016).
[Crossref]

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3, 025016 (2016).
[Crossref]

J. Yao, Z. Zheng, and G. Yang, “Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm,” J. Mater. Chem. C 4, 7831–7840 (2016).
[Crossref]

K. Li, K.-W. Ang, Y. Lv, and X. Liu, “Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus,” Appl. Phys. Lett. 109, 261901 (2016).
[Crossref]

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

2015 (4)

N. T. Shelke and B. R. Karche, “Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector,” J. Alloys Compd. 653, 298–303 (2015).
[Crossref]

P. Gehring, R. Urcuyo, D. L. Duong, M. Burghard, and K. Kern, “Thin-layer black phosphorus/GaAs heterojunction p-n diodes,” Appl. Phys. Lett. 106, 233110 (2015).
[Crossref]

L. Yuan and L. Huang, “Exciton dynamics and annihilation in WS2 2D semiconductors,” Nanoscale 7, 7402–7408 (2015).
[Crossref]

J. D. Yao, Z. Q. Zheng, J. M. Shao, and G. W. Yang, “Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition,” Nanoscale 7, 14974–14981 (2015).
[Crossref]

2014 (3)

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

2013 (3)

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

2012 (2)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, and J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, and J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
[Crossref]

2011 (1)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Ang, K.-W.

Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, and D. Li, “Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors,” Photon. Res. 7, 1127–1133 (2019).
[Crossref]

K. Li, K.-W. Ang, Y. Lv, and X. Liu, “Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus,” Appl. Phys. Lett. 109, 261901 (2016).
[Crossref]

Assefa, S.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Banerjee, S. K.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

Bao, Q.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Bonaccorso, F.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Burghard, M.

P. Gehring, R. Urcuyo, D. L. Duong, M. Burghard, and K. Kern, “Thin-layer black phosphorus/GaAs heterojunction p-n diodes,” Appl. Phys. Lett. 106, 233110 (2015).
[Crossref]

Cao, B.

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

Chai, Y.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

Chamlagain, B.

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Chen, H.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

Chen, Q.

H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano 10, 7866–7873 (2016).
[Crossref]

Chen, W.

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

Cheng, M. M.-C.

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Cheng, T.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Chou, T.-M.

J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, and J. M. Wu, “Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor,” Nano Energy 31, 575–581 (2017).
[Crossref]

Chuang, H.-J.

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, and J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Colombo, L.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

Cong, C.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical properties of 2D semiconductor WS2,” Adv. Opt. Mater. 6, 1700767 (2018).
[Crossref]

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

Cong, X.

X. Cong, M. Lin, and P.-H. Tan, “Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure,” J. Semicond. 40, 091001 (2019).
[Crossref]

Dadgar, A. M.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

Dai, X.

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Ding, J.

C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
[Crossref]

Dong, R.

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

Duong, D. L.

P. Gehring, R. Urcuyo, D. L. Duong, M. Burghard, and K. Kern, “Thin-layer black phosphorus/GaAs heterojunction p-n diodes,” Appl. Phys. Lett. 106, 233110 (2015).
[Crossref]

Englund, D.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Esposito, D.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

Fan, D.

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Fan, Y.

H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano 10, 7866–7873 (2016).
[Crossref]

Feng, S.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

Feng, W.

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Fiori, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

Gan, X.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Gao, X.

K. Li, T. Wang, W. Wang, and X. Gao, “Lattice vibration properties of MoS2/PtSe2 heterostructures,” J. Alloys Compd. 820, 153192 (2020).
[Crossref]

Gao, Y.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Gehring, P.

P. Gehring, R. Urcuyo, D. L. Duong, M. Burghard, and K. Kern, “Thin-layer black phosphorus/GaAs heterojunction p-n diodes,” Appl. Phys. Lett. 106, 233110 (2015).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Geohegan, D. B.

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Ghimire, N. J.

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Gong, T.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Guo, H.

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

Guo, J.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

Han, L.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

Hao, Z.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

He, F.

C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
[Crossref]

He, K.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
[Crossref]

He, T.

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

He, Y.

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

Heinz, T. F.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
[Crossref]

Herman, I. P.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

Hersam, M. C.

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

Ho, J. C.

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

Hone, J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
[Crossref]

Hu, H.

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Hu, J.-G.

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Hu, P.

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Huang, L.

L. Yuan and L. Huang, “Exciton dynamics and annihilation in WS2 2D semiconductors,” Nanoscale 7, 7402–7408 (2015).
[Crossref]

Huang, W.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Huang, Z.

Iannaccone, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

Idrobo, J. C.

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Jariwala, D.

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

Jeong, M. S.

H.-S. Kim, M. Patel, J. Kim, and M. S. Jeong, “Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible–NIR optoelectronic devices,” ACS Appl. Mater. Interfaces 10, 3964–3974 (2018).
[Crossref]

Jia, C.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

Jia, Y.

Jiang, T.

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

Jiang, W.

W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, and H. Qi, “Investigation of the band alignment at MoS2/PtSe2 heterojunctions,” Appl. Phys. Lett. 114, 201601 (2019).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, and J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kaneko, T.

T. Kato and T. Kaneko, “Transport dynamics of neutral excitons and trions in monolayer WS2,” ACS Nano 10, 9687–9694 (2016).
[Crossref]

Kang, K.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

Karche, B. R.

N. T. Shelke and B. R. Karche, “Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector,” J. Alloys Compd. 653, 298–303 (2015).
[Crossref]

Kato, T.

T. Kato and T. Kaneko, “Transport dynamics of neutral excitons and trions in monolayer WS2,” ACS Nano 10, 9687–9694 (2016).
[Crossref]

Ke, Y.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Kern, K.

P. Gehring, R. Urcuyo, D. L. Duong, M. Burghard, and K. Kern, “Thin-layer black phosphorus/GaAs heterojunction p-n diodes,” Appl. Phys. Lett. 106, 233110 (2015).
[Crossref]

Kim, H.-S.

H.-S. Kim, M. Patel, J. Kim, and M. S. Jeong, “Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible–NIR optoelectronic devices,” ACS Appl. Mater. Interfaces 10, 3964–3974 (2018).
[Crossref]

Kim, J.

H.-S. Kim, M. Patel, J. Kim, and M. S. Jeong, “Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible–NIR optoelectronic devices,” ACS Appl. Mater. Interfaces 10, 3964–3974 (2018).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, and J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Lan, C.

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

Lau, S. P.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

Lee, C.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
[Crossref]

Lee, G. H.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
[Crossref]

Lei, H.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

Lei, Z.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Leng, J.

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

Li, C.

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

Li, D.

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, and D. Li, “Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors,” Photon. Res. 7, 1127–1133 (2019).
[Crossref]

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

Li, E.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

Li, H.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

Li, J.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Li, K.

K. Li, T. Wang, W. Wang, and X. Gao, “Lattice vibration properties of MoS2/PtSe2 heterostructures,” J. Alloys Compd. 820, 153192 (2020).
[Crossref]

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, and H. Qi, “Investigation of the band alignment at MoS2/PtSe2 heterojunctions,” Appl. Phys. Lett. 114, 201601 (2019).
[Crossref]

K. Li, K.-W. Ang, Y. Lv, and X. Liu, “Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus,” Appl. Phys. Lett. 109, 261901 (2016).
[Crossref]

Li, S.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Li, X.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

Li, Z.

Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, and D. Li, “Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors,” Photon. Res. 7, 1127–1133 (2019).
[Crossref]

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Li, Z.-J.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

Liang, F.-X.

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Lin, H.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Lin, J.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Lin, J.-H.

J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, and J. M. Wu, “Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor,” Nano Energy 31, 575–581 (2017).
[Crossref]

Lin, M.

X. Cong, M. Lin, and P.-H. Tan, “Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure,” J. Semicond. 40, 091001 (2019).
[Crossref]

Lin, M.-L.

W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3, 025016 (2016).
[Crossref]

Lin, S.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

Lin, S.-H.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

Lin, Z.-H.

J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, and J. M. Wu, “Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor,” Nano Energy 31, 575–581 (2017).
[Crossref]

Liu, S.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

Liu, W.-R.

Y.-C. Wu and W.-R. Liu, “Few-layered MoSe2 ultrathin nanosheets as anode materials for lithium ion batteries,” J. Alloys Compd. 813, 152074 (2020).
[Crossref]

Liu, X.

W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, and H. Qi, “Investigation of the band alignment at MoS2/PtSe2 heterojunctions,” Appl. Phys. Lett. 114, 201601 (2019).
[Crossref]

Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, and D. Li, “Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors,” Photon. Res. 7, 1127–1133 (2019).
[Crossref]

K. Li, K.-W. Ang, Y. Lv, and X. Liu, “Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus,” Appl. Phys. Lett. 109, 261901 (2016).
[Crossref]

Liu, Y.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

Liu, Z.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Long, H.

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

Lu, Y.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

Luo, L.-B.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Luo, W.

C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
[Crossref]

Lv, Y.

K. Li, K.-W. Ang, Y. Lv, and X. Liu, “Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus,” Appl. Phys. Lett. 109, 261901 (2016).
[Crossref]

Ma, D.

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Ma, W.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Mak, C.-H.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

Mak, K. F.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
[Crossref]

Mandrus, D.

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Mao, L.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Marks, T. J.

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

Meric, I.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Miyamoto, Y.

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Mu, H.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Neumaier, D.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

Nie, B.

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Ou, J. Z.

C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
[Crossref]

Palacios, T.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

Pasupathy, A. N.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

Patel, M.

H.-S. Kim, M. Patel, J. Kim, and M. S. Jeong, “Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible–NIR optoelectronic devices,” ACS Appl. Mater. Interfaces 10, 3964–3974 (2018).
[Crossref]

Peimyoo, N.

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

Peng, M.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

Perera, M. M.

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Pimenta, M. A.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

Qi, H.

W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, and H. Qi, “Investigation of the band alignment at MoS2/PtSe2 heterojunctions,” Appl. Phys. Lett. 114, 201601 (2019).
[Crossref]

Qiao, X.-F.

W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3, 025016 (2016).
[Crossref]

Qiu, C.

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

Qiu, C.-W.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Ren, T.-L.

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

Santos, E. J. G.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

Scullion, D.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

Seabaugh, A.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

Shan, J.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
[Crossref]

Shang, J.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical properties of 2D semiconductor WS2,” Adv. Opt. Mater. 6, 1700767 (2018).
[Crossref]

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

Shao, J. M.

J. D. Yao, Z. Q. Zheng, J. M. Shao, and G. W. Yang, “Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition,” Nanoscale 7, 14974–14981 (2015).
[Crossref]

Shelke, N. T.

N. T. Shelke and B. R. Karche, “Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector,” J. Alloys Compd. 653, 298–303 (2015).
[Crossref]

Shen, L.

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

Shepard, K.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Shi, W.

W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3, 025016 (2016).
[Crossref]

Shi, Z.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, and D. Li, “Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors,” Photon. Res. 7, 1127–1133 (2019).
[Crossref]

Shiue, R.-J.

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Shivananju, B. N.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Shu, L.

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

Singh, B.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, and J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Suenaga, K.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Sun, B.

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

Sun, L.

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

Sun, T.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Sun, X.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, and D. Li, “Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors,” Photon. Res. 7, 1127–1133 (2019).
[Crossref]

Tan, H.

H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano 10, 7866–7873 (2016).
[Crossref]

Tan, P.-H.

X. Cong, M. Lin, and P.-H. Tan, “Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure,” J. Semicond. 40, 091001 (2019).
[Crossref]

W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3, 025016 (2016).
[Crossref]

Tan, Q.-H.

W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3, 025016 (2016).
[Crossref]

Tan, X.

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Tang, C.

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

Tao, L.

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

Tian, H.

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

Tian, Y.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

Tománek, D.

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Tsang, Y. H.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

Tsao, Y.-H.

J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, and J. M. Wu, “Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor,” Nano Energy 31, 575–581 (2017).
[Crossref]

Urcuyo, R.

P. Gehring, R. Urcuyo, D. L. Duong, M. Burghard, and K. Kern, “Thin-layer black phosphorus/GaAs heterojunction p-n diodes,” Appl. Phys. Lett. 106, 233110 (2015).
[Crossref]

Wang, L.

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Wang, M.-Z.

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, and J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, Q. J.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Wang, S.

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

Wang, T.

K. Li, T. Wang, W. Wang, and X. Gao, “Lattice vibration properties of MoS2/PtSe2 heterostructures,” J. Alloys Compd. 820, 153192 (2020).
[Crossref]

Wang, W.

K. Li, T. Wang, W. Wang, and X. Gao, “Lattice vibration properties of MoS2/PtSe2 heterostructures,” J. Alloys Compd. 820, 153192 (2020).
[Crossref]

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, and H. Qi, “Investigation of the band alignment at MoS2/PtSe2 heterojunctions,” Appl. Phys. Lett. 114, 201601 (2019).
[Crossref]

Wang, X.

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Wang, Y.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, and H. Qi, “Investigation of the band alignment at MoS2/PtSe2 heterojunctions,” Appl. Phys. Lett. 114, 201601 (2019).
[Crossref]

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical properties of 2D semiconductor WS2,” Adv. Opt. Mater. 6, 1700767 (2018).
[Crossref]

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Warner, J. H.

H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano 10, 7866–7873 (2016).
[Crossref]

Wei, D.

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

Wen, Z.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Wu, C.

C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
[Crossref]

Wu, C.-Y.

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Wu, D.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Wu, E.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

Wu, J. M.

J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, and J. M. Wu, “Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor,” Nano Energy 31, 575–581 (2017).
[Crossref]

Wu, L.

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Wu, M.

C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
[Crossref]

Wu, M.-H.

J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, and J. M. Wu, “Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor,” Nano Energy 31, 575–581 (2017).
[Crossref]

Wu, X.

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

Wu, Y.

Wu, Y.-C.

Y.-C. Wu and W.-R. Liu, “Few-layered MoSe2 ultrathin nanosheets as anode materials for lithium ion batteries,” J. Alloys Compd. 813, 152074 (2020).
[Crossref]

Wu, Z.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

Xiang, Y.

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Xiao, K.

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Xiao, S.

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Xie, C.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Xing, C.

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Xu, J.

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

Xu, S.

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

Xu, T.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

Xu, W.

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano 10, 7866–7873 (2016).
[Crossref]

Xu, Z.

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

Yan, J.

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Yang, E. H.

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

Yang, G.

J. Yao, Z. Zheng, and G. Yang, “Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm,” J. Mater. Chem. C 4, 7831–7840 (2016).
[Crossref]

Yang, G. W.

J. D. Yao, Z. Q. Zheng, J. M. Shao, and G. W. Yang, “Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition,” Nanoscale 7, 14974–14981 (2015).
[Crossref]

Yang, H.

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

Yang, J.

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

Yao, J.

J. Yao, Z. Zheng, and G. Yang, “Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm,” J. Mater. Chem. C 4, 7831–7840 (2016).
[Crossref]

Yao, J. D.

J. D. Yao, Z. Q. Zheng, J. M. Shao, and G. W. Yang, “Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition,” Nanoscale 7, 14974–14981 (2015).
[Crossref]

Yip, S.

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

Yoon, M.

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Yu, B.

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

Yu, P.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Yu, T.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical properties of 2D semiconductor WS2,” Adv. Opt. Mater. 6, 1700767 (2018).
[Crossref]

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

Yu, W.

Y. Wu, Z. Li, K.-W. Ang, Y. Jia, Z. Shi, Z. Huang, W. Yu, X. Sun, X. Liu, and D. Li, “Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors,” Photon. Res. 7, 1127–1133 (2019).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Yu, X.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Yu, Y.-Q.

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Yuan, H.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

Yuan, L.

L. Yuan and L. Huang, “Exciton dynamics and annihilation in WS2 2D semiconductors,” Nanoscale 7, 7402–7408 (2015).
[Crossref]

Zeng, L.

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

Zeng, L.-H.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Zeng, Q.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Zhang, H.

C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
[Crossref]

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Zhang, J.

W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3, 025016 (2016).
[Crossref]

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Zhang, S.

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

Zhang, T.-F.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

Zhang, X.

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Zhang, Y.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

Zhang, Z.-X.

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

Zheng, L.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

Zheng, Z.

J. Yao, Z. Zheng, and G. Yang, “Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm,” J. Mater. Chem. C 4, 7831–7840 (2016).
[Crossref]

Zheng, Z. Q.

J. D. Yao, Z. Q. Zheng, J. M. Shao, and G. W. Yang, “Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition,” Nanoscale 7, 14974–14981 (2015).
[Crossref]

Zhou, B.

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

Zhou, W.

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Zhou, Y.

H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano 10, 7866–7873 (2016).
[Crossref]

Zhou, Z.

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

Zhu, Q.

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

2D Mater. (1)

W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2,” 2D Mater. 3, 025016 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (3)

H.-S. Kim, M. Patel, J. Kim, and M. S. Jeong, “Growth of wafer-scale standing layers of WS2 for self-biased high-speed UV-visible–NIR optoelectronic devices,” ACS Appl. Mater. Interfaces 10, 3964–3974 (2018).
[Crossref]

L.-H. Zeng, M.-Z. Wang, H. Hu, B. Nie, Y.-Q. Yu, C.-Y. Wu, L. Wang, J.-G. Hu, C. Xie, F.-X. Liang, and L.-B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5, 9362–9366 (2013).
[Crossref]

Y. Liu, B. N. Shivananju, Y. Wang, Y. Zhang, W. Yu, S. Xiao, T. Sun, W. Ma, H. Mu, S. Lin, H. Zhang, Y. Lu, C.-W. Qiu, S. Li, and Q. Bao, “Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure,” ACS Appl. Mater. Interfaces 9, 36137–36145 (2017).
[Crossref]

ACS Nano (2)

T. Kato and T. Kaneko, “Transport dynamics of neutral excitons and trions in monolayer WS2,” ACS Nano 10, 9687–9694 (2016).
[Crossref]

H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano 10, 7866–7873 (2016).
[Crossref]

ACS Photon. (1)

E. Wu, D. Wu, C. Jia, Y. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, and X. Li, “In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared,” ACS Photon. 6, 565–572 (2019).
[Crossref]

Adv. Funct. Mater. (1)

L.-H. Zeng, S.-H. Lin, Z.-J. Li, Z.-X. Zhang, T.-F. Zhang, C. Xie, C.-H. Mak, Y. Chai, S. P. Lau, L.-B. Luo, and Y. H. Tsang, “Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction,” Adv. Funct. Mater. 28, 1705970 (2018).
[Crossref]

Adv. Opt. Mater. (2)

C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, “Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition,” Adv. Opt. Mater. 2, 131–136 (2014).
[Crossref]

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical properties of 2D semiconductor WS2,” Adv. Opt. Mater. 6, 1700767 (2018).
[Crossref]

Appl. Phys. Lett. (3)

W. Wang, K. Li, Y. Wang, W. Jiang, X. Liu, and H. Qi, “Investigation of the band alignment at MoS2/PtSe2 heterojunctions,” Appl. Phys. Lett. 114, 201601 (2019).
[Crossref]

P. Gehring, R. Urcuyo, D. L. Duong, M. Burghard, and K. Kern, “Thin-layer black phosphorus/GaAs heterojunction p-n diodes,” Appl. Phys. Lett. 106, 233110 (2015).
[Crossref]

K. Li, K.-W. Ang, Y. Lv, and X. Liu, “Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus,” Appl. Phys. Lett. 109, 261901 (2016).
[Crossref]

Appl. Surf. Sci. (2)

Y. Liu, W. Huang, W. Chen, X. Wang, J. Guo, H. Tian, H. Zhang, Y. Wang, B. Yu, T.-L. Ren, and J. Xu, “Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability,” Appl. Surf. Sci. 481, 1127–1132 (2019).
[Crossref]

K. Li, W. Wang, J. Leng, B. Sun, D. Li, H. Yang, T. Jiang, and Y. He, “Carrier dynamics in monolayer WS2/GaAs heterostructures,” Appl. Surf. Sci. 500, 144005 (2020).
[Crossref]

Chem. Mater. (1)

A. M. Dadgar, D. Scullion, K. Kang, D. Esposito, E. H. Yang, I. P. Herman, M. A. Pimenta, E. J. G. Santos, and A. N. Pasupathy, “Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides,” Chem. Mater. 30, 5148–5155 (2018).
[Crossref]

J. Alloys Compd. (3)

K. Li, T. Wang, W. Wang, and X. Gao, “Lattice vibration properties of MoS2/PtSe2 heterostructures,” J. Alloys Compd. 820, 153192 (2020).
[Crossref]

N. T. Shelke and B. R. Karche, “Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector,” J. Alloys Compd. 653, 298–303 (2015).
[Crossref]

Y.-C. Wu and W.-R. Liu, “Few-layered MoSe2 ultrathin nanosheets as anode materials for lithium ion batteries,” J. Alloys Compd. 813, 152074 (2020).
[Crossref]

J. Mater. Chem. C (2)

J. Yao, Z. Zheng, and G. Yang, “Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm,” J. Mater. Chem. C 4, 7831–7840 (2016).
[Crossref]

C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, and Y. Liu, “Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures,” J. Mater. Chem. C 5, 1494–1500 (2017).
[Crossref]

J. Semicond. (1)

X. Cong, M. Lin, and P.-H. Tan, “Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure,” J. Semicond. 40, 091001 (2019).
[Crossref]

Nano Energy (5)

Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen, and S. Lin, “Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity,” Nano Energy 47, 140–149 (2018).
[Crossref]

L. Han, M. Peng, Z. Wen, Y. Liu, Y. Zhang, Q. Zhu, H. Lei, S. Liu, L. Zheng, X. Sun, and H. Li, “Self-driven photodetection based on impedance matching effect between a triboelectric nanogenerator and a MoS2 nanosheets photodetector,” Nano Energy 59, 492–499 (2019).
[Crossref]

C. Wu, J. Z. Ou, F. He, J. Ding, W. Luo, M. Wu, and H. Zhang, “Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability,” Nano Energy 65, 104061 (2019).
[Crossref]

Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu, and S. Xu, “Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity,” Nano Energy 23, 89–96 (2016).
[Crossref]

J.-H. Lin, Y.-H. Tsao, M.-H. Wu, T.-M. Chou, Z.-H. Lin, and J. M. Wu, “Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor,” Nano Energy 31, 575–581 (2017).
[Crossref]

Nano Lett. (2)

H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett. 14, 3594–3601 (2014).
[Crossref]

P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates,” Nano Lett. 13, 1649–1654 (2013).
[Crossref]

Nano Res. (1)

C. Lan, Z. Zhou, Z. Zhou, C. Li, L. Shu, L. Shen, D. Li, R. Dong, S. Yip, and J. C. Ho, “Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition,” Nano Res. 11, 3371–3384 (2018).
[Crossref]

Nanoscale (3)

L. Yuan and L. Huang, “Exciton dynamics and annihilation in WS2 2D semiconductors,” Nanoscale 7, 7402–7408 (2015).
[Crossref]

J. D. Yao, Z. Q. Zheng, J. M. Shao, and G. W. Yang, “Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition,” Nanoscale 7, 14974–14981 (2015).
[Crossref]

W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, “Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions,” Nanoscale 10, 2404–2412 (2018).
[Crossref]

Nat. Commun. (1)

X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang, “Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor,” Nat. Commun. 9, 1545 (2018).
[Crossref]

Nat. Mater. (3)

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trions in monolayer MoS2,” Nat. Mater. 12, 207–211 (2012).
[Crossref]

D. Jariwala, T. J. Marks, and M. C. Hersam, “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16, 170–181 (2017).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nat. Nanotechnol. (3)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, and J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9, 768–779 (2014).
[Crossref]

Nat. Photonics (1)

X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Photon. Res. (1)

Sci. Rep. (1)

L. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, and Y. H. Tsang, “High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering,” Sci. Rep. 6, 20343 (2016).
[Crossref]

Scripta Mater. (1)

J. Guo, S. Li, Y. Ke, Z. Lei, Y. Liu, L. Mao, T. Gong, T. Cheng, W. Huang, and X. Zhang, “Broadband photodetector based on vertically stage-liked MoS2/Si heterostructure with ultra-high sensitivity and fast response speed,” Scripta Mater. 176, 1–6 (2020).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Optical images of the WS2/sapphire sample (bottom) and WS2/GaAs sample (top). The inset image corresponds to the cross-sectional TEM result of WS2/sapphire. (b) The X ray photoelectron spectroscopy obtained from the uncleaned GaAs substrate and WS2/GaAs sample. (c) The W 4f spectrum of the WS2/sapphire and WS2/GaAs samples. (d) The room temperature photoluminescence spectrum of the monolayer WS2 grown on sapphire substrate, and the related fitted exciton and trion peaks. (e) Raman spectra of both monolayer WS2/sapphire and monolayer WS2/GaAs samples. (f) The absorbance spectrum of monolayer WS2 grown on sapphire substrate.
Fig. 2.
Fig. 2. (a) Schematic structure of the WS2/GaAs photodetector, and the insets are the optical microscopy images of the device arrays (left) and single device (right). (b) Dark and light I–V curves of the GaAs photodetector (left) and WS2/GaAs photodetector (right) under different wavelength light illumination (365 nm, 460 nm, 660 nm, and 880 nm). (c) Schematic band diagrams at the interface of the WS2/GaAs heterojunction.
Fig. 3.
Fig. 3. (a) and (b) show the dark and light I–V curves at 365 nm illumination under different incident light power of the GaAs and WS2/GaAs photodetectors, respectively. (c) and (d) are the photocurrent as a function of incident light power under 365 nm at a fixed voltage of 1.0 V for the GaAs and WS2/GaAs photodetectors, respectively. (e) and (f) are the corresponding photoresponsivity according to the photocurrent obtained above.
Fig. 4.
Fig. 4. (a) Exhibits the dark and light I–V curves under 880 nm illumination with different incident light power of the WS2/GaAs photodetectors. (b) shows the corresponding photocurrent and photoresponsivity. (c) displays the dark and light I–V curves under 460 nm illumination with different incident light power of the WS2/GaAs photodetectors. (d) shows the corresponding photocurrent and photoresponsivity.
Fig. 5.
Fig. 5. (a) and (b) are the noise equivalent power (NEP) and normalized detectivity D* of both GaAs and WS2/GaAs photodetectors as a function of incident power, respectively.
Fig. 6.
Fig. 6. (a) and (c) are the photocurrent-time curves of WS2/GaAs photodetector at 1  V illuminated by 365 nm and 880 nm light, respectively. Meanwhile, the performance of the device under 365 nm after three days was also shown. (b) and (d) are the determined rise time (from 10% to 90% of maximum photocurrent) and fall time (from 90% to 10% of maximum photocurrent) of the detector under 365 nm and 880 nm light, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NEP=2qIoffR,