Abstract

The sweep rate, sweep range, and coherence length of swept sources, respectively, determine the acquisition rate, axial resolution, and imaging range of optical coherence tomography (OCT). In this paper, we demonstrate a reconfigurable high-speed and broadband swept laser by time stretching of a flat spectrum femtosecond pulse train with over 100 nm bandwidth and a repetition rate of 100 MHz. By incorporating an optical modulator and utilizing appropriate dispersive modules, the reconfiguration of the swept source is demonstrated with sweep rates of 25 and 2.5 MHz. The 2.5 MHz swept source enables an imaging range of >110  mm with 6 dB sensitivity roll-off in OCT, which is the longest imaging range ever reported for megahertz OCT.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8, 828–859 (2017).
    [Crossref]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [Crossref]
  3. P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23, 1700516 (2017).
    [Crossref]
  4. K. T. Cook, P. Qiao, J. Qi, L. A. Coldren, and C. J. Chang-Hasnain, “Resonant-antiresonant coupled cavity VCSELs,” Opt. Express 27, 1798–1807 (2019).
    [Crossref]
  5. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3, 1496–1503 (2016).
    [Crossref]
  6. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [Crossref]
  7. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
    [Crossref]
  8. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17, 9947–9961 (2009).
    [Crossref]
  9. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
    [Crossref]
  10. T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, and R. Huber, “Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography,” Biomed. Opt. Express 9, 4130–4148 (2018).
    [Crossref]
  11. S. Slepneva, B. O’shaughnessy, A. G. Vladimirov, S. Rica, E. A. Viktorov, and G. Huyet, “Convective Nozaki–Bekki holes in a long cavity OCT laser,” Opt. Express 27, 16395–16404 (2019).
    [Crossref]
  12. T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17, 21257–21270 (2009).
    [Crossref]
  13. D. Huang, F. Li, C. Shang, Z. Cheng, S. T. Chu, and P. K. A. Wai, “Frequency comb swept laser with a high-Q microring filter,” Photon. Res. 8, 904–911 (2020).
    [Crossref]
  14. N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11, 014018 (2019).
    [Crossref]
  15. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
    [Crossref]
  16. H. Song, S. B. Cho, D. U. Kim, S. Jeong, and D. Y. Kim, “Ultra-high-speed phase-sensitive optical coherence reflectometer with a stretched pulse supercontinuum source,” Appl. Opt. 50, 4000–4004 (2011).
    [Crossref]
  17. B. Li, X. Wei, S. Tan, J. Kang, and K. K. Y. Wong, “Compact and stable temporally magnified tomography using a phase-locked broadband source,” Opt. Lett. 41, 1562–1565 (2016).
    [Crossref]
  18. B. Li, C. Zhang, J. Kang, X. Wei, S. Tan, and K. K. Y. Wong, “109  MHz optical tomography using temporal magnification,” Opt. Lett. 40, 2965–2968 (2015).
    [Crossref]
  19. X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28  MHz swept source at 1.0  μm for ultrafast quantitative phase imaging,” Biomed. Opt. Express 6, 3855–3864 (2015).
    [Crossref]
  20. S. Tan, L. Yang, X. Wei, C. Li, N. Chen, K. K. Tsia, and K. K. Y. Wong, “High-speed wavelength-swept source at 2.0  μm and its application in imaging through a scattering medium,” Opt. Lett. 42, 1540–1543 (2017).
    [Crossref]
  21. J. Kang, P. Feng, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography,” Opt. Express 26, 4370–4381 (2018).
    [Crossref]
  22. W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
    [Crossref]
  23. M. Sumetsky, B. Eggleton, and C. M. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340 (2002).
    [Crossref]
  24. J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT),” Opt. Express 22, 22498–22512 (2014).
    [Crossref]
  25. M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomed. Opt. Express 8, 2405–2444 (2017).
    [Crossref]
  26. F. Hou, M. Zhang, Y. Zheng, L. Ding, X. Tang, and Y. Liang, “Detection of laser-induced bulk damage in optical crystals by swept-source optical coherence tomography,” Opt. Express 27, 3698–3709 (2019).
    [Crossref]
  27. S. Song, J. Xu, and R. K. Wang, “Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source,” Biomed. Opt. Express 7, 4734–4748 (2016).
    [Crossref]
  28. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
    [Crossref]
  29. Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
    [Crossref]
  30. T.-H. Tsai, J. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4, 57–93 (2014).
    [Crossref]
  31. Axsun Technologies, “Swept Lasers for OCT,” https://www.axsun.com/oct-swept-lasers (2020).
  32. Agiltron, “1×2 Fiber Optical MEMS Switch Kit, USB/Push Button—Fiber-Fiber,” https://agiltron.com/product/ultra-fiber-optical-1x2-switch (2020).

2020 (2)

D. Huang, F. Li, C. Shang, Z. Cheng, S. T. Chu, and P. K. A. Wai, “Frequency comb swept laser with a high-Q microring filter,” Photon. Res. 8, 904–911 (2020).
[Crossref]

Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
[Crossref]

2019 (4)

2018 (2)

2017 (6)

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

S. Tan, L. Yang, X. Wei, C. Li, N. Chen, K. K. Tsia, and K. K. Y. Wong, “High-speed wavelength-swept source at 2.0  μm and its application in imaging through a scattering medium,” Opt. Lett. 42, 1540–1543 (2017).
[Crossref]

M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomed. Opt. Express 8, 2405–2444 (2017).
[Crossref]

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8, 828–859 (2017).
[Crossref]

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23, 1700516 (2017).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

2016 (3)

2015 (2)

2014 (2)

2013 (2)

2012 (1)

2011 (1)

2009 (2)

2006 (1)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

2002 (1)

Adler, D. C.

Barland, S.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Biedermann, B. R.

Bouma, B. E.

N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11, 014018 (2019).
[Crossref]

Broderick, N.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Cable, A. E.

Chang-Hasnain, C. J.

K. T. Cook, P. Qiao, J. Qi, L. A. Coldren, and C. J. Chang-Hasnain, “Resonant-antiresonant coupled cavity VCSELs,” Opt. Express 27, 1798–1807 (2019).
[Crossref]

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23, 1700516 (2017).
[Crossref]

Chen, L.

Chen, N.

Cheng, Z.

Cho, S. B.

Chu, S. T.

Churkin, D. V.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Cleff, C.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Coldren, L. A.

Cook, K. T.

K. T. Cook, P. Qiao, J. Qi, L. A. Coldren, and C. J. Chang-Hasnain, “Resonant-antiresonant coupled cavity VCSELs,” Opt. Express 27, 1798–1807 (2019).
[Crossref]

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23, 1700516 (2017).
[Crossref]

de Sterke, C. M.

Ding, L.

Dobner, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Doerr, C.

Doubek, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Draxinger, W.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Eggleton, B.

Eigenwillig, C. M.

Feng, P.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Fischer, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Fujimoto, J.

T.-H. Tsai, J. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4, 57–93 (2014).
[Crossref]

Fujimoto, J. G.

Giunta, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Gora, M. J.

Grulkowski, I.

Hänsel, W.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Holzwarth, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Hoogland, H.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Hou, F.

Huang, D.

Huber, R.

Huyet, G.

Jalali, B.

Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Jayaraman, V.

Jeong, S.

Jiang, J.

Jiang, Y.

Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
[Crossref]

Jirauschek, C.

Kampik, A.

Kang, J.

Karpf, S.

Kim, D. U.

Kim, D. Y.

Klein, T.

Lam, E. Y.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Lau, A. K. S.

Lee, H.-C.

Li, B.

Li, C.

Li, F.

Li, K.

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23, 1700516 (2017).
[Crossref]

Li, X.

Liang, Y.

Lippok, N.

N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11, 014018 (2019).
[Crossref]

Liu, J. J.

Mahjoubfar, A.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Mashimo, H.

T.-H. Tsai, J. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4, 57–93 (2014).
[Crossref]

Mayer, P.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Neubauer, A.

Nielson, T.

O’shaughnessy, B.

Petermann, M.

Pfeiffer, T.

Potsaid, B.

Qi, J.

Qiao, P.

K. T. Cook, P. Qiao, J. Qi, L. A. Coldren, and C. J. Chang-Hasnain, “Resonant-antiresonant coupled cavity VCSELs,” Opt. Express 27, 1798–1807 (2019).
[Crossref]

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23, 1700516 (2017).
[Crossref]

Reznicek, L.

Rica, S.

Schmid, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Schmitt, J. M.

Shang, C.

Siddiqui, M.

N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11, 014018 (2019).
[Crossref]

Slepneva, S.

Song, H.

Song, S.

Steinmetz, T.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Sumetsky, M.

Suter, M. J.

Swanson, E.

Tan, S.

Tang, X.

Tearney, G. J.

Trépanier, F.

Tsai, T.-H.

T.-H. Tsai, J. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4, 57–93 (2014).
[Crossref]

T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17, 21257–21270 (2009).
[Crossref]

Tsia, K. K.

Turitsyn, S. K.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Vakoc, B. J.

N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11, 014018 (2019).
[Crossref]

Viktorov, E. A.

Vladimirov, A. G.

Wai, P. K. A.

Wang, R. K.

Wang, Z.

Wei, X.

Wieser, W.

Wojtkowski, M.

Wong, K. K. Y.

Xu, J.

Xu, Y.

Yang, L.

Yu, L.

Zhang, C.

Zhang, M.

Zheng, Y.

Zhou, C.

Appl. Opt. (1)

Appl. Phys. B (1)

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123, 41 (2017).
[Crossref]

Biomed. Opt. Express (7)

Diagnostics (1)

T.-H. Tsai, J. Fujimoto, and H. Mashimo, “Endoscopic optical coherence tomography for clinical gastroenterology,” Diagnostics 4, 57–93 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Qiao, K. T. Cook, K. Li, and C. J. Chang-Hasnain, “Wavelength-swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23, 1700516 (2017).
[Crossref]

Nat. Photonics (2)

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11, 341–351 (2017).
[Crossref]

Y. Jiang, S. Karpf, and B. Jalali, “Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera,” Nat. Photonics 14, 14–18 (2020).
[Crossref]

Opt. Express (9)

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT),” Opt. Express 22, 22498–22512 (2014).
[Crossref]

M. Sumetsky, B. Eggleton, and C. M. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings,” Opt. Express 10, 332–340 (2002).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17, 9947–9961 (2009).
[Crossref]

T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17, 21257–21270 (2009).
[Crossref]

K. T. Cook, P. Qiao, J. Qi, L. A. Coldren, and C. J. Chang-Hasnain, “Resonant-antiresonant coupled cavity VCSELs,” Opt. Express 27, 1798–1807 (2019).
[Crossref]

F. Hou, M. Zhang, Y. Zheng, L. Ding, X. Tang, and Y. Liang, “Detection of laser-induced bulk damage in optical crystals by swept-source optical coherence tomography,” Opt. Express 27, 3698–3709 (2019).
[Crossref]

S. Slepneva, B. O’shaughnessy, A. G. Vladimirov, S. Rica, E. A. Viktorov, and G. Huyet, “Convective Nozaki–Bekki holes in a long cavity OCT laser,” Opt. Express 27, 16395–16404 (2019).
[Crossref]

J. Kang, P. Feng, X. Wei, E. Y. Lam, K. K. Tsia, and K. K. Y. Wong, “102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography,” Opt. Express 26, 4370–4381 (2018).
[Crossref]

Opt. Lett. (4)

Optica (1)

Photon. Res. (1)

Phys. Rev. Appl. (1)

N. Lippok, M. Siddiqui, B. J. Vakoc, and B. E. Bouma, “Extended coherence length and depth ranging using a Fourier-domain mode-locked frequency comb and circular interferometric ranging,” Phys. Rev. Appl. 11, 014018 (2019).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Other (2)

Axsun Technologies, “Swept Lasers for OCT,” https://www.axsun.com/oct-swept-lasers (2020).

Agiltron, “1×2 Fiber Optical MEMS Switch Kit, USB/Push Button—Fiber-Fiber,” https://agiltron.com/product/ultra-fiber-optical-1x2-switch (2020).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup of the swept laser. WDM, wavelength division multiplexer; EDF, erbium-doped fiber; PBS, polarizing beam splitter; Components, Faraday rotator, wave plate, and polarizing beam splitter; OC, optical coupler; EDFA, erbium-doped fiber amplifier; VOA, variable optical attenuator; PC, polarization controller; PPG, pulse/pattern generator; MOD, optical modulator; CFBG, chirped fiber Bragg grating; DCF, dispersion compensation fiber; PD, photodetector; OSA, optical spectrum analyzer; OSC, oscilloscope.
Fig. 2.
Fig. 2. Schematic diagram of the point spread function and imaging range measurement system. SOA, semiconductor optical amplifier; OSC, oscilloscope; OC, optical coupler; BPD, balanced photodetector; CIR, circulator; PC, polarization controller; VODL, variable optical delay line.
Fig. 3.
Fig. 3. Output performance of the mode-locked laser. (a) Spectrum, (b) pulse train, and (c) autocorrelation trace of the femtosecond laser source.
Fig. 4.
Fig. 4. Output performance of the 100  MHz swept source by time stretching in a CFBG. (a) The reflectivity, input, and output spectra of the CFBG used in experiment. (b) The output stretched waveform from the CFBG. (c) Filtered spectra and (d) waveforms of the swept signal when the central wavelength is tuned from 1525 to 1575 nm. (e) The swept trace λ(t) obtained from (c) and (d) with parabolic fitting of t(λ). (f) Roll-off performance of the SS-OCT with PSFs measured at different optical delays. (g) OCT axial resolution in air.
Fig. 5.
Fig. 5. Output performance of the 25 MHz swept source by time stretching in DCF. (a) The output spectrum of swept source with a reconfigured sweep rate of 25 MHz. (b) The waveforms before and after time stretching in DCF. (c) The swept trace λ(t) with parabolic fitting from 1525 to 1605 nm. (d) Roll-off performance of the SS-OCT with PSFs measured at different optical delays. (e) OCT axial resolution in air.
Fig. 6.
Fig. 6. Output performance of 2.5 MHz swept source by time stretching in DCF. (a) The output spectrum of the swept source with a reconfigured sweep rate of 2.5 MHz. (b) The waveforms before and after time stretching in DCF. (c) The swept trace λ(t) with parabolic fitting from 1525 to 1605 nm. (d) Roll-off performance of the SS-OCT with PSFs measured at different optical delays. (e) OCT axial resolution in air.

Tables (1)

Tables Icon

Table 1. Performance of Swept Laser Sources with Different Configurations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t(λ)=t0+Lλ0λD(λ)dλ,
τLD¯Δλ,
t(λ)=t(λ0)+L[D(λ0)+D(λλ0)](λλ0),