Abstract

Coupling effects of surface plasmon resonance (SPR) induce changes in the wavelength, intensity, and linewidth of plasmonic modes. Here, inspired by coupling effects, we reveal an abrupt linewidth-shrinking effect in 2D gold nanohole arrays at the azimuthal angle of 45° arising from the interference of two degenerate SPR modes. We further demonstrate the biosensing capability under various excitation conditions for detecting the critical molecular biomarker of prostatic carcinoma, and achieve the maximum sensitivity at this angle. Our study not only enhances the understanding toward plasmonic resonance-linewidth shrinking, but also provides a promising strategy to greatly improve biosensing performance by light manipulation on plasmonic nanostructures.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [Crossref]
  2. S. A. Maier, “Plasmonics: Fundamentals and Applications,” (Springer, 2007).
  3. S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett. 121, 253901 (2018).
    [Crossref]
  4. X. Tian and Z.-Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
    [Crossref]
  5. L. Meng and M. Sun, “Tip-enhanced photoluminescence spectroscopy of monolayer MoS2,” Photon. Res. 5, 745–749 (2017).
    [Crossref]
  6. J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
    [Crossref]
  7. L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
    [Crossref]
  8. J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
    [Crossref]
  9. J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
    [Crossref]
  10. J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, and S. Guo, “Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,” Biosens. Bioelectron. 150, 111905 (2020).
    [Crossref]
  11. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
    [Crossref]
  12. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref]
  13. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
    [Crossref]
  14. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
    [Crossref]
  15. Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
    [Crossref]
  16. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
    [Crossref]
  17. D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4, 432–438 (2010).
    [Crossref]
  18. B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
    [Crossref]
  19. J. Guo, Z. Li, and H. Guo, “Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing,” Opt. Express 24, 17259–17271 (2016).
    [Crossref]
  20. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
    [Crossref]
  21. N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
    [Crossref]
  22. F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
    [Crossref]
  23. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  24. D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
    [Crossref]
  25. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
    [Crossref]
  26. S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, and J.-B. Han, “Polarization state-based refractive index sensing with plasmonic nanostructures,” Nanoscale 7, 20171–20179 (2015).
    [Crossref]
  27. R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
    [Crossref]
  28. H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
    [Crossref]
  29. N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
    [Crossref]
  30. B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
    [Crossref]
  31. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
    [Crossref]
  32. J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
    [Crossref]
  33. R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
    [Crossref]
  34. S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
    [Crossref]
  35. Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photon. 6, 322–326 (2019).
    [Crossref]
  36. D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2018).
    [Crossref]
  37. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [Crossref]
  38. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  39. Z. L. Cao and H. C. Ong, “Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array,” Opt. Express 24, 12489–12500 (2016).
    [Crossref]
  40. Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” Phys. Rev. B 95, 155415 (2017).
    [Crossref]
  41. Z. L. Cao and H. C. Ong, “Study of the momentum-resolved plasmonic field energy of Bloch-like surface plasmon polaritons from periodic nanohole array,” Opt. Express 25, 30626–30635 (2017).
    [Crossref]
  42. M. Lin, Z. L. Cao, and H. C. Ong, “Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons,” Opt. Express 25, 6092–6103 (2017).
    [Crossref]
  43. M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
    [Crossref]
  44. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref]
  45. H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).
    [Crossref]
  46. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
    [Crossref]
  47. J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, and Q. H. Liu, “Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials,” Nanophotonics 9, 167–176 (2020).
    [Crossref]
  48. J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow SPR linewidth in the UV region for plasmonic sensing,” Nanoscale 11, 4061–4066 (2019).
    [Crossref]
  49. M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
    [Crossref]
  50. A. B. Dahlin, “Sensing applications based on plasmonic nanopores: the hole story,” Analyst 140, 4748–4759 (2015).
    [Crossref]
  51. D. Garoli, H. Yamazaki, N. Maccaferri, and M. Wanunu, “Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications,” Nano Lett. 19, 7553–7562 (2019).
    [Crossref]
  52. P. B. Johnson, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  53. C. Zhao, J. Chen, H. Li, T. Li, and S. Zhu, “Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes,” Chin. Opt. Lett. 16, 070901 (2018).
  54. F. Gan, C. Sun, H. Li, Q. Gong, and J. Chen, “On-chip polarization splitter based on a multimode plasmonic waveguide,” Photon. Res. 6, 47–53 (2018).

2020 (3)

J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, and S. Guo, “Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,” Biosens. Bioelectron. 150, 111905 (2020).
[Crossref]

J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, and Q. H. Liu, “Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials,” Nanophotonics 9, 167–176 (2020).
[Crossref]

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

2019 (8)

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow SPR linewidth in the UV region for plasmonic sensing,” Nanoscale 11, 4061–4066 (2019).
[Crossref]

D. Garoli, H. Yamazaki, N. Maccaferri, and M. Wanunu, “Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications,” Nano Lett. 19, 7553–7562 (2019).
[Crossref]

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photon. 6, 322–326 (2019).
[Crossref]

2018 (8)

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2018).
[Crossref]

J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
[Crossref]

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett. 121, 253901 (2018).
[Crossref]

C. Zhao, J. Chen, H. Li, T. Li, and S. Zhu, “Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes,” Chin. Opt. Lett. 16, 070901 (2018).

F. Gan, C. Sun, H. Li, Q. Gong, and J. Chen, “On-chip polarization splitter based on a multimode plasmonic waveguide,” Photon. Res. 6, 47–53 (2018).

2017 (4)

2016 (7)

X. Tian and Z.-Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4, 146–152 (2016).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

J. Guo, Z. Li, and H. Guo, “Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing,” Opt. Express 24, 17259–17271 (2016).
[Crossref]

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
[Crossref]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

Z. L. Cao and H. C. Ong, “Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array,” Opt. Express 24, 12489–12500 (2016).
[Crossref]

2015 (3)

A. B. Dahlin, “Sensing applications based on plasmonic nanopores: the hole story,” Analyst 140, 4748–4759 (2015).
[Crossref]

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, and J.-B. Han, “Polarization state-based refractive index sensing with plasmonic nanostructures,” Nanoscale 7, 20171–20179 (2015).
[Crossref]

2014 (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

2013 (2)

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

2011 (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

2010 (6)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4, 432–438 (2010).
[Crossref]

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
[Crossref]

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).
[Crossref]

2008 (2)

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

2003 (4)

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[Crossref]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

1972 (1)

P. B. Johnson, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Ahn, Y. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Åkerman, J.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Alarcón-Correa, M.

H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
[Crossref]

Altug, H.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Ameling, R.

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Ansell, D.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Arvelo, E. R.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Azzam, S. I.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett. 121, 253901 (2018).
[Crossref]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Boltasseva, A.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett. 121, 253901 (2018).
[Crossref]

Briega Martos, V.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Britnell, L.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Caballero, B.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

Calandrini, E.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Caligiuri, V.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Cao, Z. L.

Carter, E. A.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Cevher, V.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Chan, C. T.

Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” Phys. Rev. B 95, 155415 (2017).
[Crossref]

Chen, H.

J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, and Q. H. Liu, “Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials,” Nanophotonics 9, 167–176 (2020).
[Crossref]

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

Chen, J.

Chen, S.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Chen, X.

J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, and Q. H. Liu, “Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials,” Nanophotonics 9, 167–176 (2020).
[Crossref]

Chen, Y.

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

Chen, Z.-H.

S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, and J.-B. Han, “Polarization state-based refractive index sensing with plasmonic nanostructures,” Nanoscale 7, 20171–20179 (2015).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Christopher, P.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Chumanov, G.

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Cleary, J. W.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

Cuevas, J. C.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

Dahlin, A. B.

A. B. Dahlin, “Sensing applications based on plasmonic nanopores: the hole story,” Analyst 140, 4748–4759 (2015).
[Crossref]

Dass, C.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

De Angelis, F.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

de Oliveira, T. V. A. G.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Dmitriev, A.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Dong, J. C.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Dong, L. L.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Eres, G.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Feliu, J. M.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Fernández-Domínguez, A. I.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4, 432–438 (2010).
[Crossref]

Fischer, P.

H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
[Crossref]

Fleischer, K.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

Fredriksson, H.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Fumani, A. K.

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photon. 6, 322–326 (2019).
[Crossref]

Gaddis, A. L.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Gan, F.

Gao, H. W.

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).
[Crossref]

Gao, M.

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

García-Martín, A.

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

Garoli, D.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

D. Garoli, H. Yamazaki, N. Maccaferri, and M. Wanunu, “Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications,” Nano Lett. 19, 7553–7562 (2019).
[Crossref]

Geim, A. K.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

Gibson, R.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

Giessen, H.

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
[Crossref]

Giovannini, G.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Goldsmith, J.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

Gong, Q.

Gong, Q. H.

J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
[Crossref]

Gorbachev, R. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Gregorczyk, K. E.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Gu, B.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Guo, H.

Guo, J.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

J. Guo, Z. Li, and H. Guo, “Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing,” Opt. Express 24, 17259–17271 (2016).
[Crossref]

Guo, S.

J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, and S. Guo, “Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,” Biosens. Bioelectron. 150, 111905 (2020).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Hägglund, C.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Halas, N. J.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Han, J.-B.

S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, and J.-B. Han, “Polarization state-based refractive index sensing with plasmonic nanostructures,” Nanoscale 7, 20171–20179 (2015).
[Crossref]

Hatab, N. A.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

He, Y.

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

Henderson, L.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Hendrickson, J. R.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Hohng, S. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Hsueh, C.-H.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Hua, Y.

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photon. 6, 322–326 (2019).
[Crossref]

Huang, T. H.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Hubarevich, A.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Jahani, Y.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Jalil, R.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Jeong, H.-H.

H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
[Crossref]

Jiang, R. B.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Jiang, S.

J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, and S. Guo, “Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,” Biosens. Bioelectron. 150, 111905 (2020).
[Crossref]

Jin, C. J.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Jin, X.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Johnson, P. B.

P. B. Johnson, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kabashin, A. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Käll, M.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Kataja, M.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Kildishev, A. V.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett. 121, 253901 (2018).
[Crossref]

Kim, D. S.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Kim, I.

H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
[Crossref]

Kim, J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Kim, W.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Kivshar, Y.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Knez, M.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Knudson, M. P.

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2018).
[Crossref]

Kravets, V. G.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Lee, T.-C.

H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
[Crossref]

Leedy, K.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

Lei, D. Y.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4, 432–438 (2010).
[Crossref]

Li, H.

Li, J.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4, 432–438 (2010).
[Crossref]

Li, J. F.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Li, J.-H.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Li, M. D.

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

Li, T.

Li, Y.

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

Li, Z.

Li, Z.-Y.

Lienau, C.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Lin, H. X.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Lin, M.

Lin, S.

J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, and S. Guo, “Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,” Biosens. Bioelectron. 150, 111905 (2020).
[Crossref]

Lin, S. W.

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

Liu, B. W.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Liu, M.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Liu, M. X.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Liu, Q. H.

J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, and Q. H. Liu, “Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials,” Nanophotonics 9, 167–176 (2020).
[Crossref]

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

Liu, S.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Liu, S.-D.

S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, and J.-B. Han, “Polarization state-based refractive index sensing with plasmonic nanostructures,” Nanoscale 7, 20171–20179 (2015).
[Crossref]

Liu, T. R.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Liu, X.

J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, and S. Guo, “Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,” Biosens. Bioelectron. 150, 111905 (2020).
[Crossref]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Maccaferri, N.

D. Garoli, H. Yamazaki, N. Maccaferri, and M. Wanunu, “Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications,” Nano Lett. 19, 7553–7562 (2019).
[Crossref]

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Maier, S. A.

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4, 432–438 (2010).
[Crossref]

S. A. Maier, “Plasmonics: Fundamentals and Applications,” (Springer, 2007).

Malyarchuk, V.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Malynych, S.

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[Crossref]

Mark, A. G.

H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
[Crossref]

Meng, L.

Misawa, H.

J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
[Crossref]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Nordlander, P.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Novoselov, K. S.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Odebo Länk, N.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

Odom, T. W.

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photon. 6, 322–326 (2019).
[Crossref]

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2018).
[Crossref]

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).
[Crossref]

Ong, H. C.

M. Lin, Z. L. Cao, and H. C. Ong, “Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons,” Opt. Express 25, 6092–6103 (2017).
[Crossref]

Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” Phys. Rev. B 95, 155415 (2017).
[Crossref]

Z. L. Cao and H. C. Ong, “Study of the momentum-resolved plasmonic field energy of Bloch-like surface plasmon polaritons from periodic nanohole array,” Opt. Express 25, 30626–30635 (2017).
[Crossref]

Z. L. Cao and H. C. Ong, “Momentum-dependent group velocity of surface plasmon polaritons in two-dimensional metallic nanohole array,” Opt. Express 24, 12489–12500 (2016).
[Crossref]

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4, 432–438 (2010).
[Crossref]

Oshikiri, T.

J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
[Crossref]

Oswald, P.

H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
[Crossref]

Ou, J. Y.

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

Ou, J.-Y.

J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, and Q. H. Liu, “Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials,” Nanophotonics 9, 167–176 (2020).
[Crossref]

Pakizeh, T.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Park, J. W.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Park, Q. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Pirzadeh, Z.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Qi, X.

S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, and J.-B. Han, “Polarization state-based refractive index sensing with plasmonic nanostructures,” Nanoscale 7, 20171–20179 (2015).
[Crossref]

Qian, L.

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow SPR linewidth in the UV region for plasmonic sensing,” Nanoscale 11, 4061–4066 (2019).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Ren, B.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Retterer, S. T.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Robatjazi, H.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Schatz, G. C.

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2018).
[Crossref]

Schedin, F.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shalaev, V. M.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett. 121, 253901 (2018).
[Crossref]

Shen, Y.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Shi, X.

J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
[Crossref]

Shih, T. M.

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

Shih, T.-M.

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

Shvets, I. V.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Sun, C.

Sun, M.

Sun, Q.

J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
[Crossref]

Sutherland, D. S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

Svedendahl, M.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

Swearer, D. F.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Tao, F.

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

Tao, Y. T.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Thackray, B.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Tian, X.

Tian, Z. Q.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Tittl, A.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Ueno, K.

J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
[Crossref]

van Dijken, S.

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Vangala, S.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

Vavassori, P.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Verre, R.

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

Walker, D. E.

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

Wang, D.

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2018).
[Crossref]

Wang, J.

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow SPR linewidth in the UV region for plasmonic sensing,” Nanoscale 11, 4061–4066 (2019).
[Crossref]

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

Wang, J. F.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Wang, L.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Wang, W.

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2018).
[Crossref]

Wang, W.-J.

S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, and J.-B. Han, “Polarization state-based refractive index sensing with plasmonic nanostructures,” Nanoscale 7, 20171–20179 (2015).
[Crossref]

Wang, X.

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

Wang, X. H.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Wang, Z.

J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, and S. Guo, “Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,” Biosens. Bioelectron. 150, 111905 (2020).
[Crossref]

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

Wang, Z. Y.

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

Wanunu, M.

D. Garoli, H. Yamazaki, N. Maccaferri, and M. Wanunu, “Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications,” Nano Lett. 19, 7553–7562 (2019).
[Crossref]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Williams, C. T.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Wu, D. Y.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Xiao, G. H.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Xie, Y.

J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, and Q. H. Liu, “Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials,” Nanophotonics 9, 167–176 (2020).
[Crossref]

Yamazaki, H.

D. Garoli, H. Yamazaki, N. Maccaferri, and M. Wanunu, “Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications,” Nano Lett. 19, 7553–7562 (2019).
[Crossref]

Yang, J.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Yang, J. H.

J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
[Crossref]

Yang, W.

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow SPR linewidth in the UV region for plasmonic sensing,” Nanoscale 11, 4061–4066 (2019).
[Crossref]

Yang, Z.

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow SPR linewidth in the UV region for plasmonic sensing,” Nanoscale 11, 4061–4066 (2019).
[Crossref]

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

Yang, Z. L.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Yao, X.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Yee, K. J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Yesilkoy, F.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Yiu, L. Y.

Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” Phys. Rev. B 95, 155415 (2017).
[Crossref]

Yoon, Y. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

Zhai, W.-C.

S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, and J.-B. Han, “Polarization state-based refractive index sensing with plasmonic nanostructures,” Nanoscale 7, 20171–20179 (2015).
[Crossref]

Zhang, C.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Zhang, J. C.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Zhang, X. G.

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Zhang, Z.

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Zhang, Z. Q.

Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” Phys. Rev. B 95, 155415 (2017).
[Crossref]

Zhao, C.

Zhao, F.

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

Zhao, H. Q.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zheng, J.

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow SPR linewidth in the UV region for plasmonic sensing,” Nanoscale 11, 4061–4066 (2019).
[Crossref]

Zhong, J. H.

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Zhou, J. H.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhou, J. Y.

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

Zhou, L. N.

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Zhou, W.

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).
[Crossref]

Zhou, Z. K.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhu, J.

J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, and S. Guo, “Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,” Biosens. Bioelectron. 150, 111905 (2020).
[Crossref]

J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, and Q. H. Liu, “Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials,” Nanophotonics 9, 167–176 (2020).
[Crossref]

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow SPR linewidth in the UV region for plasmonic sensing,” Nanoscale 11, 4061–4066 (2019).
[Crossref]

Zhu, J. F.

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Zhu, J. H.

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhu, S.

ACS Nano (1)

D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano 4, 432–438 (2010).
[Crossref]

ACS Photon. (3)

J. R. Hendrickson, S. Vangala, C. Dass, R. Gibson, J. Goldsmith, K. Leedy, D. E. Walker, J. W. Cleary, W. Kim, and J. Guo, “Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption,” ACS Photon. 5, 776–781 (2018).
[Crossref]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

Y. Hua, A. K. Fumani, and T. W. Odom, “Tunable lattice plasmon resonances in 1D nanogratings,” ACS Photon. 6, 322–326 (2019).
[Crossref]

Adv. Funct. Mater. (1)

H. W. Gao, W. Zhou, and T. W. Odom, “Plasmonic crystals: a platform to catalog resonances from ultraviolet to near-infrared wavelengths in a plasmonic library,” Adv. Funct. Mater. 20, 529–539 (2010).
[Crossref]

Adv. Mater. (1)

B. W. Liu, S. Chen, J. C. Zhang, X. Yao, J. H. Zhong, H. X. Lin, T. H. Huang, Z. L. Yang, J. F. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3  nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Analyst (1)

A. B. Dahlin, “Sensing applications based on plasmonic nanopores: the hole story,” Analyst 140, 4748–4759 (2015).
[Crossref]

Biosens. Bioelectron. (1)

J. Zhu, Z. Wang, S. Lin, S. Jiang, X. Liu, and S. Guo, “Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker,” Biosens. Bioelectron. 150, 111905 (2020).
[Crossref]

Chem. Rev. (1)

D. Wang, W. Wang, M. P. Knudson, G. C. Schatz, and T. W. Odom, “Structural engineering in plasmon nanolasers,” Chem. Rev. 118, 2865–2881 (2018).
[Crossref]

Chin. Opt. Lett. (1)

J. Am. Chem. Soc. (1)

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125, 2896–2898 (2003).
[Crossref]

Nano Lett. (4)

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett. 10, 4394–4398 (2010).
[Crossref]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]

N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

D. Garoli, H. Yamazaki, N. Maccaferri, and M. Wanunu, “Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications,” Nano Lett. 19, 7553–7562 (2019).
[Crossref]

Nanophotonics (3)

J. Zhu, X. Chen, Y. Xie, J.-Y. Ou, H. Chen, and Q. H. Liu, “Imprinted plasmonic measuring nanocylinders for nanoscale volumes of materials,” Nanophotonics 9, 167–176 (2020).
[Crossref]

M. Gao, Y. He, Y. Chen, T.-M. Shih, W. Yang, H. Chen, Z. Yang, and Z. Wang, “Enhanced sum frequency generation for ultrasensitive characterization of plasmonic modes,” Nanophotonics 9, 815–822 (2020).
[Crossref]

J. Y. Zhou, F. Tao, J. F. Zhu, S. W. Lin, Z. Y. Wang, X. Wang, J. Y. Ou, Y. Li, and Q. H. Liu, “Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics,” Nanophotonics 8, 307–316 (2019).
[Crossref]

Nanoscale (4)

M. Gao, Y. He, Y. Chen, T. M. Shih, W. Yang, J. Wang, F. Zhao, M. D. Li, H. Chen, and Z. Yang, “Tunable surface plasmon polaritons and ultrafast dynamics in 2D nanohole arrays,” Nanoscale 11, 16428–16436 (2019).
[Crossref]

S.-D. Liu, X. Qi, W.-C. Zhai, Z.-H. Chen, W.-J. Wang, and J.-B. Han, “Polarization state-based refractive index sensing with plasmonic nanostructures,” Nanoscale 7, 20171–20179 (2015).
[Crossref]

R. Verre, N. Maccaferri, K. Fleischer, M. Svedendahl, N. Odebo Länk, A. Dmitriev, P. Vavassori, I. V. Shvets, and M. Käll, “Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces,” Nanoscale 8, 10576–10581 (2016).
[Crossref]

J. Zheng, W. Yang, J. Wang, J. Zhu, L. Qian, and Z. Yang, “An ultranarrow SPR linewidth in the UV region for plasmonic sensing,” Nanoscale 11, 4061–4066 (2019).
[Crossref]

Nanoscale Horiz. (1)

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Nat. Commun. (4)

H.-H. Jeong, A. G. Mark, M. Alarcón-Correa, I. Kim, P. Oswald, T.-C. Lee, and P. Fischer, “Dispersion and shape engineered plasmonic nanosensors,” Nat. Commun. 7, 11331 (2016).
[Crossref]

N. Maccaferri, K. E. Gregorczyk, T. V. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

J. H. Yang, Q. Sun, K. Ueno, X. Shi, T. Oshikiri, H. Misawa, and Q. H. Gong, “Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes,” Nat. Commun. 9, 4858 (2018).
[Crossref]

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. H. Xiao, J. H. Zhu, Z. K. Zhou, X. H. Wang, C. J. Jin, and J. F. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Nat. Energy (1)

J. C. Dong, X. G. Zhang, V. Briega Martos, X. Jin, J. Yang, S. Chen, Z. L. Yang, D. Y. Wu, J. M. Feliu, C. T. Williams, Z. Q. Tian, and J. F. Li, “In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces,” Nat. Energy 4, 60–67 (2019).
[Crossref]

Nat. Mater. (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12, 304–309 (2013).
[Crossref]

Nat. Photonics (2)

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Opt. Express (4)

Photon. Res. (3)

Phys. Rev. B (4)

P. B. Johnson, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Z. L. Cao, L. Y. Yiu, Z. Q. Zhang, C. T. Chan, and H. C. Ong, “Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion,” Phys. Rev. B 95, 155415 (2017).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[Crossref]

Phys. Rev. Lett. (2)

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[Crossref]

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett. 121, 253901 (2018).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Science (2)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
[Crossref]

L. N. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Q. Zhao, L. Henderson, L. L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science 362, 69–72 (2018).
[Crossref]

Other (1)

S. A. Maier, “Plasmonics: Fundamentals and Applications,” (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Two-dimensional gold nanohole arrays supporting SPP modes fabricated by the nanoimprint lithography method. (a) Schematic illustration of the optical measurement configuration. (b) Definitions of incident angle θ, azimuthal angle φ, and polarization (p or s), respectively. Inset: (top) SEM images of the array with cross-sectional and top views; (bottom) photographic images of the array under different visual angles. Scale bars denote 500 nm and 1 cm for SEM and photographic images, respectively. (c) Experimentally measured reflectance spectra as a function of incident angles from 0° to 75°. The azimuthal angle is set as φ=0°. (d) Dependence of FWHM on (1, 0) SPP mode achieved at different incident angles.
Fig. 2.
Fig. 2. Tuning the linewidths of plasmonic modes by varying azimuthal angles. (a), (b) Azimuthal angle-dependent reflectance spectra at the incident angles of 15° and 75°, respectively. (c) Theoretical resonance wavelength of (1, 0) mode (black curve) and (0, 1) (red curve) mode as a function of the azimuthal angle. Measured (1, 0) mode (black spheres) and (0, 1) mode (red spheres) nearly overlaid on theoretical modes. The pink dash arrows denote the cases used later. (d) Dependence of FWHM on (1, 0) mode (blue spheres) and (0, 1) mode (red spheres) achieved at different azimuthal angles. The short dash line and dot correspond to the left and right coordinate values, respectively, as shown by black arrows. Th incident angle is set as θ=75° in both (c) and (d).
Fig. 3.
Fig. 3. Comparisons of the sensitivity between normal and oblique incidence with the unpolarized light. (a), (b) Experimentally measured reflectance spectra with different PSA concentrations ranging from 10 to 30 ng/mL after normalization. The excitation configurations are set as normal (θ=0°) and oblique (θ=75°,φ=0°) incidence with the unpolarized light in (a) and (b), respectively. Inset: Schematic drawings of excitation configurations. (c), (d) Plots of resonance wavelength positions of plasmonic modes extracted from (a) and (b) against PSA concentrations. The S and R2 denote the sensitivity and the correlation coefficient of the linear fitting, respectively. Note that the FWHM values are about 44 nm and 11 nm in (a) and (b), respectively.
Fig. 4.
Fig. 4. Comparisons of the sensitivity under different azimuthal angles with the s-polarized light. (a), (b) Experimentally measured reflectance spectra with different PSA concentrations ranging from 10 to 35 ng/mL after normalization. Inset: Schematic drawings of excitation configurations. (c), (d) Resonance wavelength positions of plasmonic modes extracted from (a) and (b) as a function of PSA concentration. The S and R2 denote the sensitivity and the correlation coefficient of the linear fitting, respectively. Note that the FWHM values are about 10 nm and 12 nm in (a) and (b), respectively.
Fig. 5.
Fig. 5. Comparisons of the (a) sensitivity and (b) FOM under different excitation configurations. The C1, C2, C3, and C4 represent corresponding configurations explicated in Table 1.
Fig. 6.
Fig. 6. Experimental and simulated reflectance spectra at normal incidence (θ=0°). Inset: Electromagnetic field profiles on and off resonances at 568, 527, and 698 nm, respectively.
Fig. 7.
Fig. 7. Experimentally measured (black spheres) and theoretical (red curve) resonance wavelength of (1, 0) SPP mode as a function of sinθ. The azimuthal angle is set as φ=0°.
Fig. 8.
Fig. 8. Azimuthal angle-dependent reflectance spectra at incident angles of 30°, 45°, and 60°, respectively.
Fig. 9.
Fig. 9. Periodic plasmonic nanohole arrays for biosensing. (a) Schematic drawings of functionalization, detection, and recycling. (b) Experimentally measured reflectance spectra under normal incidence for each procedure. Dashed lines denote corresponding configurations when performing the measurements.
Fig. 10.
Fig. 10. Comparisons of the linewidths of plasmonic modes between unpolarized and p/s-polarized excitations. The dashed lines are a guide for representing two hybrid modes (H1 and H2). Inset: Normalized FWHM of H1 and H2 modes without polarization (black columns) and with p- (red column) and s-polarizations (blue column). The incident angle is set as θ=75°, and the azimuthal angle is set as φ=45°.

Tables (1)

Tables Icon

Table 1. Comparisons of Biosensing Performance under Different Excitation Configurationsa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2πλSPPεAu·εεAu+ε=(2πλSPPsinθsinφ+m2πP)2+(2πλSPPsinθcosφ+n2πP)2,
λSPP=Pm2+n2εAu·εεAu+ε.