Abstract

A low-loss hybrid plasmonic transverse magnetic (TM)-pass polarizer has been demonstrated utilizing polarization-dependent mode conversion. Taking advantage of the silicon hybrid plasmonic slot waveguide (HPSW), the unwanted transverse electric (TE) fundamental mode can be efficiently converted first to a TM higher-order mode and then suppressed by a power combiner, while the retained TM fundamental mode can pass through with negligible influence. Since the HPSW feature both strong structural asymmetry and a small interaction area in the cross-section between the metal and optical field, the optimized insertion loss of the device is as low as 0.4 dB. At the wavelength of 1550 nm, the extinction ratio is 28.3 dB with a moderate footprint of 2.38  μm×10  μm. For the entire C band, the average reflection of the TE mode is suppressed below 14  dB, and the extinction ratio is over 18.6 dB. This work provides another more efficient and effective approach for better on-chip polarizers.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhou, F. Yang, R. Chen, K. Zhu, P. Xu, and P. Sun, “Silicon photonics—a converging point of microelectronics and optoelectronics,” Micro/Nano Electron. Intell. Manuf. 1, 4–15 (2019).
  2. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
    [Crossref]
  3. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39, 259–262 (2014).
    [Crossref]
  4. B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
    [Crossref]
  5. B. Bai, L. Liu, and Z. Zhou, “Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling,” Opt. Lett. 42, 4752–4755 (2017).
    [Crossref]
  6. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19, 12646–12651 (2011).
    [Crossref]
  7. L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
    [Crossref]
  8. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41, 2346–2349 (2016).
    [Crossref]
  9. L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4, 262–266 (2016).
    [Crossref]
  10. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
    [Crossref]
  11. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18, 27404–27415 (2010).
    [Crossref]
  12. Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
    [Crossref]
  13. H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photon. Technol. Lett. 29, 861–864 (2017).
    [Crossref]
  14. H. Zafar, P. Moreira, A. M. Taha, B. Paredes, M. S. Dahlem, and A. Khilo, “Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides,” Opt. Express 26, 31850–31860 (2018).
    [Crossref]
  15. B. Ni and J. Xiao, “Subwavelength-grating-based compact and broadband TE-pass polarizer for slot waveguides on a SOI platform,” J. Opt. Soc. Am. B 36, 2126–2133 (2019).
    [Crossref]
  16. D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Ultracompact transverse magnetic mode-pass filter based on one-dimensional photonic crystals with subwavelength structures,” Opt. Express 24, 21560–21565 (2016).
    [Crossref]
  17. C. Prakash and M. Sen, “Optimization of silicon-photonic crystal (PhC) waveguide for a compact and high extinction ratio tm-pass polarization filter,” J. Appl. Phys. 127, 023101 (2020).
    [Crossref]
  18. X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39, 4514–4517 (2014).
    [Crossref]
  19. S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
    [Crossref]
  20. Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
    [Crossref]
  21. S. I. Azzam and S. S. A. Obayya, “Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform,” Opt. Lett. 40, 1061–1064 (2015).
    [Crossref]
  22. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  23. Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform, ” Opt. Express 21, 12790–12796 (2013).
    [Crossref]
  24. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37, 4814–4816 (2012).
    [Crossref]
  25. M. G. Saber, N. Abadía, and D. V. Plant, “CMOS compatible all-silicon tm pass polarizer based on highly doped silicon waveguide,” Opt. Express 26, 20878–20887 (2018).
    [Crossref]
  26. B. Bai, F. Yang, and Z. Zhou, “Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating,” Photon. Res. 7, 289–293 (2019).
    [Crossref]
  27. N. Abadía, M. G. Saber, F. Bello, A. Samani, E. El-Fiky, Y. Wang, J. F. Donegan, and D. V. Plant, “CMOS-compatible multi-band plasmonic TE-pass polarizer,” Opt. Express 26, 30292–30304 (2018).
    [Crossref]
  28. X. Sun, M. Mojahedi, and J. S. Aitchison, “Hybrid plasmonic waveguide-based ultra-low insertion loss transverse electric-pass polarizer, ” Opt. Lett. 41, 4020–4023 (2016).
    [Crossref]
  29. B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
    [Crossref]
  30. Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, ” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
    [Crossref]
  31. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [Crossref]
  32. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
    [Crossref]

2020 (1)

C. Prakash and M. Sen, “Optimization of silicon-photonic crystal (PhC) waveguide for a compact and high extinction ratio tm-pass polarization filter,” J. Appl. Phys. 127, 023101 (2020).
[Crossref]

2019 (3)

2018 (3)

2017 (4)

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photon. Technol. Lett. 29, 861–864 (2017).
[Crossref]

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
[Crossref]

B. Bai, L. Liu, and Z. Zhou, “Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling,” Opt. Lett. 42, 4752–4755 (2017).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

2016 (4)

2015 (5)

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

S. I. Azzam and S. S. A. Obayya, “Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform,” Opt. Lett. 40, 1061–1064 (2015).
[Crossref]

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, ” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (1)

2011 (1)

2010 (3)

Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
[Crossref]

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18, 27404–27415 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

2008 (1)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Abadía, N.

Abd-Elrazzak, M. M.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Aitchison, J. S.

Alam, M. Z.

Areed, N. F. F.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Azzam, S. I.

Azzam, S. I. H.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Bai, B.

B. Bai, F. Yang, and Z. Zhou, “Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating,” Photon. Res. 7, 289–293 (2019).
[Crossref]

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

B. Bai, L. Liu, and Z. Zhou, “Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling,” Opt. Lett. 42, 4752–4755 (2017).
[Crossref]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Bello, F.

Bowers, J. E.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Cheben, P.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Chen, P.

Chen, R.

Z. Zhou, F. Yang, R. Chen, K. Zhu, P. Xu, and P. Sun, “Silicon photonics—a converging point of microelectronics and optoelectronics,” Micro/Nano Electron. Intell. Manuf. 1, 4–15 (2019).

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

Chen, S.

Chen, Y.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Dahlem, M. S.

Dai, D.

Dai, X.

Deng, Q.

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
[Crossref]

Ding, Y.

Donegan, J. F.

El-Fiky, E.

El-Mikaty, H. A.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Fukuda, H.

Gao, L.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Guan, X.

Guo, J.

Hameed, M. F. O.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Harris, J. S.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Ho, H.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, ” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Ho, S.

Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
[Crossref]

Huang, Y.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, ” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform, ” Opt. Express 21, 12790–12796 (2013).
[Crossref]

Huo, Y.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Hvam, J. M.

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Itabashi, S. I.

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Julian, N.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Khilo, A.

Kim, D. W.

Kim, K. H.

Kim, Y.

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Lee, M. H.

Liow, T.-Y.

Liu, L.

Lo, G.-Q.

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Mojahedi, M.

Moreira, P.

Ni, B.

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Obayya, S. S. A.

S. I. Azzam and S. S. A. Obayya, “Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform,” Opt. Lett. 40, 1061–1064 (2015).
[Crossref]

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Paik, S.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Paredes, B.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Plant, D. V.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Prakash, C.

C. Prakash and M. Sen, “Optimization of silicon-photonic crystal (PhC) waveguide for a compact and high extinction ratio tm-pass polarization filter,” J. Appl. Phys. 127, 023101 (2020).
[Crossref]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Saber, M. G.

Samani, A.

Schmid, J. H.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Sen, M.

C. Prakash and M. Sen, “Optimization of silicon-photonic crystal (PhC) waveguide for a compact and high extinction ratio tm-pass polarization filter,” J. Appl. Phys. 127, 023101 (2020).
[Crossref]

Shi, Y.

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Sun, P.

Z. Zhou, F. Yang, R. Chen, K. Zhu, P. Xu, and P. Sun, “Silicon photonics—a converging point of microelectronics and optoelectronics,” Micro/Nano Electron. Intell. Manuf. 1, 4–15 (2019).

Sun, X.

Taha, A. M.

Tsuchizawa, T.

Wagner, S. J.

Wang, G.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, ” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Wang, Q.

Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
[Crossref]

Wang, Y.

Wang, Z.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Wu, H.

Wu, L.

Xiang, Y.

Xiao, J.

Xiong, Y.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Xu, D.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Xu, H.

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photon. Technol. Lett. 29, 861–864 (2017).
[Crossref]

L. Wu, J. Guo, H. Xu, X. Dai, and Y. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4, 262–266 (2016).
[Crossref]

Xu, P.

Z. Zhou, F. Yang, R. Chen, K. Zhu, P. Xu, and P. Sun, “Silicon photonics—a converging point of microelectronics and optoelectronics,” Micro/Nano Electron. Intell. Manuf. 1, 4–15 (2019).

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39, 4514–4517 (2014).
[Crossref]

Yamada, K.

Yang, F.

B. Bai, F. Yang, and Z. Zhou, “Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating,” Photon. Res. 7, 289–293 (2019).
[Crossref]

Z. Zhou, F. Yang, R. Chen, K. Zhu, P. Xu, and P. Sun, “Silicon photonics—a converging point of microelectronics and optoelectronics,” Micro/Nano Electron. Intell. Manuf. 1, 4–15 (2019).

Ye, W. N.

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Ying, Z.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, ” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Yvind, K.

Zafar, H.

Zang, K.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Zhang, H.

Zhang, X.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, ” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Zhang, Y.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, ” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Zhou, Z.

Z. Zhou, F. Yang, R. Chen, K. Zhu, P. Xu, and P. Sun, “Silicon photonics—a converging point of microelectronics and optoelectronics,” Micro/Nano Electron. Intell. Manuf. 1, 4–15 (2019).

B. Bai, F. Yang, and Z. Zhou, “Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating,” Photon. Res. 7, 289–293 (2019).
[Crossref]

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
[Crossref]

B. Bai, L. Liu, and Z. Zhou, “Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling,” Opt. Lett. 42, 4752–4755 (2017).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Zhu, K.

Z. Zhou, F. Yang, R. Chen, K. Zhu, P. Xu, and P. Sun, “Silicon photonics—a converging point of microelectronics and optoelectronics,” Micro/Nano Electron. Intell. Manuf. 1, 4–15 (2019).

Zhu, S.

ACS Photon. (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

IEEE Photon. J. (2)

Q. Wang and S. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photon. J. 2, 49–56 (2010).
[Crossref]

Y. Xiong, D. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (5)

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photon. Technol. Lett. 29, 861–864 (2017).
[Crossref]

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
[Crossref]

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide, ” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

J. Appl. Phys. (1)

C. Prakash and M. Sen, “Optimization of silicon-photonic crystal (PhC) waveguide for a compact and high extinction ratio tm-pass polarization filter,” J. Appl. Phys. 127, 023101 (2020).
[Crossref]

J. Lightwave Technol. (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

Micro/Nano Electron. Intell. Manuf. (1)

Z. Zhou, F. Yang, R. Chen, K. Zhu, P. Xu, and P. Sun, “Silicon photonics—a converging point of microelectronics and optoelectronics,” Micro/Nano Electron. Intell. Manuf. 1, 4–15 (2019).

Nat. Photonics (2)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Opt. Express (8)

Y. Huang, S. Zhu, H. Zhang, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform, ” Opt. Express 21, 12790–12796 (2013).
[Crossref]

M. G. Saber, N. Abadía, and D. V. Plant, “CMOS compatible all-silicon tm pass polarizer based on highly doped silicon waveguide,” Opt. Express 26, 20878–20887 (2018).
[Crossref]

N. Abadía, M. G. Saber, F. Bello, A. Samani, E. El-Fiky, Y. Wang, J. F. Donegan, and D. V. Plant, “CMOS-compatible multi-band plasmonic TE-pass polarizer,” Opt. Express 26, 30292–30304 (2018).
[Crossref]

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18, 27404–27415 (2010).
[Crossref]

H. Zafar, P. Moreira, A. M. Taha, B. Paredes, M. S. Dahlem, and A. Khilo, “Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides,” Opt. Express 26, 31850–31860 (2018).
[Crossref]

D. W. Kim, M. H. Lee, Y. Kim, and K. H. Kim, “Ultracompact transverse magnetic mode-pass filter based on one-dimensional photonic crystals with subwavelength structures,” Opt. Express 24, 21560–21565 (2016).
[Crossref]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[Crossref]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19, 12646–12651 (2011).
[Crossref]

Opt. Lett. (7)

Photon. Res. (2)

Sci. Rep. (1)

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the proposed TM-pass polarizer. Inset: (i) Compact strip-to-slot mode convertor; (ii) HPSW active region; (iii) cross-section of the HPSW. As an example, the widths of “rails” (Wsi) and slot (Wslot) in the HPSW are chosen as 240 and 180 nm, while the width of metal layer (Wm) is chosen as 300 nm. Besides, the inner radius (R1) and outer radius (R2) of the metal “wing” in ARS are set as 500 and 800 nm in our design, respectively. Under this structural configuration, the dielectric slot waveguide supports four eigenmodes: TE0slot, TE1slot, TM0slot, and TM1slot. (b) The polarization-dependent mode-conversion process in the proposed device.
Fig. 2.
Fig. 2. Transverse magnetic-field profile of (a) EM2, (b) EM4, and (c) EM5. Black arrows represent the electrical field directions. Corresponding power coupling ratios of (d) EM2, (e) EM4, and (f) EM5 with sweeping Gap and Hm when TE0slot is injected into the HPSW. The mode profiles for TE0slot, EM2, EM4, and EM5 are given under the dimension that Wsi=240  nm, Wslot=180  nm, Wm=300  nm, Gap=45  nm, and hAu=45  nm.
Fig. 3.
Fig. 3. Transverse magnetic-field profile of (a) EM1, (b) EM3, and (c) EM6. Black arrows represent the electrical field directions. Corresponding power coupling ratios of (d) EM1, (e) EM3, and (f) EM6 with sweeping Gap and Hm when TM0slot is injected into the HPSW. The mode profiles for TM0slot, EM1, EM3, and EM6 are given under the dimension that Wsi=240  nm, Wslot=180  nm, Wm=300  nm, Gap=45  nm, and hAu=45  nm.
Fig. 4.
Fig. 4. (a) Mode overlap ratio after taking logarithm between the mode field on the termination facet of MMI section and TE0slot in the output dielectric slot waveguide. (b) Corresponding Lm with Gap and Hm varied. (c) Comparison between the mode overlap ratio with and without ARS.
Fig. 5.
Fig. 5. Insertion loss of the strip-to-slot mode convertor (ILc) varied with respect to Wt (for TM0 incidence). Inset: The transverse magnetic field evolution in the proposed strip-to-slot mode convertor and its schematic diagram of structural parameters.
Fig. 6.
Fig. 6. Electric-field evolution with the corresponding (b), (e) Ex and (c), (f) Hx component in the proposed TM-pass polarizer for (a) TE and (d) TM fundamental input. The operation wavelength is 1550 nm, and the refractive indices for gold, SiO2, and Si are 0.238+11.263i [32], 1.444, and 3.478, respectively. Besides, the minimum mesh of 5 nm in x, y, and z directions is set to obtain accurate and stable results.
Fig. 7.
Fig. 7. Wavelength dependence of (a) transmissivity, (b) ER, (c) reflection, and (d) IL of the proposed device. ER and IL versus (e) ΔWm and (f) ΔWsi.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕEC=i=16aiϕEiexp(jβiz),
ϕHC=i=16aiϕHiexp(jβiz),
ai=14(ϕED×ϕHi*+ϕEi*×ϕHD)z=0dS,
Γ=10log10|(ϕEc×ϕHDTE*+ϕEDTE*×ϕHc)dS|2(ϕEc×ϕHc*+ϕEc*×ϕHc)dS.