Abstract

Tunable/reconfigurable metasurfaces that can actively control electromagnetic waves upon external stimuli are of great importance for practical applications of metasurfaces. Here, we demonstrate a reconfigurable nano-kirigami metasurface driven by pneumatic pressure operating in the near-infrared wavelength region. The metasurfaces consist of combined Archimedean spirals and are fabricated in a free-standing gold/silicon nitride nanofilm by employing focused ion beam (FIB) lithography. The deformable spirals are instantly transformed from two dimensional (2D) to three-dimensional (3D) by the FIB-based nano-kirigami process. The 2D–to–3D transformation induces a dramatic irreversible change of the plasmonic quadruple modes and results in significant modulation in reflection by 137%. The suspended porous nano-kirigami metasurface is further integrated with an optofluidics device, with which the optical resonance is reversibly modulated by the pneumatic pressure. This work provides a strategy for tunable/reconfigurable metasurfaces, which are useful to build a promising lab-on-a-chip platform for microfluidics, biological diagnostics, chemical sensing, and pressure monitoring.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  2. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref]
  3. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  4. L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
    [Crossref]
  5. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
    [Crossref]
  6. H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Meth. 1, 1600064 (2017).
    [Crossref]
  7. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref]
  8. Y.-H. Chen, J.-X. Fu, and Z.-Y. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express 19, 23908–23920 (2011).
    [Crossref]
  9. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  10. W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
    [Crossref]
  11. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  12. Q. He, S. Sun, and L. Zhou, “Tunable/reconfigurable metasurfaces: physics and applications,” Research 2019, 1849272 (2019).
    [Crossref]
  13. A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electron. Adv. 1, 180009 (2018).
    [Crossref]
  14. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
    [Crossref]
  15. Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
    [Crossref]
  16. L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
    [Crossref]
  17. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
    [Crossref]
  18. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
    [Crossref]
  19. J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
    [Crossref]
  20. M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17, 6034–6039 (2017).
    [Crossref]
  21. A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
    [Crossref]
  22. S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
    [Crossref]
  23. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
    [Crossref]
  24. T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
    [Crossref]
  25. S.-Q. Li, X. Xu, M. V. Rasna, V. Valuckas, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Phase-only transmissive spatial light modulator based on tunable dielectric metasurface,” Science 364, 1087–1090 (2019).
    [Crossref]
  26. T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
    [Crossref]
  27. Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
    [Crossref]
  28. J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: from art to photonics,” Nanophotonics 7, 1637–1650 (2018).
    [Crossref]

2019 (2)

Q. He, S. Sun, and L. Zhou, “Tunable/reconfigurable metasurfaces: physics and applications,” Research 2019, 1849272 (2019).
[Crossref]

S.-Q. Li, X. Xu, M. V. Rasna, V. Valuckas, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Phase-only transmissive spatial light modulator based on tunable dielectric metasurface,” Science 364, 1087–1090 (2019).
[Crossref]

2018 (7)

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]

J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: from art to photonics,” Nanophotonics 7, 1637–1650 (2018).
[Crossref]

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electron. Adv. 1, 180009 (2018).
[Crossref]

2017 (4)

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Meth. 1, 1600064 (2017).
[Crossref]

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17, 6034–6039 (2017).
[Crossref]

2016 (3)

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

2015 (2)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

2014 (3)

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

2013 (4)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

2012 (1)

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

2011 (2)

Y.-H. Chen, J.-X. Fu, and Z.-Y. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express 19, 23908–23920 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Aieta, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

Arbabi, E.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

Atwater, H. A.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Capasso, F.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Chen, W. T.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Chen, Y.-H.

Chiang, I.-D.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Chu, C. H.

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Meth. 1, 1600064 (2017).
[Crossref]

Clarke, D. R.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

Devlin, R.

Du, H.

Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]

Etienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Fang, N. X.

Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]

Faraji-Dana, M.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

Fu, J.-X.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gahurro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Gao, Y.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

Genevet, P.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gholipour, B.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Giessen, H.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Halas, N. J.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17, 6034–6039 (2017).
[Crossref]

Han, S.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

He, Q.

Q. He, S. Sun, and L. Zhou, “Tunable/reconfigurable metasurfaces: physics and applications,” Research 2019, 1849272 (2019).
[Crossref]

Hewak, D. W.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Hong, M.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electron. Adv. 1, 180009 (2018).
[Crossref]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

Hsiao, H.-H.

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Meth. 1, 1600064 (2017).
[Crossref]

Hsu, W.-L.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Huang, K.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Huang, L.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Huang, Y.-W.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Isozaki, A.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Jing, J.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

Jung, I. W.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Kamali, S. M.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

Kan, T.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Kanda, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Kang, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Khorasaninejad, M.

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Konishi, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Kuwata-Gonokami, M.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Kuznetsov, A. I.

S.-Q. Li, X. Xu, M. V. Rasna, V. Valuckas, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Phase-only transmissive spatial light modulator based on tunable dielectric metasurface,” Science 364, 1087–1090 (2019).
[Crossref]

Lee, H. W. H.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Li, J.

Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]

J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: from art to photonics,” Nanophotonics 7, 1637–1650 (2018).
[Crossref]

Li, S.-Q.

S.-Q. Li, X. Xu, M. V. Rasna, V. Valuckas, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Phase-only transmissive spatial light modulator based on tunable dielectric metasurface,” Science 364, 1087–1090 (2019).
[Crossref]

Li, Z.-Y.

Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]

Y.-H. Chen, J.-X. Fu, and Z.-Y. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express 19, 23908–23920 (2011).
[Crossref]

Liao, C. Y.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Lin, H. T.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Liu, A. Q.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Liu, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Liu, Z.

Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]

J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: from art to photonics,” Nanophotonics 7, 1637–1650 (2018).
[Crossref]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Lopez, D.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Lu, L.

Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]

MacDonald, K. F.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Matsumoto, K.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Mayer, T. S.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Mei, S.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Nemati, A.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electron. Adv. 1, 180009 (2018).
[Crossref]

Nemoto, N.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

Nordlander, P.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17, 6034–6039 (2017).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Pala, R. A.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Paniagua-Domínguez, R.

S.-Q. Li, X. Xu, M. V. Rasna, V. Valuckas, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Phase-only transmissive spatial light modulator based on tunable dielectric metasurface,” Science 364, 1087–1090 (2019).
[Crossref]

Plum, E.

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Qiu, C.-W.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Rasna, M. V.

S.-Q. Li, X. Xu, M. V. Rasna, V. Valuckas, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Phase-only transmissive spatial light modulator based on tunable dielectric metasurface,” Science 364, 1087–1090 (2019).
[Crossref]

Roy, T.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Semmlinger, M.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17, 6034–6039 (2017).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

She, A.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

Shian, S.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

Shimoyama, I.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Sokhoyan, R.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Song, Q.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Steinle, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Sun, G.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Sun, S.

Q. He, S. Sun, and L. Zhou, “Tunable/reconfigurable metasurfaces: physics and applications,” Research 2019, 1849272 (2019).
[Crossref]

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Takahashi, H.

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

Taubner, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Teng, J.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electron. Adv. 1, 180009 (2018).
[Crossref]

Thyagarajan, K.

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

Troccoli, M.

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Tsai, D. P.

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Meth. 1, 1600064 (2017).
[Crossref]

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Tseng, M. L.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17, 6034–6039 (2017).
[Crossref]

Valuckas, V.

S.-Q. Li, X. Xu, M. V. Rasna, V. Valuckas, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Phase-only transmissive spatial light modulator based on tunable dielectric metasurface,” Science 364, 1087–1090 (2019).
[Crossref]

Wang, C.-M.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Wang, Q.

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electron. Adv. 1, 180009 (2018).
[Crossref]

Werner, D. H.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Wuttig, M.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Xiao, S.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

Xu, X.

S.-Q. Li, X. Xu, M. V. Rasna, V. Valuckas, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Phase-only transmissive spatial light modulator based on tunable dielectric metasurface,” Science 364, 1087–1090 (2019).
[Crossref]

Yang, J.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17, 6034–6039 (2017).
[Crossref]

Yang, K.-Y.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Yang, W.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Yin, X.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Yu, X.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

Zentgraf, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhang, C.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17, 6034–6039 (2017).
[Crossref]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zhang, J. F.

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

Zhang, L.

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Zhang, S.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zheludev, N. I.

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhou, L.

Q. He, S. Sun, and L. Zhou, “Tunable/reconfigurable metasurfaces: physics and applications,” Research 2019, 1849272 (2019).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

ACS Nano (1)

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

Adv. Mater. (1)

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25, 3050–3054 (2013).
[Crossref]

Adv. Opt. Mater. (1)

L. Zhang, S. Mei, K. Huang, and C.-W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

APL Photon. (1)

T. Roy, S. Zhang, I. W. Jung, M. Troccoli, F. Capasso, and D. Lopez, “Dynamic metasurface lens based on MEMS technology,” APL Photon. 3, 021302 (2018).
[Crossref]

Light Sci. Appl. (1)

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6, e17016 (2017).
[Crossref]

Nano Lett. (5)

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14, 6526–6532 (2014).
[Crossref]

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319–5325 (2016).
[Crossref]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17, 6034–6039 (2017).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Nanophotonics (1)

J. Li and Z. Liu, “Focused-ion-beam-based nano-kirigami: from art to photonics,” Nanophotonics 7, 1637–1650 (2018).
[Crossref]

Nat. Commun. (4)

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).
[Crossref]

T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M. Kuwata-Gonokami, K. Matsumoto, and I. Shimoyama, “Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals,” Nat. Commun. 6, 8422 (2015).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7, 13236 (2016).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Nat. Nanotechnol. (2)

J. Y. Ou, E. Plum, J. F. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8, 252–255 (2013).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Opt. Express (1)

Optica (1)

Opto-Electron. Adv. (1)

A. Nemati, Q. Wang, M. Hong, and J. Teng, “Tunable and reconfigurable metasurfaces and metadevices,” Opto-Electron. Adv. 1, 180009 (2018).
[Crossref]

Research (1)

Q. He, S. Sun, and L. Zhou, “Tunable/reconfigurable metasurfaces: physics and applications,” Research 2019, 1849272 (2019).
[Crossref]

Sci. Adv. (2)

Z. Liu, H. Du, J. Li, L. Lu, Z.-Y. Li, and N. X. Fang, “Nano-kirigami with giant optical chirality,” Sci. Adv. 4, eaat4436 (2018).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

Science (3)

S.-Q. Li, X. Xu, M. V. Rasna, V. Valuckas, R. Paniagua-Domínguez, and A. I. Kuznetsov, “Phase-only transmissive spatial light modulator based on tunable dielectric metasurface,” Science 364, 1087–1090 (2019).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Etienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Small Meth. (1)

H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Meth. 1, 1600064 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) (I) Perspective view, top-view, and side-view schematic diagrams of a chamber for the pneumatic reconfiguration of metasurfaces (the yellow structure). One end of the chamber is inflated with nitrogen and the other end is connected to a barometer to measure the pneumatic pressure applied on the samples. (II) Schematic illustration of the fabrication process. (b) Top-view schematic of the unit cells consisting of (left) the reported single MEMS deformable spiral for terahertz polarization modulation [26], and (right) the proposed combined four Archimedean spirals in this work. Each spiral contains two 90° arcs with radius r(1) and r(2), respectively, and is rotated around the unit center (noted by the central red dot). The size of the combined spiral is reduced by two orders of magnitude and the stability is enhanced by its four legs connected with the master film. (c) and (d) Schematic illustrations of the proposed reconfigurable Au/SiN bilayer metasurfaces under pneumatic forces: (c) initial 2D porous spirals in a square lattice and (d) corresponding deformed 3D spirals under pneumatic pressure.
Fig. 2.
Fig. 2. (a) Schematics of the spiral unit cell and (b) the simulated 3D deformed counterpart with a deformation height of 130 nm. The violet lines in the left-side image of (a) denote the top-view outlines of the deformed spirals in (b). The right-side image of (b) shows the degree of the vertical deformation. Each spiral contains two 90° arcs with radii of 350 and 525 nm, respectively. (c) Calculated (Cal) and experimental (Exp) reflection spectra of the 2D porous metasurface. (d) (left) Calculated reflection spectrum of the deformed metasurface under a vertical deformation of 130 nm and (right) corresponding modification contrast in reflection (ΔR/R) versus wavelength. The reflection spectral dip shifts from 2076 to 1986 nm with a dramatic modification of 181% at wavelength 2100 nm. (e) Top-view and side-view simulated (left) E-field distributions (|E|) and (right) their vertical component (Ez) for the 2D and 3D spirals at wavelength 2076 nm. The left and right scale bars correspond to the field of |E| and Ez, respectively.
Fig. 3.
Fig. 3. (a) Top-view and side-view SEM images of a single spiral fabricated by FIB. (b) and (c) Top-view SEM images of the fabricated spirals in a square lattice. The overall size is 40  μm×40  μm, with a periodicity of 1.5 μm. (d) and (e) Side-view SEM images of (d) 2D spirals and (e) the deformed 3D spirals by FIB-based nano-kirigami. (f) (left) Measured reflection spectra of the fabricated 2D spirals and deformed 3D spirals. (right) Corresponding modification contrast in reflection versus wavelength. The reflection spectral dip shifts from 2077 to 1989 nm with a significant modification of 137% at wavelength 2090 nm. Scale bars of (a), (b), (d), and (e) are 1 μm.
Fig. 4.
Fig. 4. (a) Camera image of the microfluidics device chamber and (b) schematic plot of the configuration for porous metasurfaces integrated in between the connect area of the two subchambers. In this configuration, when certain gas is input into the subchambers with different pressures (ΔP=P2P10), the gas will flow through the porous metasurfaces and induce 3D deformation, which causes a change in the optical responses of the metasurfaces. (c) Measured reversible modification contrast in optical reflection from an array of four-arm spirals under repeated inflation (ΔP=137  kPa) and exhaustion (ΔP=0  kPa) of nitrogen gas. The seven curves are measured in an order of I, II, III, IV, V, VI, and VII. The high modulation under ΔP=137  kPa decreases to zero when ΔP=0  kPa. (d) Measured changes in the optical responses at two wavelengths when ΔP is tuned from 0 to 137 kPa in three cycles, showing good repeatability with a modulation contrast of 20%.