Abstract

Quantum defects (QDs) have always been a key factor of the thermal effect in high-power fiber lasers. Much research on low-QD fiber lasers has been reported in the past decades, but most of it is based on active fibers. Besides, Raman fiber lasers based on the stimulated Raman scattering effect in passive fiber are also becoming an important kind of high-power fiber laser for their unique advantages, such as their significantly broader wavelength-tuning range and being free of photon darkening. In this paper, we demonstrate an ultralow-QD Raman fiber laser based on phosphosilicate fiber. There is a strong boson peak located at a frequency shift of 3.65 THz in the Raman gain spectrum of the phosphosilicate fiber we employed. By utilizing this boson peak to provide Raman gain and adopting an amplified spontaneous emission source at 1066 nm as the pump source, 1080 nm Stokes light is generated, corresponding to a QD of 1.3%. The spectral purity at 1080 nm can be up to 96.03%, and the output power is 12.5 W, corresponding to a conversion efficiency of 67.2%. Moreover, by increasing the pump wavelength to 1072 nm, the QD is reduced to 0.74%, and the output power at 1080 nm is 10.7 W, with a spectral purity of 82.82%. To the best of our knowledge, this is the lowest QD ever reported for Raman fiber lasers. This work proposes a promising way of achieving high-power, high-efficiency Raman fiber lasers.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibres,” Electron. Lett. 24, 47–49 (1988).
    [Crossref]
  2. C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
    [Crossref]
  3. S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB4.
  4. T. Yao, J. Ji, and J. Nilsson, “Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers,” J. Lightwave Technol. 32, 429–434 (2014).
    [Crossref]
  5. M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency,” Opt. Lett. 34, 1507–1509 (2009).
    [Crossref]
  6. S. R. Bowman, “Low quantum defect laser performance,” Opt. Eng. 56, 011104 (2016).
    [Crossref]
  7. C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1860–1869 (2010).
    [Crossref]
  8. M. A. Jebali, J.-N. Maran, and S. LaRochelle, “264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping,” Opt. Lett. 39, 3974–3977 (2014).
    [Crossref]
  9. Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23, 2991–2998 (2015).
    [Crossref]
  10. H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54, 8166–8169 (2015).
    [Crossref]
  11. P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
    [Crossref]
  12. Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
    [Crossref]
  13. E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  14. C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tunnermann, “High-power tandem pumped fiber amplifier with an output power of 2.9 kW,” Opt. Lett. 36, 3061–3063 (2011).
    [Crossref]
  15. G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express 23, 17693–17700 (2015).
    [Crossref]
  16. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17, 9924–9932 (2009).
    [Crossref]
  17. M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8, 744–760 (2018).
    [Crossref]
  18. N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett. 43, 3096–3099 (2018).
    [Crossref]
  19. Y. Feng, Raman Fiber Lasers (Springer, 2017).
  20. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005).
    [Crossref]
  21. L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7, 42611 (2017).
    [Crossref]
  22. R. Cao, G. Chen, Y. Chen, Z. Zhang, X. Lin, B. Dai, L. Yang, and J. Li, “Effective suppression of the photodarkening effect in high-power Yb-doped fiber amplifiers by H2 loading,” Photon. Res. 8, 288–295 (2020).
    [Crossref]
  23. V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).
    [Crossref]
  24. Y. Chen, T. Yao, L. Huang, H. Xiao, J. Leng, and P. Zhou, “2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation,” Opt. Express 28, 3495–3504 (2020).
    [Crossref]
  25. E. Belanger, M. Bernier, D. Faucher, D. Cote, and R. Vallee, “High-power and widely tunable all-fiber Raman laser,” J. Lightwave Technol. 26, 1696–1701 (2008).
    [Crossref]
  26. E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1022–1028 (2000).
    [Crossref]
  27. J. Dong, L. Zhang, J. Zhou, W. Pan, X. Gu, and Y. Feng, “More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber,” Opt. Lett. 44, 1801–1804 (2019).
    [Crossref]
  28. N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral,” Opt. Commun. 176, 219–222 (2000).
    [Crossref]
  29. S. A. Babin, I. D. Vatnik, A. Y. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
    [Crossref]
  30. I. A. Lobach, S. I. Kablukov, and S. A. Babin, “Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 μm,” Opt. Lett. 42, 3526–3529 (2017).
    [Crossref]
  31. J. Song, J. Xu, Y. Zhang, J. Ye, and P. Zhou, “Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity,” Opt. Express 27, 23095–23102 (2019).
    [Crossref]
  32. H. Tanaka and H. Shintani, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7, 870–877 (2008).
    [Crossref]
  33. S. N. Taraskin and S. R. Elliott, “Nature of vibrational excitations in vitreous silica,” Phys. Rev. B 56, 8605–8622 (1997).
    [Crossref]
  34. S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, “Origin of the Boson peak in systems with lattice disorder,” Phys. Rev. Lett. 86, 1255–1258 (2001).
    [Crossref]
  35. V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67, 094203 (2003).
    [Crossref]
  36. D. A. Parshin, H. R. Schober, and V. L. Gurevich, “Vibrational instability, two-level systems, and the boson peak in glasses,” Phys. Rev. B 76, 064206 (2007).
    [Crossref]
  37. A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco, “Heterogeneous shear elasticity of glasses: the origin of the boson peak,” Sci. Rep. 3, 1407 (2013).
    [Crossref]
  38. R. Shuker and R. W. Gammon, “Raman-scattering selection-rule breaking and the density of states in amorphous materials,” Phys. Rev. Lett. 25, 222–225 (1970).
    [Crossref]
  39. J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, “Raman scattering and boson peaks in glasses: temperature and pressure effects,” J. Non-Cryst. Solids 349, 88–97 (2004).
    [Crossref]
  40. J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high power superfluorescent fiber source,” J. Lightwave Technol. 37, 3113–3118 (2019).
    [Crossref]
  41. J. Song, H. Wu, J. Ye, H. Zhang, J. Xu, P. Zhou, and Z. Liu, “Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser,” High Power Laser Sci. Eng. 6, e28 (2018).
    [Crossref]
  42. T. Sylvestre, H. Maillotte, E. Lantz, and P. Tchofo Dinda, “Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber,” Opt. Lett. 24, 1561–1563 (1999).
    [Crossref]
  43. P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, and E. Lantz, “Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion,” Opt. Commun. 192, 107–121 (2001).
    [Crossref]
  44. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  45. J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26, 5275–5280 (2018).
    [Crossref]
  46. Y. Zhang, J. Song, J. Ye, J. Xu, T. Yao, and P. Zhou, “Tunable random Raman fiber laser at 1.7 μm region with high spectral purity,” Opt. Express 27, 28800–28807 (2019).
    [Crossref]
  47. V. Balaswamy, S. Ramachandran, and V. R. Supradeepa, “High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning,” Opt. Express 27, 9725–9732 (2019).
    [Crossref]

2020 (2)

2019 (6)

2018 (5)

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26, 5275–5280 (2018).
[Crossref]

J. Song, H. Wu, J. Ye, H. Zhang, J. Xu, P. Zhou, and Z. Liu, “Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser,” High Power Laser Sci. Eng. 6, e28 (2018).
[Crossref]

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8, 744–760 (2018).
[Crossref]

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett. 43, 3096–3099 (2018).
[Crossref]

2017 (2)

I. A. Lobach, S. I. Kablukov, and S. A. Babin, “Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 μm,” Opt. Lett. 42, 3526–3529 (2017).
[Crossref]

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7, 42611 (2017).
[Crossref]

2016 (1)

S. R. Bowman, “Low quantum defect laser performance,” Opt. Eng. 56, 011104 (2016).
[Crossref]

2015 (3)

2014 (3)

2013 (3)

V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).
[Crossref]

A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco, “Heterogeneous shear elasticity of glasses: the origin of the boson peak,” Sci. Rep. 3, 1407 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

2011 (1)

2010 (1)

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1860–1869 (2010).
[Crossref]

2009 (2)

2008 (2)

H. Tanaka and H. Shintani, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7, 870–877 (2008).
[Crossref]

E. Belanger, M. Bernier, D. Faucher, D. Cote, and R. Vallee, “High-power and widely tunable all-fiber Raman laser,” J. Lightwave Technol. 26, 1696–1701 (2008).
[Crossref]

2007 (1)

D. A. Parshin, H. R. Schober, and V. L. Gurevich, “Vibrational instability, two-level systems, and the boson peak in glasses,” Phys. Rev. B 76, 064206 (2007).
[Crossref]

2005 (1)

2004 (1)

J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, “Raman scattering and boson peaks in glasses: temperature and pressure effects,” J. Non-Cryst. Solids 349, 88–97 (2004).
[Crossref]

2003 (1)

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67, 094203 (2003).
[Crossref]

2001 (2)

S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, “Origin of the Boson peak in systems with lattice disorder,” Phys. Rev. Lett. 86, 1255–1258 (2001).
[Crossref]

P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, and E. Lantz, “Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion,” Opt. Commun. 192, 107–121 (2001).
[Crossref]

2000 (2)

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1022–1028 (2000).
[Crossref]

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral,” Opt. Commun. 176, 219–222 (2000).
[Crossref]

1999 (1)

1997 (1)

S. N. Taraskin and S. R. Elliott, “Nature of vibrational excitations in vitreous silica,” Phys. Rev. B 56, 8605–8622 (1997).
[Crossref]

1988 (1)

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibres,” Electron. Lett. 24, 47–49 (1988).
[Crossref]

1970 (1)

R. Shuker and R. W. Gammon, “Raman-scattering selection-rule breaking and the density of states in amorphous materials,” Phys. Rev. Lett. 25, 222–225 (1970).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Apkarian, J. L.

J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, “Raman scattering and boson peaks in glasses: temperature and pressure effects,” J. Non-Cryst. Solids 349, 88–97 (2004).
[Crossref]

Babin, S. A.

Balaswamy, V.

Ballato, J.

Belanger, E.

Bernier, M.

Blow, K. J.

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibres,” Electron. Lett. 24, 47–49 (1988).
[Crossref]

Bowman, S. R.

S. R. Bowman, “Low quantum defect laser performance,” Opt. Eng. 56, 011104 (2016).
[Crossref]

Bubnov, M. M.

Cai, C.

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

Cao, R.

Cavillon, M.

Chen, G.

Chen, Y.

Codemard, C. A.

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1860–1869 (2010).
[Crossref]

Cote, D.

Cui, S.

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26, 5275–5280 (2018).
[Crossref]

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7, 42611 (2017).
[Crossref]

Dai, B.

Dianov, E. M.

Dong, J.

Dong, L.

Dragic, P.

Dronov, A. G.

Dubinskii, M.

Eberhardt, R.

Elliott, S. R.

S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, “Origin of the Boson peak in systems with lattice disorder,” Phys. Rev. Lett. 86, 1255–1258 (2001).
[Crossref]

S. N. Taraskin and S. R. Elliott, “Nature of vibrational excitations in vitreous silica,” Phys. Rev. B 56, 8605–8622 (1997).
[Crossref]

Faucher, D.

Feng, Y.

Fratalocchi, A.

A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco, “Heterogeneous shear elasticity of glasses: the origin of the boson peak,” Sci. Rep. 3, 1407 (2013).
[Crossref]

Fu, L.

Gammon, R. W.

R. Shuker and R. W. Gammon, “Raman-scattering selection-rule breaking and the density of states in amorphous materials,” Phys. Rev. Lett. 25, 222–225 (1970).
[Crossref]

Gapontsev, V. P.

Georgiev, D.

Gong, M.

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

Gu, G.

Gu, X.

Gurevich, V. L.

D. A. Parshin, H. R. Schober, and V. L. Gurevich, “Vibrational instability, two-level systems, and the boson peak in glasses,” Phys. Rev. B 76, 064206 (2007).
[Crossref]

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67, 094203 (2003).
[Crossref]

Hawkins, T. W.

Huang, C.

Huang, L.

Huang, Y.

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

Hwa, L.

J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, “Raman scattering and boson peaks in glasses: temperature and pressure effects,” J. Non-Cryst. Solids 349, 88–97 (2004).
[Crossref]

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Jebali, M. A.

Ji, J.

Jiang, H.

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26, 5275–5280 (2018).
[Crossref]

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7, 42611 (2017).
[Crossref]

Kablukov, S. I.

Kashyap, R.

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibres,” Electron. Lett. 24, 47–49 (1988).
[Crossref]

Kawato, S.

S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB4.

Kim, N. S.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral,” Opt. Commun. 176, 219–222 (2000).
[Crossref]

Kliner, A.

Kobayashi, T.

S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB4.

Kong, F.

Kucera, C.

Lantz, E.

P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, and E. Lantz, “Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion,” Opt. Commun. 192, 107–121 (2001).
[Crossref]

T. Sylvestre, H. Maillotte, E. Lantz, and P. Tchofo Dinda, “Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber,” Opt. Lett. 24, 1561–1563 (1999).
[Crossref]

Laptev, A. Y.

LaRochelle, S.

Lee, M.

J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, “Raman scattering and boson peaks in glasses: temperature and pressure effects,” J. Non-Cryst. Solids 349, 88–97 (2004).
[Crossref]

Leng, J.

Li, C.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral,” Opt. Commun. 176, 219–222 (2000).
[Crossref]

Li, D.

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

Li, J.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Lin, X.

Liu, W.

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

Liu, Z.

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

J. Song, H. Wu, J. Ye, H. Zhang, J. Xu, P. Zhou, and Z. Liu, “Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser,” High Power Laser Sci. Eng. 6, e28 (2018).
[Crossref]

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express 23, 17693–17700 (2015).
[Crossref]

Lobach, I. A.

Loh, Y. L.

S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, “Origin of the Boson peak in systems with lattice disorder,” Phys. Rev. Lett. 86, 1255–1258 (2001).
[Crossref]

Luo, Y.

Ma, P.

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

Ma, Y.

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

Maillote, H.

P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, and E. Lantz, “Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion,” Opt. Commun. 192, 107–121 (2001).
[Crossref]

Maillotte, H.

Maran, J.-N.

Marruzzo, A.

A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco, “Heterogeneous shear elasticity of glasses: the origin of the boson peak,” Sci. Rep. 3, 1407 (2013).
[Crossref]

Matsubara, S.

S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB4.

McKay, H. A.

Meng, D.

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

Millot, G.

P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, and E. Lantz, “Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion,” Opt. Commun. 192, 107–121 (2001).
[Crossref]

Moynihan, C. T.

J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, “Raman scattering and boson peaks in glasses: temperature and pressure effects,” J. Non-Cryst. Solids 349, 88–97 (2004).
[Crossref]

Nakajima, Y.

S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB4.

Natarajan, G.

S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, “Origin of the Boson peak in systems with lattice disorder,” Phys. Rev. Lett. 86, 1255–1258 (2001).
[Crossref]

Nicholson, J. W.

Nilsson, J.

T. Yao, J. Ji, and J. Nilsson, “Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers,” J. Lightwave Technol. 32, 429–434 (2014).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1860–1869 (2010).
[Crossref]

Pan, W.

Parshin, D. A.

D. A. Parshin, H. R. Schober, and V. L. Gurevich, “Vibrational instability, two-level systems, and the boson peak in glasses,” Phys. Rev. B 76, 064206 (2007).
[Crossref]

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67, 094203 (2003).
[Crossref]

Peng, X.

Popov, S. V.

Prabhu, M.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral,” Opt. Commun. 176, 219–222 (2000).
[Crossref]

Prokhorov, A. M.

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1022–1028 (2000).
[Crossref]

Ramachandran, S.

Rulkov, A. B.

Ruocco, G.

A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco, “Heterogeneous shear elasticity of glasses: the origin of the boson peak,” Sci. Rep. 3, 1407 (2013).
[Crossref]

Sahu, J. K.

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1860–1869 (2010).
[Crossref]

Schirmacher, W.

A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco, “Heterogeneous shear elasticity of glasses: the origin of the boson peak,” Sci. Rep. 3, 1407 (2013).
[Crossref]

Schmidt, O.

Schober, H. R.

D. A. Parshin, H. R. Schober, and V. L. Gurevich, “Vibrational instability, two-level systems, and the boson peak in glasses,” Phys. Rev. B 76, 064206 (2007).
[Crossref]

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67, 094203 (2003).
[Crossref]

Schreiber, T.

Schroeder, J.

J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, “Raman scattering and boson peaks in glasses: temperature and pressure effects,” J. Non-Cryst. Solids 349, 88–97 (2004).
[Crossref]

Sève, E.

P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, and E. Lantz, “Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion,” Opt. Commun. 192, 107–121 (2001).
[Crossref]

Shintani, H.

H. Tanaka and H. Shintani, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7, 870–877 (2008).
[Crossref]

Shirakawa, A.

S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB4.

Shori, R. K.

Shuker, R.

R. Shuker and R. W. Gammon, “Raman-scattering selection-rule breaking and the density of states in amorphous materials,” Phys. Rev. Lett. 25, 222–225 (1970).
[Crossref]

Song, J.

Y. Zhang, J. Song, J. Ye, J. Xu, T. Yao, and P. Zhou, “Tunable random Raman fiber laser at 1.7 μm region with high spectral purity,” Opt. Express 27, 28800–28807 (2019).
[Crossref]

J. Song, J. Xu, Y. Zhang, J. Ye, and P. Zhou, “Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity,” Opt. Express 27, 23095–23102 (2019).
[Crossref]

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high power superfluorescent fiber source,” J. Lightwave Technol. 37, 3113–3118 (2019).
[Crossref]

J. Song, H. Wu, J. Ye, H. Zhang, J. Xu, P. Zhou, and Z. Liu, “Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser,” High Power Laser Sci. Eng. 6, e28 (2018).
[Crossref]

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral,” Opt. Commun. 176, 219–222 (2000).
[Crossref]

Stiles, E.

E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

Su, R.

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

Supradeepa, V. R.

Suzuki, S.

Sylvestre, T.

P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, and E. Lantz, “Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion,” Opt. Commun. 192, 107–121 (2001).
[Crossref]

T. Sylvestre, H. Maillotte, E. Lantz, and P. Tchofo Dinda, “Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber,” Opt. Lett. 24, 1561–1563 (1999).
[Crossref]

Tam, H.

Tanaka, H.

H. Tanaka and H. Shintani, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7, 870–877 (2008).
[Crossref]

Tang, Y.

Tao, R.

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

Taraskin, S. N.

S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, “Origin of the Boson peak in systems with lattice disorder,” Phys. Rev. Lett. 86, 1255–1258 (2001).
[Crossref]

S. N. Taraskin and S. R. Elliott, “Nature of vibrational excitations in vitreous silica,” Phys. Rev. B 56, 8605–8622 (1997).
[Crossref]

Taylor, J. R.

Tchofo, P.

P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, and E. Lantz, “Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion,” Opt. Commun. 192, 107–121 (2001).
[Crossref]

Tchofo Dinda, P.

Ter-Mikirtychev, V.

Tian, J.

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

Tunnermann, A.

Ueda, K.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral,” Opt. Commun. 176, 219–222 (2000).
[Crossref]

Uno, K.

S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB4.

Vallee, R.

Vatnik, I. D.

Vyatkin, M. Y.

Wang, S.

Wang, Y.

Wang, Z.

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

Wirth, C.

Wu, H.

J. Song, H. Wu, J. Ye, H. Zhang, J. Xu, P. Zhou, and Z. Liu, “Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser,” High Power Laser Sci. Eng. 6, e28 (2018).
[Crossref]

Wu, W.

J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, “Raman scattering and boson peaks in glasses: temperature and pressure effects,” J. Non-Cryst. Solids 349, 88–97 (2004).
[Crossref]

Xiao, H.

Xiao, Q.

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

Xu, J.

Yan, P.

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

Yang, J.

Yang, L.

Yang, X.

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26, 5275–5280 (2018).
[Crossref]

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7, 42611 (2017).
[Crossref]

Yao, T.

Ye, J.

Yi, Y.

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

Yu, N.

Zhang, H.

J. Song, H. Wu, J. Ye, H. Zhang, J. Xu, P. Zhou, and Z. Liu, “Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser,” High Power Laser Sci. Eng. 6, e28 (2018).
[Crossref]

H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54, 8166–8169 (2015).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, Y.

Zhang, Z.

Zhou, J.

Zhou, P.

Y. Chen, T. Yao, L. Huang, H. Xiao, J. Leng, and P. Zhou, “2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation,” Opt. Express 28, 3495–3504 (2020).
[Crossref]

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high power superfluorescent fiber source,” J. Lightwave Technol. 37, 3113–3118 (2019).
[Crossref]

J. Song, J. Xu, Y. Zhang, J. Ye, and P. Zhou, “Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity,” Opt. Express 27, 23095–23102 (2019).
[Crossref]

Y. Zhang, J. Song, J. Ye, J. Xu, T. Yao, and P. Zhou, “Tunable random Raman fiber laser at 1.7 μm region with high spectral purity,” Opt. Express 27, 28800–28807 (2019).
[Crossref]

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

J. Song, H. Wu, J. Ye, H. Zhang, J. Xu, P. Zhou, and Z. Liu, “Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser,” High Power Laser Sci. Eng. 6, e28 (2018).
[Crossref]

H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54, 8166–8169 (2015).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibres,” Electron. Lett. 24, 47–49 (1988).
[Crossref]

High Power Laser Sci. Eng. (2)

P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, and Z. Liu, “High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression,” High Power Laser Sci. Eng. 6, e57 (2018).
[Crossref]

J. Song, H. Wu, J. Ye, H. Zhang, J. Xu, P. Zhou, and Z. Liu, “Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser,” High Power Laser Sci. Eng. 6, e28 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46, 1860–1869 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1022–1028 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, and M. Gong, “An efficient 4-kW level random fiber laser based on a tandem-pumping scheme,” IEEE Photon. Technol. Lett. 31, 817–820 (2019).
[Crossref]

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, “Raman scattering and boson peaks in glasses: temperature and pressure effects,” J. Non-Cryst. Solids 349, 88–97 (2004).
[Crossref]

Nat. Mater. (1)

H. Tanaka and H. Shintani, “Universal link between the boson peak and transverse phonons in glass,” Nat. Mater. 7, 870–877 (2008).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Opt. Commun. (2)

P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, and E. Lantz, “Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion,” Opt. Commun. 192, 107–121 (2001).
[Crossref]

N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral,” Opt. Commun. 176, 219–222 (2000).
[Crossref]

Opt. Eng. (1)

S. R. Bowman, “Low quantum defect laser performance,” Opt. Eng. 56, 011104 (2016).
[Crossref]

Opt. Express (10)

J. Song, J. Xu, Y. Zhang, J. Ye, and P. Zhou, “Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity,” Opt. Express 27, 23095–23102 (2019).
[Crossref]

Y. Zhang, J. Song, J. Ye, J. Xu, T. Yao, and P. Zhou, “Tunable random Raman fiber laser at 1.7 μm region with high spectral purity,” Opt. Express 27, 28800–28807 (2019).
[Crossref]

G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, “Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm,” Opt. Express 23, 17693–17700 (2015).
[Crossref]

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17, 9924–9932 (2009).
[Crossref]

J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, and Y. Feng, “High order cascaded Raman random fiber laser with high spectral purity,” Opt. Express 26, 5275–5280 (2018).
[Crossref]

V. Balaswamy, S. Ramachandran, and V. R. Supradeepa, “High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning,” Opt. Express 27, 9725–9732 (2019).
[Crossref]

Y. Chen, T. Yao, L. Huang, H. Xiao, J. Leng, and P. Zhou, “2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation,” Opt. Express 28, 3495–3504 (2020).
[Crossref]

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm,” Opt. Express 13, 6772–6776 (2005).
[Crossref]

Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, and J. Xu, “High power tandem-pumped thulium-doped fiber laser,” Opt. Express 23, 2991–2998 (2015).
[Crossref]

S. A. Babin, I. D. Vatnik, A. Y. Laptev, M. M. Bubnov, and E. M. Dianov, “High-efficiency cascaded Raman fiber laser with random distributed feedback,” Opt. Express 22, 24929–24934 (2014).
[Crossref]

Opt. Lett. (8)

J. Dong, L. Zhang, J. Zhou, W. Pan, X. Gu, and Y. Feng, “More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber,” Opt. Lett. 44, 1801–1804 (2019).
[Crossref]

M. A. Jebali, J.-N. Maran, and S. LaRochelle, “264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping,” Opt. Lett. 39, 3974–3977 (2014).
[Crossref]

I. A. Lobach, S. I. Kablukov, and S. A. Babin, “Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 μm,” Opt. Lett. 42, 3526–3529 (2017).
[Crossref]

N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, “Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber,” Opt. Lett. 43, 3096–3099 (2018).
[Crossref]

C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tunnermann, “High-power tandem pumped fiber amplifier with an output power of 2.9 kW,” Opt. Lett. 36, 3061–3063 (2011).
[Crossref]

V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38, 2538–2541 (2013).
[Crossref]

T. Sylvestre, H. Maillotte, E. Lantz, and P. Tchofo Dinda, “Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber,” Opt. Lett. 24, 1561–1563 (1999).
[Crossref]

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency,” Opt. Lett. 34, 1507–1509 (2009).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. B (3)

S. N. Taraskin and S. R. Elliott, “Nature of vibrational excitations in vitreous silica,” Phys. Rev. B 56, 8605–8622 (1997).
[Crossref]

V. L. Gurevich, D. A. Parshin, and H. R. Schober, “Anharmonicity, vibrational instability, and the Boson peak in glasses,” Phys. Rev. B 67, 094203 (2003).
[Crossref]

D. A. Parshin, H. R. Schober, and V. L. Gurevich, “Vibrational instability, two-level systems, and the boson peak in glasses,” Phys. Rev. B 76, 064206 (2007).
[Crossref]

Phys. Rev. Lett. (2)

S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, “Origin of the Boson peak in systems with lattice disorder,” Phys. Rev. Lett. 86, 1255–1258 (2001).
[Crossref]

R. Shuker and R. W. Gammon, “Raman-scattering selection-rule breaking and the density of states in amorphous materials,” Phys. Rev. Lett. 25, 222–225 (1970).
[Crossref]

Sci. Rep. (2)

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7, 42611 (2017).
[Crossref]

A. Marruzzo, W. Schirmacher, A. Fratalocchi, and G. Ruocco, “Heterogeneous shear elasticity of glasses: the origin of the boson peak,” Sci. Rep. 3, 1407 (2013).
[Crossref]

Other (4)

E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

Y. Feng, Raman Fiber Lasers (Springer, 2017).

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, “Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2007), paper TuB4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Typical Raman gain spectrum of phosphosilicate fiber [27]. (b) The Raman output spectra of the phosphosilicate fiber we used under different pump powers.
Fig. 2.
Fig. 2. Experimental setup of our low-quantum-defect Raman fiber laser. ASE, amplified spontaneous emission; HR, highly reflective; FBG, fiber Bragg grating; LR, low reflective.
Fig. 3.
Fig. 3. (a) Spectral evolution of the oscillator-pumped Raman fiber laser. (b) Spectral evolution of the ASE-source-pumped Raman fiber laser. (c) Temporal behaviors of the oscillator and ASE source under the same power level.
Fig. 4.
Fig. 4. (a) Total output, Raman output, and residual pump power of the ASE-source-pumped Raman fiber laser as a function of pump power. (b) Output spectrum of the ASE-pumped Raman fiber laser with a spectral purity of 96.03% (inset: the corresponding output spectrum in linear scale).
Fig. 5.
Fig. 5. (a) Threshold power, maximum Raman output power, and (b) corresponding output spectra at the same pump level of the ASE-source-pumped Raman fiber laser under different pump wavelengths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(w)=g(w)C(w)1+n(w)w.