Abstract

Airy optical beams have emerged to hold enormous theoretical and experimental research interest due to their outstanding characteristics. Conventional approaches suffer from bulky and costly systems, as well as poor phase discretization. The newly developed metasurface-based Airy beam generators have constraints of polarization dependence or limited generation efficiency. Here, we experimentally demonstrate a polarization-independent silicon dielectric metasurface for generation of high-efficiency Airy optical beams. In our implementation, rather than synchronous manipulation of the amplitude and phase by plasmonic or Huygens’ metasurfaces, we employ and impose a 3/2 phase-only manipulation to the dielectric metasurface, consisting of an array of silicon nanopillars with an optimized transmission efficiency as high as 97%. The resultant Airy optical beams possess extraordinarily large deflection angles and relatively narrow beam widths. Our validated scheme will open up a fascinating doorway to broaden the application scenarios of Airy optical beams on ultracompact photonic platforms.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
    [Crossref]
  2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 075103 (2007).
    [Crossref]
  3. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
    [Crossref]
  4. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
    [Crossref]
  5. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
    [Crossref]
  6. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
    [Crossref]
  7. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
    [Crossref]
  8. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
    [Crossref]
  9. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
    [Crossref]
  10. T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
    [Crossref]
  11. Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
    [Crossref]
  12. J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
    [Crossref]
  13. S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D super-resolution imaging with a self-bending point spread function,” Nat. Photonics. 8, 302–306 (2014).
    [Crossref]
  14. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
    [Crossref]
  15. Z. Ren, Q. Wu, Y. Shi, C. Chen, J. Wu, and H. Wang, “Production of accelerating quad Airy beams and their optical characteristics,” Opt. Express 22, 15154–15164 (2014).
    [Crossref]
  16. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
    [Crossref]
  17. Q. Lu, S. Gao, L. Sheng, J. Wu, and Y. Qiao, “Generation of coherent and incoherent Airy beam arrays and experimental comparisons of their scintillation characteristics in atmospheric turbulence,” Appl. Opt. 56, 3750–3757 (2017).
    [Crossref]
  18. D. M. Cottrell, J. A. Davis, and T. M. Hazard, “Direct generation of accelerating Airy beams using a 3/2 phase-only pattern,” Opt. Lett. 34, 2634–2636 (2009).
    [Crossref]
  19. J. A. Davis, M. J. Mitry, M. A. Bandres, I. Ruiz, K. P. McAuley, and D. M. Cottrell, “Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns,” Appl. Opt. 48, 3170–3176 (2009).
    [Crossref]
  20. B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
    [Crossref]
  21. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
    [Crossref]
  22. E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
    [Crossref]
  23. D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
    [Crossref]
  24. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  25. Y. Yang, W. Wang, P. Moitra, Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
    [Crossref]
  26. X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22, 17207–17215 (2014).
    [Crossref]
  27. S. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7, 3312–3321 (2017).
    [Crossref]
  28. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
    [Crossref]
  29. H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8, 1940–1950 (2018).
    [Crossref]
  30. J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4, eaar6768 (2018).
    [Crossref]
  31. H. Dong, F. Wang, R. Liang, Z. Wei, H. Meng, L.-H. Jiang, H. Cen, L. Wang, S. Qin, and C. Wang, “Visible-wavelength metalenses for diffraction-limited focusing of double polarization and vortex beams,” Opt. Mater. Express 7, 4029–4037 (2017).
    [Crossref]
  32. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
    [Crossref]
  33. M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
    [Crossref]
  34. H. Yang, G. Li, G. Cao, Z. Zhao, J. Chen, K. Ou, X. Chen, and W. Lu, “Broadband polarization resolving based on dielectric metalenses in the near-infrared,” Opt. Express 26, 5632–5643 (2018).
    [Crossref]
  35. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  36. S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
    [Crossref]
  37. G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  38. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
    [Crossref]
  39. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  40. X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2, 978–982 (2014).
    [Crossref]
  41. F. Shi, M. Qiu, L. Zhang, E. Y. Lam, and D. Y. Lei, “Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy,” ACS Photon. 5, 1676–1684 (2018).
    [Crossref]
  42. J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
    [Crossref]
  43. X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
    [Crossref]
  44. J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
    [Crossref]
  45. W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
    [Crossref]
  46. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
    [Crossref]
  47. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
    [Crossref]
  48. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
    [Crossref]
  49. B. Yu, J. Wen, X. Chen, and D. Zhang, “An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit,” Appl. Phys. Express. 12, 092003 (2019).
    [Crossref]
  50. Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
    [Crossref]
  51. S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).
  52. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics. 11, 465–476 (2017).
    [Crossref]
  53. K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
    [Crossref]
  54. O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, and A. Adibi, “Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach,” Nanoscale 11, 21266–21274 (2019).
    [Crossref]
  55. E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
    [Crossref]
  56. Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4, 1230–1235 (2016).
    [Crossref]
  57. W. Hao, M. Deng, S. Chen, and L. Chen, “High-efficiency generation of Airy beams with Huygens’ metasurface,” Phys. Rev. Appl. 11, 054012 (2019).
    [Crossref]
  58. J. Ding, S. An, B. Zheng, and H. Zhang, “Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths,” Adv. Opt. Mater. 5, 1700079 (2017).
    [Crossref]
  59. H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
    [Crossref]
  60. Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
    [Crossref]
  61. K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
    [Crossref]
  62. Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
    [Crossref]
  63. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
    [Crossref]
  64. W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
    [Crossref]
  65. M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
    [Crossref]
  66. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
    [Crossref]
  67. Z. H. Zhu, Z. H. Han, and S. I. Bozhevolnyi, “Wide-bandwidth polarization-independent optical band-stop filter based on plasmonic nanoantennas,” Appl. Phys. A 110, 71–75 (2012).
    [Crossref]
  68. A. Mont, A. Alù, A. Toscano, and F. Bilotti, “Homogenization of all-dielectric metasurfaces: theory and applications,” in Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2019).
  69. A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Surface impedance modeling of all-dielectric metasurfaces,” IEEE Trans. Antennas Propag. 68, 1799–1811 (2020).
    [Crossref]
  70. H. Wang, J. Du, H. Wang, Y. Lu, and P. Wang, “Generation of spin-dependent accelerating beam with geometric metasurface,” Adv. Opt. Mater. 7, 1900552 (2019).
    [Crossref]
  71. Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25, 9285–9294 (2017).
    [Crossref]
  72. X. M. Tang, L. Li, T. Li, Q. J. Wang, X. J. Zhang, S. N. Zhu, and Y. Y. Zhu, “Converting surface plasmon to spatial Airy beam by graded grating on metal surface,” Opt. Lett. 38, 1733–1735 (2013).
    [Crossref]

2020 (1)

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Surface impedance modeling of all-dielectric metasurfaces,” IEEE Trans. Antennas Propag. 68, 1799–1811 (2020).
[Crossref]

2019 (13)

H. Wang, J. Du, H. Wang, Y. Lu, and P. Wang, “Generation of spin-dependent accelerating beam with geometric metasurface,” Adv. Opt. Mater. 7, 1900552 (2019).
[Crossref]

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
[Crossref]

K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
[Crossref]

O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, and A. Adibi, “Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach,” Nanoscale 11, 21266–21274 (2019).
[Crossref]

B. Yu, J. Wen, X. Chen, and D. Zhang, “An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit,” Appl. Phys. Express. 12, 092003 (2019).
[Crossref]

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

W. Hao, M. Deng, S. Chen, and L. Chen, “High-efficiency generation of Airy beams with Huygens’ metasurface,” Phys. Rev. Appl. 11, 054012 (2019).
[Crossref]

2018 (9)

F. Shi, M. Qiu, L. Zhang, E. Y. Lam, and D. Y. Lei, “Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy,” ACS Photon. 5, 1676–1684 (2018).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref]

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8, 1940–1950 (2018).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4, eaar6768 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, Z. Zhao, J. Chen, K. Ou, X. Chen, and W. Lu, “Broadband polarization resolving based on dielectric metalenses in the near-infrared,” Opt. Express 26, 5632–5643 (2018).
[Crossref]

2017 (8)

H. Dong, F. Wang, R. Liang, Z. Wei, H. Meng, L.-H. Jiang, H. Cen, L. Wang, S. Qin, and C. Wang, “Visible-wavelength metalenses for diffraction-limited focusing of double polarization and vortex beams,” Opt. Mater. Express 7, 4029–4037 (2017).
[Crossref]

S. Yu, L. Li, and N. Kou, “Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces,” Opt. Mater. Express 7, 3312–3321 (2017).
[Crossref]

Q. Lu, S. Gao, L. Sheng, J. Wu, and Y. Qiao, “Generation of coherent and incoherent Airy beam arrays and experimental comparisons of their scintillation characteristics in atmospheric turbulence,” Appl. Opt. 56, 3750–3757 (2017).
[Crossref]

Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25, 9285–9294 (2017).
[Crossref]

J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
[Crossref]

J. Ding, S. An, B. Zheng, and H. Zhang, “Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths,” Adv. Opt. Mater. 5, 1700079 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics. 11, 465–476 (2017).
[Crossref]

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

2016 (6)

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4, 1230–1235 (2016).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

2015 (4)

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

2014 (8)

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2, 978–982 (2014).
[Crossref]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D super-resolution imaging with a self-bending point spread function,” Nat. Photonics. 8, 302–306 (2014).
[Crossref]

Z. Ren, Q. Wu, Y. Shi, C. Chen, J. Wu, and H. Wang, “Production of accelerating quad Airy beams and their optical characteristics,” Opt. Express 22, 15154–15164 (2014).
[Crossref]

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22, 17207–17215 (2014).
[Crossref]

2013 (2)

2012 (5)

Z. H. Zhu, Z. H. Han, and S. I. Bozhevolnyi, “Wide-bandwidth polarization-independent optical band-stop filter based on plasmonic nanoantennas,” Appl. Phys. A 110, 71–75 (2012).
[Crossref]

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

2011 (5)

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[Crossref]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

2009 (3)

2008 (2)

2007 (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 075103 (2007).
[Crossref]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[Crossref]

2006 (1)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[Crossref]

1979 (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Abdollahramezani, S.

O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, and A. Adibi, “Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach,” Nanoscale 11, 21266–21274 (2019).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

Adibi, A.

O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, and A. Adibi, “Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach,” Nanoscale 11, 21266–21274 (2019).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

Aggarwal, S.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Agrawal, A.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Alu, A.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

Alù, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Surface impedance modeling of all-dielectric metasurfaces,” IEEE Trans. Antennas Propag. 68, 1799–1811 (2020).
[Crossref]

A. Mont, A. Alù, A. Toscano, and F. Bilotti, “Homogenization of all-dielectric metasurfaces: theory and applications,” in Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2019).

An, S.

J. Ding, S. An, B. Zheng, and H. Zhang, “Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths,” Adv. Opt. Mater. 5, 1700079 (2017).
[Crossref]

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Arbabi, E.

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Bandres, M. A.

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Bharwani, Z.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

Bhaskaran, H.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics. 11, 465–476 (2017).
[Crossref]

Bilotti, F.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Surface impedance modeling of all-dielectric metasurfaces,” IEEE Trans. Antennas Propag. 68, 1799–1811 (2020).
[Crossref]

A. Mont, A. Alù, A. Toscano, and F. Bilotti, “Homogenization of all-dielectric metasurfaces: theory and applications,” in Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2019).

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Bozhevolnyi, S. I.

Z. H. Zhu, Z. H. Han, and S. I. Bozhevolnyi, “Wide-bandwidth polarization-independent optical band-stop filter based on plasmonic nanoantennas,” Appl. Phys. A 110, 71–75 (2012).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Broky, J.

Brongersma, M. L.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref]

Cao, G.

Capasso, F.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Cen, H.

Chen, B. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Chen, C.

Chen, J.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, Z. Zhao, J. Chen, K. Ou, X. Chen, and W. Lu, “Broadband polarization resolving based on dielectric metalenses in the near-infrared,” Opt. Express 26, 5632–5643 (2018).
[Crossref]

J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
[Crossref]

Chen, L.

W. Hao, M. Deng, S. Chen, and L. Chen, “High-efficiency generation of Airy beams with Huygens’ metasurface,” Phys. Rev. Appl. 11, 054012 (2019).
[Crossref]

J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
[Crossref]

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Chen, M. K.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Chen, P.

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Chen, S.

J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

W. Hao, M. Deng, S. Chen, and L. Chen, “High-efficiency generation of Airy beams with Huygens’ metasurface,” Phys. Rev. Appl. 11, 054012 (2019).
[Crossref]

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4, 1230–1235 (2016).
[Crossref]

X. Yi, X. Ling, Z. Zhang, Y. Li, X. Zhou, Y. Liu, S. Chen, H. Luo, and S. Wen, “Generation of cylindrical vector vortex beams by two cascaded metasurfaces,” Opt. Express 22, 17207–17215 (2014).
[Crossref]

Chen, W. T.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Chen, X.

B. Yu, J. Wen, X. Chen, and D. Zhang, “An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit,” Appl. Phys. Express. 12, 092003 (2019).
[Crossref]

H. Yang, G. Li, G. Cao, Z. Zhao, J. Chen, K. Ou, X. Chen, and W. Lu, “Broadband polarization resolving based on dielectric metalenses in the near-infrared,” Opt. Express 26, 5632–5643 (2018).
[Crossref]

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8, 1940–1950 (2018).
[Crossref]

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2, 978–982 (2014).
[Crossref]

Chen, Y. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Chen, Z.

Cheng, H.

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4, 1230–1235 (2016).
[Crossref]

Cheng, Q.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

Chigrinov, V.

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Christodoulides, D. N.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
[Crossref]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
[Crossref]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 075103 (2007).
[Crossref]

Cižmár, T.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

Coll-Lladó, C.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

Cottrell, D. M.

Courvoisier, F.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Dalgarno, H. I.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

Davis, J. A.

Decker, M.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

Deng, J.

K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
[Crossref]

Deng, M.

W. Hao, M. Deng, S. Chen, and L. Chen, “High-efficiency generation of Airy beams with Huygens’ metasurface,” Phys. Rev. Appl. 11, 054012 (2019).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Devlin, R. C.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

Dholakia, K.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

Ding, J.

J. Ding, S. An, B. Zheng, and H. Zhang, “Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths,” Adv. Opt. Mater. 5, 1700079 (2017).
[Crossref]

Dogariu, A.

Dong, H.

Du, J.

H. Wang, J. Du, H. Wang, Y. Lu, and P. Wang, “Generation of spin-dependent accelerating beam with geometric metasurface,” Adv. Opt. Mater. 7, 1900552 (2019).
[Crossref]

Dudley, J. M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[Crossref]

Fan, Q.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25, 9285–9294 (2017).
[Crossref]

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Feng, H.

J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
[Crossref]

Ferrier, D. E.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

Ferrier, D. E. K.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Froehly, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Fu, X.

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

Furfaro, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gao, P.

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

Gao, S.

Ge, S.

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gong, Z.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Gunn-Moore, F. J.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

Guo, H.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
[Crossref]

Guo, Y.

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

Han, Z. H.

Z. H. Zhu, Z. H. Han, and S. I. Bozhevolnyi, “Wide-bandwidth polarization-independent optical band-stop filter based on plasmonic nanoantennas,” Appl. Phys. A 110, 71–75 (2012).
[Crossref]

Hang, Z.

J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
[Crossref]

Hang, Z. H.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Hao, W.

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

W. Hao, M. Deng, S. Chen, and L. Chen, “High-efficiency generation of Airy beams with Huygens’ metasurface,” Phys. Rev. Appl. 11, 054012 (2019).
[Crossref]

Hasman, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref]

Hazard, T. M.

He, S.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Hemmatyar, O.

O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, and A. Adibi, “Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach,” Nanoscale 11, 21266–21274 (2019).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

Hong, J.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Hu, W.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Huang, K.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
[Crossref]

Huang, L.

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2, 978–982 (2014).
[Crossref]

Huang, T. T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Huang, Y.

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

Huo, P.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25, 9285–9294 (2017).
[Crossref]

Jacquot, M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Janunts, N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[Crossref]

Ji, W.

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Jia, S.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D super-resolution imaging with a self-bending point spread function,” Nat. Photonics. 8, 302–306 (2014).
[Crossref]

Jiang, L.-H.

Jin, J.

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

Jokerst, N. M.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Kamali, S. M.

Kamin, S.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4, eaar6768 (2018).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kenney, M.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Khorasaninejad, M.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Kiarashinejad, Y.

O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, and A. Adibi, “Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach,” Nanoscale 11, 21266–21274 (2019).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Kim, H.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

Kim, J.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

Kivshar, Y. S.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[Crossref]

Klein, A. E.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[Crossref]

Kleiner, V.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref]

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[Crossref]

Kou, N.

Krasnok, A.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

Kravchenko,

Y. Yang, W. Wang, P. Moitra, Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Lacourt, P. A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Lam, E. Y.

F. Shi, M. Qiu, L. Zhang, E. Y. Lam, and D. Y. Lei, “Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy,” ACS Photon. 5, 1676–1684 (2018).
[Crossref]

Larouche, S.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Lee, B.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Lee, G.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

Lee, K.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

Lei, D. Y.

F. Shi, M. Qiu, L. Zhang, E. Y. Lam, and D. Y. Lei, “Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy,” ACS Photon. 5, 1676–1684 (2018).
[Crossref]

Leong, H. S.

K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
[Crossref]

Lezec, H. J.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Li, G.

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8, 1940–1950 (2018).
[Crossref]

H. Yang, G. Li, G. Cao, Z. Zhao, J. Chen, K. Ou, X. Chen, and W. Lu, “Broadband polarization resolving based on dielectric metalenses in the near-infrared,” Opt. Express 26, 5632–5643 (2018).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Li, H.

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Li, J.

J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
[Crossref]

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4, eaar6768 (2018).
[Crossref]

Li, L.

Li, T.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

X. M. Tang, L. Li, T. Li, Q. J. Wang, X. J. Zhang, S. N. Zhu, and Y. Y. Zhu, “Converting surface plasmon to spatial Airy beam by graded grating on metal surface,” Opt. Lett. 38, 1733–1735 (2013).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

Li, X.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Li, Y.

Li, Z.

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4, 1230–1235 (2016).
[Crossref]

Liang, R.

Liang, Y.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25, 9285–9294 (2017).
[Crossref]

Lin, R. M.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Ling, X.

Litchinitser, N. M.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Liu, H.

K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
[Crossref]

Liu, J.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Liu, N.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4, eaar6768 (2018).
[Crossref]

Liu, Y.

Liu, Z.

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4, 1230–1235 (2016).
[Crossref]

Lu, C.

Lu, Q.

Lu, W.

Lu, Y.

H. Wang, J. Du, H. Wang, Y. Lu, and P. Wang, “Generation of spin-dependent accelerating beam with geometric metasurface,” Adv. Opt. Mater. 7, 1900552 (2019).
[Crossref]

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Luo, H.

Luo, X.

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Lv, Y.

J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
[Crossref]

Ma, M.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

Ma, X.

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

Ma, Y.

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

Maguid, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref]

Mathis, A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Mazilu, M.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

McAuley, K. P.

McCluskey, K.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Meng, H.

Ming, Y.

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Minovich, A.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[Crossref]

Mishra, I.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

Mitry, M. J.

Moitra, P.

Y. Yang, W. Wang, P. Moitra, Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[Crossref]

Mont, A.

A. Mont, A. Alù, A. Toscano, and F. Bilotti, “Homogenization of all-dielectric metasurfaces: theory and applications,” in Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2019).

Monti, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Surface impedance modeling of all-dielectric metasurfaces,” IEEE Trans. Antennas Propag. 68, 1799–1811 (2020).
[Crossref]

Muhlenbernd, H.

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Neshev, D. N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[Crossref]

Neubrech, F.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4, eaar6768 (2018).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Nikolskiy, K.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Nobis, T.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

Nylk, J.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

Ou, K.

Pandey, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Park, H.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

Pertsch, T.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[Crossref]

Petschulat, J.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[Crossref]

Preciado, M. A.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Prokopas, M.

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

Pu, M.

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

Qiao, Y.

Qin, S.

Qiu, C.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Qiu, C. W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Qiu, M.

F. Shi, M. Qiu, L. Zhang, E. Y. Lam, and D. Y. Lei, “Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy,” ACS Photon. 5, 1676–1684 (2018).
[Crossref]

Reineke, B.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Ren, Z.

Roques-Carmes, C.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

Ruiz, I.

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Shalaev, M. I.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Shan, F.

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

Shen, Z.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

Sheng, L.

Shi, F.

F. Shi, M. Qiu, L. Zhang, E. Y. Lam, and D. Y. Lei, “Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy,” ACS Photon. 5, 1676–1684 (2018).
[Crossref]

Shi, Y.

Shi, Z.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Sisler, J.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33, 207–209 (2008).
[Crossref]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 075103 (2007).
[Crossref]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[Crossref]

Smith, D. R.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Song, E.

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

Su, D.

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Sun, J.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Taghinejad, H.

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

Tang, X. M.

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics. 11, 465–476 (2017).
[Crossref]

Tello, J. A.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Teng, J.

K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Tian, J.

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4, 1230–1235 (2016).
[Crossref]

Toscano, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Surface impedance modeling of all-dielectric metasurfaces,” IEEE Trans. Antennas Propag. 68, 1799–1811 (2020).
[Crossref]

A. Mont, A. Alù, A. Toscano, and F. Bilotti, “Homogenization of all-dielectric metasurfaces: theory and applications,” in Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2019).

Tsai, D. P.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Tsai, Y. J.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Tsukernik, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Tyler, T.

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Vaughan, J. C.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D super-resolution imaging with a self-bending point spread function,” Nat. Photonics. 8, 302–306 (2014).
[Crossref]

Veksler, D.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref]

Vettenburg, T.

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

Wang, C.

Wang, D.

Wang, F.

Wang, H.

H. Wang, J. Du, H. Wang, Y. Lu, and P. Wang, “Generation of spin-dependent accelerating beam with geometric metasurface,” Adv. Opt. Mater. 7, 1900552 (2019).
[Crossref]

H. Wang, J. Du, H. Wang, Y. Lu, and P. Wang, “Generation of spin-dependent accelerating beam with geometric metasurface,” Adv. Opt. Mater. 7, 1900552 (2019).
[Crossref]

Z. Ren, Q. Wu, Y. Shi, C. Chen, J. Wu, and H. Wang, “Production of accelerating quad Airy beams and their optical characteristics,” Opt. Express 22, 15154–15164 (2014).
[Crossref]

Wang, J.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

Wang, J. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wang, K.

J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
[Crossref]

Wang, L.

Wang, P.

H. Wang, J. Du, H. Wang, Y. Lu, and P. Wang, “Generation of spin-dependent accelerating beam with geometric metasurface,” Adv. Opt. Mater. 7, 1900552 (2019).
[Crossref]

Wang, Q. J.

Wang, S.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[Crossref]

Wang, S. M.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Wang, Y.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Wang, Z.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wei, B.

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Wei, Z.

Wen, J.

B. Yu, J. Wen, X. Chen, and D. Zhang, “An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit,” Appl. Phys. Express. 12, 092003 (2019).
[Crossref]

J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
[Crossref]

Wen, S.

Wu, C.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Wu, J.

Wu, P. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wu, Q.

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics. 11, 465–476 (2017).
[Crossref]

Xie, J.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

Xu, N.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

Xu, T.

J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, “Autofocusing Airy beams generated by all-dielectric metasurface for visible light,” Opt. Express 25, 9285–9294 (2017).
[Crossref]

Yang, H.

Yang, R. B.

K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

Yang, Z.

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

Yap, S. L. K.

K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
[Crossref]

Ye, W.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Yi, X.

Yin, X.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[Crossref]

Yu, B.

B. Yu, J. Wen, X. Chen, and D. Zhang, “An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit,” Appl. Phys. Express. 12, 092003 (2019).
[Crossref]

Yu, D.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

Yu, F.

H. Yang, G. Li, G. Cao, F. Yu, Z. Zhao, K. Ou, X. Chen, and W. Lu, “High efficiency dual-wavelength achromatic metalens via cascaded dielectric metasurfaces,” Opt. Mater. Express 8, 1940–1950 (2018).
[Crossref]

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Yu, S.

Yuan, K.

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

Yulevich, I.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref]

Zandehshahvar, M.

O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, and A. Adibi, “Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach,” Nanoscale 11, 21266–21274 (2019).
[Crossref]

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

Zentgraf, T.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zeuner, F.

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

Zhang, C.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

Zhang, D.

B. Yu, J. Wen, X. Chen, and D. Zhang, “An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit,” Appl. Phys. Express. 12, 092003 (2019).
[Crossref]

J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
[Crossref]

Zhang, H.

J. Ding, S. An, B. Zheng, and H. Zhang, “Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths,” Adv. Opt. Mater. 5, 1700079 (2017).
[Crossref]

Zhang, L.

F. Shi, M. Qiu, L. Zhang, E. Y. Lam, and D. Y. Lei, “Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy,” ACS Photon. 5, 1676–1684 (2018).
[Crossref]

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

Zhang, P.

Zhang, S.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4, eaar6768 (2018).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2, 978–982 (2014).
[Crossref]

Zhang, T.

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

Zhang, X.

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[Crossref]

Zhang, X. J.

Zhang, Y.

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2, 978–982 (2014).
[Crossref]

Zhang, Z.

Zhao, Z.

Zheng, B.

J. Ding, S. An, B. Zheng, and H. Zhang, “Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths,” Adv. Opt. Mater. 5, 1700079 (2017).
[Crossref]

Zheng, G.

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4, eaar6768 (2018).
[Crossref]

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zheng, L.

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Zhong, Y.

J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
[Crossref]

Zhou, L.

J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
[Crossref]

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Zhou, X.

Zhu, A. Y.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

Zhu, H.

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Zhu, S. N.

X. M. Tang, L. Li, T. Li, Q. J. Wang, X. J. Zhang, S. N. Zhu, and Y. Y. Zhu, “Converting surface plasmon to spatial Airy beam by graded grating on metal surface,” Opt. Lett. 38, 1733–1735 (2013).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

Zhu, W.

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Zhu, Y. Y.

Zhu, Z. H.

Z. H. Zhu, Z. H. Han, and S. I. Bozhevolnyi, “Wide-bandwidth polarization-independent optical band-stop filter based on plasmonic nanoantennas,” Appl. Phys. A 110, 71–75 (2012).
[Crossref]

Zhuang, S.

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

Zhuang, X.

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D super-resolution imaging with a self-bending point spread function,” Nat. Photonics. 8, 302–306 (2014).
[Crossref]

ACS Photon. (2)

F. Shi, M. Qiu, L. Zhang, E. Y. Lam, and D. Y. Lei, “Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy,” ACS Photon. 5, 1676–1684 (2018).
[Crossref]

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

Adv. Opt. Mater. (7)

E. Song, G. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, “Compact generation of Airy beams with c-aperture metasurface,” Adv. Opt. Mater. 5, 1900493 (2017).
[Crossref]

Z. Li, H. Cheng, Z. Liu, S. Chen, and J. Tian, “Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces,” Adv. Opt. Mater. 4, 1230–1235 (2016).
[Crossref]

J. Ding, S. An, B. Zheng, and H. Zhang, “Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths,” Adv. Opt. Mater. 5, 1700079 (2017).
[Crossref]

H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, “Broadband generation of Airy beams with hyperbolic metamaterials,” Adv. Opt. Mater. 7, 1900493 (2019).
[Crossref]

Y. Guo, Y. Huang, X. Li, M. Pu, P. Gao, J. Jin, X. Ma, and X. Luo, “Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface,” Adv. Opt. Mater. 7, 1900503 (2019).
[Crossref]

X. Chen, Y. Zhang, L. Huang, and S. Zhang, “Ultrathin metasurface laser beam shaper,” Adv. Opt. Mater. 2, 978–982 (2014).
[Crossref]

H. Wang, J. Du, H. Wang, Y. Lu, and P. Wang, “Generation of spin-dependent accelerating beam with geometric metasurface,” Adv. Opt. Mater. 7, 1900552 (2019).
[Crossref]

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A (1)

Z. H. Zhu, Z. H. Han, and S. I. Bozhevolnyi, “Wide-bandwidth polarization-independent optical band-stop filter based on plasmonic nanoantennas,” Appl. Phys. A 110, 71–75 (2012).
[Crossref]

Appl. Phys. Express. (1)

B. Yu, J. Wen, X. Chen, and D. Zhang, “An achromatic metalens in the near-infrared region with an array based on a single nano-rod unit,” Appl. Phys. Express. 12, 092003 (2019).
[Crossref]

Appl. Phys. Lett. (1)

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101, 071110 (2012).
[Crossref]

Biomed. Opt. Express. (1)

Z. Yang, M. Prokopas, J. Nylk, C. Coll-Lladó, F. J. Gunn-Moore, D. E. Ferrier, T. Vettenburg, and K. Dholakia, “A compact Airy beam light sheet microscope with a tilted cylindrical lens,” Biomed. Opt. Express. 5, 3434–3442 (2014).
[Crossref]

IEEE Photon. J. (2)

D. Su, X. Zhang, Y. Ma, F. Shan, J. Wu, X. Fu, L. Zhang, K. Yuan, and T. Zhang, “Real-time electro-optical tunable hyperlens under subwavelength scale,” IEEE Photon. J. 10, 4600109 (2018).
[Crossref]

J. Wen, H. Feng, J. Chen, K. Wang, Y. Lv, Y. Zhong, and D. Zhang, “Plasmonic holographic metasurfaces for generation of vector optical beams,” IEEE Photon. J. 9, 4600108 (2017).
[Crossref]

IEEE Trans. Antennas Propag. (1)

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Surface impedance modeling of all-dielectric metasurfaces,” IEEE Trans. Antennas Propag. 68, 1799–1811 (2020).
[Crossref]

Laser Photon. Rev. (2)

X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, “Hyperbolic metamaterial devices for wavefront manipulation,” Laser Photon. Rev. 13, 1800081 (2019).
[Crossref]

K. Huang, J. Deng, H. S. Leong, S. L. K. Yap, R. B. Yang, J. Teng, and H. Liu, “Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting,” Laser Photon. Rev. 13, 1800289 (2019).
[Crossref]

Nano Lett. (5)

Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, and T. Xu, “Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible,” Nano Lett. 19, 1158–1165 (2019).
[Crossref]

Y. Yang, W. Wang, P. Moitra, Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15, 6261–6266 (2015).
[Crossref]

Nanoscale (2)

O. Hemmatyar, S. Abdollahramezani, Y. Kiarashinejad, M. Zandehshahvar, and A. Adibi, “Full color generation with Fano-type resonant HfO2 nanopillars designed by a deep-learning approach,” Nanoscale 11, 21266–21274 (2019).
[Crossref]

K. Ou, G. Li, T. Li, H. Yang, F. Yu, J. Chen, Z. Zhao, G. Cao, X. Chen, and W. Lu, “High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces,” Nanoscale 10, 19154–19161 (2018).
[Crossref]

Nat. Commun. (3)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, “Spin and wavelength multiplexed nonlinear metasurface holography,” Nat. Commun. 7, 11930 (2016).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

S. Larouche, Y. J. Tsai, T. Tyler, N. M. Jokerst, and D. R. Smith, “Infrared metamaterial phase holograms,” Nat. Mater. 11, 450–454 (2012).
[Crossref]

Nat. Methods. (1)

T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. Ferrier, and T. Čižmár, F. J. Gunn-Moore and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods. 11, 541–544 (2014).
[Crossref]

Nat. Nanotechnol. (4)

G. Zheng, H. Muhlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Nat. Photonics (1)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

Nat. Photonics. (2)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics. 11, 465–476 (2017).
[Crossref]

S. Jia, J. C. Vaughan, and X. Zhuang, “Isotropic 3D super-resolution imaging with a self-bending point spread function,” Nat. Photonics. 8, 302–306 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. Express (3)

Optica (1)

Phys. Rev. Appl. (2)

J. Li, H. Guo, T. Xu, L. Chen, Z. Hang, L. Zhou, and S. Chen, “Multiple-beam interference-enabled broadband metamaterial wave plates,” Phys. Rev. Appl. 11, 044042 (2019).
[Crossref]

W. Hao, M. Deng, S. Chen, and L. Chen, “High-efficiency generation of Airy beams with Huygens’ metasurface,” Phys. Rev. Appl. 11, 054012 (2019).
[Crossref]

Phys. Rev. B (1)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
[Crossref]

Phys. Rev. Lett. (3)

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 075103 (2007).
[Crossref]

Sci. Adv. (2)

J. Li, S. Kamin, G. Zheng, F. Neubrech, S. Zhang, and N. Liu, “Addressable metasurfaces for dynamic holography and optical information encryption,” Sci. Adv. 4, eaar6768 (2018).
[Crossref]

J. Nylk, K. McCluskey, M. A. Preciado, M. Mazilu, Z. Yang, F. J. Gunn-Moore, S. Aggarwal, J. A. Tello, D. E. K. Ferrier, and K. Dholakia, “Light-sheet microscopy with attenuation-compensated propagation-invariant beams,” Sci. Adv. 4, eaar4817 (2018).
[Crossref]

Sci. Bull. (1)

Q. Cheng, M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, “Broadband achromatic metalens in terahertz regime,” Sci. Bull. 64, 1525–1531 (2019).
[Crossref]

Sci. Rep. (1)

B. Wei, P. Chen, W. Hu, W. Ji, L. Zheng, S. Ge, Y. Ming, V. Chigrinov, and Y. Lu, “Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask,” Sci. Rep. 5, 17484 (2015).
[Crossref]

Science (5)

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352, 1202–1206 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[Crossref]

Other (2)

S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alu, and A. Adibi, “Tunable nanophotonics enabled by chalcogenide phase-change materials,” arXiv:2001.06335 (2020).

A. Mont, A. Alù, A. Toscano, and F. Bilotti, “Homogenization of all-dielectric metasurfaces: theory and applications,” in Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials) (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Geometrical model for generating Airy optical beams with a metasurface.
Fig. 2.
Fig. 2. (a) Schematic side and (b) top views of an amorphous silicon nanopillar unit with height H, diameter D, and lattice constant P on an SiO2 substrate; (c) the dielectric metasurface, composed of the above silicon nanopillars with spatially varied diameters, is imposed by a 3/2 phase for Airy optical beam generation operating under transmission mode in the near-infrared (NIR) region. Experimentally measured longitudinal and transverse field distributions at different vertical planes are superimposed on top of the metasurface.
Fig. 3.
Fig. 3. (a) Simulated phase and (b) transmission intensity of an array of silicon nanopillars as a function of their diameter D. The lattice constant of the array is P=620  nm, and the height of the pillars is H=600  nm.
Fig. 4.
Fig. 4. (a) A 3/2 phase pattern imposed on the metasurface; (b) simulated longitudinal field distribution profiles of the generated Airy optical beam from the position of z=50  μm to z=105  μm along the beam deflection direction; (c)–(f) simulated transverse field distribution profiles in the xy planes at z=70  μm, 80 μm, 90 μm, and 100 μm away from the metasurface.
Fig. 5.
Fig. 5. (a) Top and (b) zoomed view SEM images of the fabricated metasurface sample; (c) schematic diagram of optical characterization setup.
Fig. 6.
Fig. 6. (a)–(f) Simulated and (g)–(l) experimental transverse xy field patterns at the position of z=87  μm when the incident beam is LP with a polarization angle of (a), (g) 0° and (b), (h) 45°, (c), (i) left circularly polarized (LCP), (d), (j) right circularly polarized (RCP), EP with an ellipticity of (e), (k) 0.5 and (f), (l) 0.5, respectively.
Fig. 7.
Fig. 7. Experimentally measured FWHM of the main lobe of each Airy beam along its propagation trajectory when the incident beam is LP with a polarized angle of 0° and 45°, LCP, RCP, and EP with an ellipticity of 0.5 and 0.5, respectively.
Fig. 8.
Fig. 8. (a)–(f) Simulated and (g)–(l) experimental longitudinal field distribution profiles of the Airy beams in the yz plane at vertical positions from z=30  μm to z=100  μm when the incident beam is LP with a polarized angle of (a), (g) 0° and (b), (h) 45°, (c), (i) LCP, (d), (j) RCP, and EP with an ellipticity of (e), (k) 0.5 and (f), (l) 0.5, respectively.
Fig. 9.
Fig. 9. (a) Simulated longitudinal field distribution profiles of the Airy beam. A sphere obstacle with a diameter of 20 μm is placed at (x,z)=(4.1,60)  μm. (b) Experimental longitudinal field distribution profiles of the Airy beam. The yellow dashed lines show the position of the thin plastic film with a microink droplet placed at z=63  μm from the metasurface.

Tables (1)

Tables Icon

Table 1. Summary of Our Result and Other References

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dη/dε=dx/dz=2ax=2aε.
Φ(ε)=8πaε3/2/3λ.
Φ(ε,ζ)=8πa(ε3/2+ζ3/2)/3λ,