Abstract

In this study, a high-sensitivity, high-spatial-resolution distributed strain-sensing approach based on a poly(methyl methacrylate) chirped fiber Bragg grating (CFBG) is proposed and experimentally demonstrated. Linearly chirped FBGs in a polymer optical fiber provide an alternative to the silica fiber owing to the lower Young’s modulus, which can yield a higher stress sensitivity under the same external force. According to the spatial wavelength-encoded characteristic of the CFBG, a fully distributed strain measurement can be achieved by optical frequency-domain reflectometry. Through time-/space-resolved short-time Fourier transform, the applied force can be located by the beat frequency originated from the space-induced time delay and measured by the differential frequency offset originated from the strain-induced dispersion time delay. In a proof-of-concept experiment, a high spatial resolution of 1 mm over a gauge length of 40 mm and a strain resolution of 0.491 Hz/με were achieved.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Floris, J. Madrigal, S. Sales, J. M. Adam, and P. A. Calderón, “Experimental study of the influence of FBG length on optical shape sensor performance,” Opt. Laser. Eng. 126, 105878 (2020).
    [Crossref]
  2. X. Yang, R. Lindberg, W. Margulis, K. Fröjdh, and F. Laurell, “Continuously tunable, narrow-linewidth laser based on a semiconductor optical amplifier and a linearly chirped fiber Bragg grating,” Opt. Express 27, 14213–14220 (2019).
    [Crossref]
  3. T. Li, C. Shi, and H. Ren, “A high-sensitivity tactile sensor array based on fiber Bragg grating sensing for tissue palpation in minimally invasive surgery,” IEEE/ASME Trans. Mechatronics 23, 2306–2315 (2018).
    [Crossref]
  4. A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Composites Part B 71, 52–62 (2015).
    [Crossref]
  5. J. He, S. Yang, and Q. Wei, “Intensity-modulated magnetic field sensor based on fiber Bragg grating,” AIP Adv. 9, 105303 (2019).
    [Crossref]
  6. H. Xia, C. Zhang, H. Mu, and D. Sun, “Edge technique for direct detection of strain and temperature based on optical time domain reflectometry,” Appl. Opt. 48, 189–197 (2009).
    [Crossref]
  7. O. Xu, J. Zhang, and J. Yao, “High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression,” Opt. Lett. 41, 4859–4862 (2016).
    [Crossref]
  8. E. J. Ahmad, C. Wang, D. Feng, Z. Yan, and L. Zhang, “High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry,” J. Lightwave. Technol. 35, 3289–3295 (2016).
    [Crossref]
  9. K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12, 988–995 (2011).
    [Crossref]
  10. H. Liu, H. Liu, and G. Peng, “Tensile strain characterization of polymer optical fibre Bragg gratings,” Opt. Commun. 251, 37–43 (2005).
    [Crossref]
  11. A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
    [Crossref]
  12. G. Woyessa, A. Fasano, A. Stefani, C. Markos, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24, 1253–1260 (2016).
    [Crossref]
  13. A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
    [Crossref]
  14. A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. De Sena, L. C. Machado, A. Frizera, M. R. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25, 30051–30060 (2017).
    [Crossref]
  15. X. Cheng, Y. Liu, and C. Yu, “Gas pressure sensor based on BDK-doped polymer optical fiber,” Micromachines 10, 717 (2019).
    [Crossref]
  16. J. Bonefacino, X. Cheng, C.-F. J. Pun, S. T. Boles, and H.-Y. Tam, “Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements,” Opt. Express 28, 1158–1167 (2020).
    [Crossref]
  17. R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26, 4411–4420 (2018).
    [Crossref]
  18. C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett. 29, 500–503 (2017).
    [Crossref]
  19. J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
    [Crossref]
  20. R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber. Technol. 6, 299–323 (2000).
    [Crossref]
  21. A. P. Hilton, P. S. Light, L. Talbot, and A. N. Luiten, “Optimal design for spectral narrowing and fast frequency sweep of an interferometer-stabilized laser,” Opt. Lett. 45, 45–48 (2020).
    [Crossref]

2020 (3)

2019 (4)

X. Cheng, Y. Liu, and C. Yu, “Gas pressure sensor based on BDK-doped polymer optical fiber,” Micromachines 10, 717 (2019).
[Crossref]

J. He, S. Yang, and Q. Wei, “Intensity-modulated magnetic field sensor based on fiber Bragg grating,” AIP Adv. 9, 105303 (2019).
[Crossref]

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

X. Yang, R. Lindberg, W. Margulis, K. Fröjdh, and F. Laurell, “Continuously tunable, narrow-linewidth laser based on a semiconductor optical amplifier and a linearly chirped fiber Bragg grating,” Opt. Express 27, 14213–14220 (2019).
[Crossref]

2018 (4)

T. Li, C. Shi, and H. Ren, “A high-sensitivity tactile sensor array based on fiber Bragg grating sensing for tissue palpation in minimally invasive surgery,” IEEE/ASME Trans. Mechatronics 23, 2306–2315 (2018).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26, 4411–4420 (2018).
[Crossref]

A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

2017 (2)

2016 (3)

2015 (1)

A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Composites Part B 71, 52–62 (2015).
[Crossref]

2011 (1)

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12, 988–995 (2011).
[Crossref]

2009 (1)

2005 (1)

H. Liu, H. Liu, and G. Peng, “Tensile strain characterization of polymer optical fibre Bragg gratings,” Opt. Commun. 251, 37–43 (2005).
[Crossref]

2000 (1)

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber. Technol. 6, 299–323 (2000).
[Crossref]

Adam, J. M.

I. Floris, J. Madrigal, S. Sales, J. M. Adam, and P. A. Calderón, “Experimental study of the influence of FBG length on optical shape sensor performance,” Opt. Laser. Eng. 126, 105878 (2020).
[Crossref]

Ahmad, E. J.

E. J. Ahmad, C. Wang, D. Feng, Z. Yan, and L. Zhang, “High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry,” J. Lightwave. Technol. 35, 3289–3295 (2016).
[Crossref]

André, P.

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett. 29, 500–503 (2017).
[Crossref]

Antunes, P.

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett. 29, 500–503 (2017).
[Crossref]

Ayers, J.

A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Composites Part B 71, 52–62 (2015).
[Crossref]

Bang, O.

Boles, S. T.

J. Bonefacino, X. Cheng, C.-F. J. Pun, S. T. Boles, and H.-Y. Tam, “Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements,” Opt. Express 28, 1158–1167 (2020).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Bonefacino, J.

J. Bonefacino, X. Cheng, C.-F. J. Pun, S. T. Boles, and H.-Y. Tam, “Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements,” Opt. Express 28, 1158–1167 (2020).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Bordick, N.

A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Composites Part B 71, 52–62 (2015).
[Crossref]

Calderón, P. A.

I. Floris, J. Madrigal, S. Sales, J. M. Adam, and P. A. Calderón, “Experimental study of the influence of FBG length on optical shape sensor performance,” Opt. Laser. Eng. 126, 105878 (2020).
[Crossref]

Casas, J.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

Cheng, X.

J. Bonefacino, X. Cheng, C.-F. J. Pun, S. T. Boles, and H.-Y. Tam, “Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements,” Opt. Express 28, 1158–1167 (2020).
[Crossref]

X. Cheng, Y. Liu, and C. Yu, “Gas pressure sensor based on BDK-doped polymer optical fiber,” Micromachines 10, 717 (2019).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

De Sena, G. L.

Díaz, C. R.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

Dos Santos, W. M.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

El-Sherif, M. A.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber. Technol. 6, 299–323 (2000).
[Crossref]

Fasano, A.

Feng, D.

E. J. Ahmad, C. Wang, D. Feng, Z. Yan, and L. Zhang, “High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry,” J. Lightwave. Technol. 35, 3289–3295 (2016).
[Crossref]

Floris, I.

I. Floris, J. Madrigal, S. Sales, J. M. Adam, and P. A. Calderón, “Experimental study of the influence of FBG length on optical shape sensor performance,” Opt. Laser. Eng. 126, 105878 (2020).
[Crossref]

Frizera, A.

A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. De Sena, L. C. Machado, A. Frizera, M. R. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25, 30051–30060 (2017).
[Crossref]

Fröjdh, K.

Gafsi, R.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber. Technol. 6, 299–323 (2000).
[Crossref]

Ghoshal, A.

A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Composites Part B 71, 52–62 (2015).
[Crossref]

Glen, T. S.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Gurvich, M.

A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Composites Part B 71, 52–62 (2015).
[Crossref]

He, J.

J. He, S. Yang, and Q. Wei, “Intensity-modulated magnetic field sensor based on fiber Bragg grating,” AIP Adv. 9, 105303 (2019).
[Crossref]

Hilton, A. P.

Kalli, K.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
[Crossref]

Laurell, F.

Leal-Junior, A. G.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. De Sena, L. C. Machado, A. Frizera, M. R. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25, 30051–30060 (2017).
[Crossref]

Lee, P.-H.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Leite, S.

Li, T.

T. Li, C. Shi, and H. Ren, “A high-sensitivity tactile sensor array based on fiber Bragg grating sensing for tissue palpation in minimally invasive surgery,” IEEE/ASME Trans. Mechatronics 23, 2306–2315 (2018).
[Crossref]

Light, P. S.

Lindberg, R.

Liu, H.

H. Liu, H. Liu, and G. Peng, “Tensile strain characterization of polymer optical fibre Bragg gratings,” Opt. Commun. 251, 37–43 (2005).
[Crossref]

H. Liu, H. Liu, and G. Peng, “Tensile strain characterization of polymer optical fibre Bragg gratings,” Opt. Commun. 251, 37–43 (2005).
[Crossref]

Liu, Y.

X. Cheng, Y. Liu, and C. Yu, “Gas pressure sensor based on BDK-doped polymer optical fiber,” Micromachines 10, 717 (2019).
[Crossref]

Luiten, A. N.

Machado, L. C.

Madrigal, J.

I. Floris, J. Madrigal, S. Sales, J. M. Adam, and P. A. Calderón, “Experimental study of the influence of FBG length on optical shape sensor performance,” Opt. Laser. Eng. 126, 105878 (2020).
[Crossref]

Margulis, W.

Markos, C.

Marques, C.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26, 4411–4420 (2018).
[Crossref]

A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. De Sena, L. C. Machado, A. Frizera, M. R. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25, 30051–30060 (2017).
[Crossref]

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett. 29, 500–503 (2017).
[Crossref]

Mégret, P.

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12, 988–995 (2011).
[Crossref]

Mergo, P.

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett. 29, 500–503 (2017).
[Crossref]

Min, R.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26, 4411–4420 (2018).
[Crossref]

Moeyaert, V.

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12, 988–995 (2011).
[Crossref]

Mu, H.

Ortega, B.

Peng, G.

H. Liu, H. Liu, and G. Peng, “Tensile strain characterization of polymer optical fibre Bragg gratings,” Opt. Commun. 251, 37–43 (2005).
[Crossref]

Pontes, M. J.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. De Sena, L. C. Machado, A. Frizera, M. R. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25, 30051–30060 (2017).
[Crossref]

Prado, A. R.

Pun, C.-F. J.

J. Bonefacino, X. Cheng, C.-F. J. Pun, S. T. Boles, and H.-Y. Tam, “Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements,” Opt. Express 28, 1158–1167 (2020).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Ren, H.

T. Li, C. Shi, and H. Ren, “A high-sensitivity tactile sensor array based on fiber Bragg grating sensing for tissue palpation in minimally invasive surgery,” IEEE/ASME Trans. Mechatronics 23, 2306–2315 (2018).
[Crossref]

Ribeiro, M. R.

Ribeiro, M. R. N.

A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
[Crossref]

Rocha, H. R. O.

A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
[Crossref]

Sales, S.

I. Floris, J. Madrigal, S. Sales, J. M. Adam, and P. A. Calderón, “Experimental study of the influence of FBG length on optical shape sensor performance,” Opt. Laser. Eng. 126, 105878 (2020).
[Crossref]

Shi, C.

T. Li, C. Shi, and H. Ren, “A high-sensitivity tactile sensor array based on fiber Bragg grating sensing for tissue palpation in minimally invasive surgery,” IEEE/ASME Trans. Mechatronics 23, 2306–2315 (2018).
[Crossref]

Siqueira, A. A.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

Stefani, A.

Sun, D.

Talbot, L.

Tam, H.-Y.

J. Bonefacino, X. Cheng, C.-F. J. Pun, S. T. Boles, and H.-Y. Tam, “Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements,” Opt. Express 28, 1158–1167 (2020).
[Crossref]

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Theodosiou, A.

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
[Crossref]

Tse, M.-L. V.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Urban, M.

A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Composites Part B 71, 52–62 (2015).
[Crossref]

Wang, C.

E. J. Ahmad, C. Wang, D. Feng, Z. Yan, and L. Zhang, “High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry,” J. Lightwave. Technol. 35, 3289–3295 (2016).
[Crossref]

Wang, J.

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Webb, D.

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett. 29, 500–503 (2017).
[Crossref]

Wei, Q.

J. He, S. Yang, and Q. Wei, “Intensity-modulated magnetic field sensor based on fiber Bragg grating,” AIP Adv. 9, 105303 (2019).
[Crossref]

Woyessa, G.

Wuilpart, M.

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12, 988–995 (2011).
[Crossref]

Xia, H.

Xu, O.

Yan, Z.

E. J. Ahmad, C. Wang, D. Feng, Z. Yan, and L. Zhang, “High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry,” J. Lightwave. Technol. 35, 3289–3295 (2016).
[Crossref]

Yang, S.

J. He, S. Yang, and Q. Wei, “Intensity-modulated magnetic field sensor based on fiber Bragg grating,” AIP Adv. 9, 105303 (2019).
[Crossref]

Yang, X.

Yao, J.

Yu, C.

X. Cheng, Y. Liu, and C. Yu, “Gas pressure sensor based on BDK-doped polymer optical fiber,” Micromachines 10, 717 (2019).
[Crossref]

Yuksel, K.

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12, 988–995 (2011).
[Crossref]

Zhang, C.

Zhang, J.

Zhang, L.

E. J. Ahmad, C. Wang, D. Feng, Z. Yan, and L. Zhang, “High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry,” J. Lightwave. Technol. 35, 3289–3295 (2016).
[Crossref]

AIP Adv. (1)

J. He, S. Yang, and Q. Wei, “Intensity-modulated magnetic field sensor based on fiber Bragg grating,” AIP Adv. 9, 105303 (2019).
[Crossref]

Appl. Opt. (1)

Composites Part B (1)

A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Composites Part B 71, 52–62 (2015).
[Crossref]

IEEE Access (1)

A. G. Leal-Junior, H. R. O. Rocha, A. Theodosiou, A. Frizera, C. Marques, K. Kalli, and M. R. N. Ribeiro, “Optimizing linearity and sensitivity of 3D-printed diaphragms with chirped FBGs in CYTOP fibers,” IEEE Access 8, 31983–31991 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photon. Technol. Lett. 29, 500–503 (2017).
[Crossref]

IEEE Sens. J. (2)

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sens. J. 12, 988–995 (2011).
[Crossref]

A. G. Leal-Junior, A. Theodosiou, R. Min, J. Casas, C. R. Díaz, W. M. Dos Santos, M. J. Pontes, A. A. Siqueira, C. Marques, and K. Kalli, “Quasi-distributed torque and displacement sensing on a series elastic actuator’s spring using FBG arrays inscribed in CYTOP fibers,” IEEE Sens. J. 19, 4054–4061 (2019).
[Crossref]

IEEE/ASME Trans. Mechatronics (1)

T. Li, C. Shi, and H. Ren, “A high-sensitivity tactile sensor array based on fiber Bragg grating sensing for tissue palpation in minimally invasive surgery,” IEEE/ASME Trans. Mechatronics 23, 2306–2315 (2018).
[Crossref]

J. Lightwave. Technol. (1)

E. J. Ahmad, C. Wang, D. Feng, Z. Yan, and L. Zhang, “High temporal and spatial resolution distributed fiber Bragg grating sensors using time-stretch frequency-domain reflectometry,” J. Lightwave. Technol. 35, 3289–3295 (2016).
[Crossref]

Light Sci. Appl. (1)

J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, and S. T. Boles, “Ultra-fast polymer optical fibre Bragg grating inscription for medical devices,” Light Sci. Appl. 7, 17161 (2018).
[Crossref]

Micromachines (1)

X. Cheng, Y. Liu, and C. Yu, “Gas pressure sensor based on BDK-doped polymer optical fiber,” Micromachines 10, 717 (2019).
[Crossref]

Opt. Commun. (1)

H. Liu, H. Liu, and G. Peng, “Tensile strain characterization of polymer optical fibre Bragg gratings,” Opt. Commun. 251, 37–43 (2005).
[Crossref]

Opt. Express (5)

Opt. Fiber. Technol. (1)

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber. Technol. 6, 299–323 (2000).
[Crossref]

Opt. Laser. Eng. (1)

I. Floris, J. Madrigal, S. Sales, J. M. Adam, and P. A. Calderón, “Experimental study of the influence of FBG length on optical shape sensor performance,” Opt. Laser. Eng. 126, 105878 (2020).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Frequency relationship between the CFBG and FRM and corresponding beat frequencies. Inset: differential frequency offset δf(λA) of the CFBG under strain. SG, grating section.
Fig. 2.
Fig. 2. Schematic of the experimental setup. Inset: beat frequency relationship between the time and position. The blue dotted line is the linear fit, which reflects the distance-induced beat frequency, while the black spots show the DFO. SS, swept laser source; PD, photodiode; PA, power amplifier; DAQ, data acquisition; DSP, digital signal processor.
Fig. 3.
Fig. 3. Optical setup for chirped grating inscription.
Fig. 4.
Fig. 4. Microwave spectrogram calculated by STFT without strain. (a) Silica fiber. (b) PMMA fiber. Insets: (i) measured reflection spectrum and (ii) measured initial temporal interference waveform.
Fig. 5.
Fig. 5. Microwave spectrogram calculated by STFT under strain. (a) Silica fiber. (b) PMMA fiber. Insets: reflection spectra of the (i) silica and (ii) PMMA fibers under stress.
Fig. 6.
Fig. 6. DFO at various strains. The insets show spectrograms of the temporal interference patterns at uniform strains of 4060 and 5540 με.
Fig. 7.
Fig. 7. Characterization of the system by applying various uniform strains at distances of (a) 4 mm, (b) 3 mm, (c) 2 mm, and (d) 1 mm.
Fig. 8.
Fig. 8. Comparison of theoretical and experimental values of spatial resolution.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δfn(λ)=fFRMfCFBG(λ)=α×Δτ(λ),
σ=4γF/πLD,
Δε=σ/E,
δλA=λA(1Pe)Δε,
δτ(λA)=2ncCchirpδλA,
δf(λA)=α×δτ(λA).

Metrics