Abstract

Opto-conveyors have attracted widespread interest in various fields because of their non-invasive and non-contact delivery of micro/nanoparticles. However, the flexible control of the delivery distance and the dynamic steering of the delivery direction, although very desirable in all-optical manipulation, have not yet been achieved by opto-conveyors. Here, using a simple and cost-effective scheme of an elliptically focused laser beam obliquely irradiated on a substrate, a direction-steerable and distance-controllable opto-conveyor for the targeting delivery of microparticles is implemented. Theoretically, in the proposed scheme of the opto-conveyor, the transverse and longitudinal resultant forces of the optical gradient force and the optical scattering force result in the transverse confinement and the longitudinal transportation of microparticles, respectively. In this study, it is experimentally shown that the proposed opto-conveyor is capable of realizing the targeting delivery for microparticles. Additionally, the delivery distance of microparticles can be flexibly and precisely controlled by simply adjusting the irradiation time. By simply rotating the cylindrical lens, the proposed opto-conveyor is capable of steering the delivery direction flexibly within a large range of azimuthal angles, from 75° to 75°. This study also successfully demonstrated the real-time dynamic steering of the delivery direction from 45° to 45° with the dynamical rotation of the cylindrical lens. Owing to its simplicity, flexibility, and controllability, the proposed method is capable of creating new opportunities in bioassays as well as in drug delivery.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref]
  2. R.-C. Jin, J.-Q. Li, L. Li, Z.-G. Dong, and Y. Liu, “Dual-mode subwavelength trapping by plasmonic tweezers based on v-type nanoantennas,” Opt. Lett. 44, 319–322 (2019).
    [Crossref]
  3. J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
    [Crossref]
  4. Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
    [Crossref]
  5. J. Liu and Z.-Y. Li, “Light-driven crystallization of polystyrene micro-spheres,” Photon. Res. 5, 201–206 (2017).
    [Crossref]
  6. H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
    [Crossref]
  7. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
    [Crossref]
  8. Y. Zhang, X. Dou, Y. Dai, X. Wang, C. Min, and X. Yuan, “All-optical manipulation of micrometer-sized metallic particles,” Photon. Res. 6, 66–71 (2018).
    [Crossref]
  9. D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
    [Crossref]
  10. M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
    [Crossref]
  11. T. Moura, U. Andrade, J. Mendes, and M. Rocha, “Silicon microparticles as handles for optical tweezers experiments,” Opt. Lett. 45, 1055–1058 (2020).
    [Crossref]
  12. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
    [Crossref]
  13. T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
    [Crossref]
  14. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
    [Crossref]
  15. X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
    [Crossref]
  16. C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
    [Crossref]
  17. H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, and H. Li, “Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers,” Biochemistry 58, 4751–4760 (2019).
    [Crossref]
  18. C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
    [Crossref]
  19. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
    [Crossref]
  20. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
    [Crossref]
  21. F. Arai, T. Endo, R. Yamuchi, and T. Fukuda, “3D 6DOF manipulation of micro-object using laser trapped microtool,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2006), pp. 1390–1395.
  22. X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, and B. Li, “Bidirectional transport of nanoparticles and cells with a bio-conveyor belt,” Small 15, 1905209 (2019).
    [Crossref]
  23. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
    [Crossref]
  24. W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1, 024001 (2019).
    [Crossref]
  25. D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109, 163903 (2012).
    [Crossref]
  26. D. B. Ruffner and D. G. Grier, “Universal, strong and long-ranged trapping by optical conveyors,” Opt. Express 22, 26834–26843 (2014).
    [Crossref]
  27. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
    [Crossref]
  28. Y. Liang, S. Yan, B. Yao, and M. Lei, “Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams,” Opt. Express 27, 37975–37985 (2019).
    [Crossref]
  29. J. A. Rodrigo and T. Alieva, “Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond,” Optica 2, 812–815 (2015).
    [Crossref]
  30. Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
    [Crossref]
  31. Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
    [Crossref]
  32. P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: theory,” Nano Lett. 14, 2965–2970 (2014).
    [Crossref]
  33. Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971–2976 (2014).
    [Crossref]
  34. G. Wang, Z. Ying, H.-P. Ho, Y. Huang, N. Zou, and X. Zhang, “Nano-optical conveyor belt with waveguide-coupled excitation,” Opt. Lett. 41, 528–531 (2016).
    [Crossref]
  35. Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
    [Crossref]
  36. A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
    [Crossref]
  37. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref]
  38. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
    [Crossref]
  39. A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
    [Crossref]
  40. J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
    [Crossref]
  41. W. Wright, G. Sonek, and M. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
    [Crossref]
  42. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [Crossref]
  43. N. Roos, “Entropic forces in Brownian motion,” Am. J. Phys. 82, 1161–1166 (2014).
    [Crossref]
  44. F. Reif, Fundamentals of Statistical and Thermal Physics (Waveland, 2009).
  45. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
    [Crossref]

2020 (2)

T. Moura, U. Andrade, J. Mendes, and M. Rocha, “Silicon microparticles as handles for optical tweezers experiments,” Opt. Lett. 45, 1055–1058 (2020).
[Crossref]

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

2019 (7)

X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, and B. Li, “Bidirectional transport of nanoparticles and cells with a bio-conveyor belt,” Small 15, 1905209 (2019).
[Crossref]

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1, 024001 (2019).
[Crossref]

Y. Liang, S. Yan, B. Yao, and M. Lei, “Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams,” Opt. Express 27, 37975–37985 (2019).
[Crossref]

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, and H. Li, “Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers,” Biochemistry 58, 4751–4760 (2019).
[Crossref]

R.-C. Jin, J.-Q. Li, L. Li, Z.-G. Dong, and Y. Liu, “Dual-mode subwavelength trapping by plasmonic tweezers based on v-type nanoantennas,” Opt. Lett. 44, 319–322 (2019).
[Crossref]

2018 (3)

Y. Zhang, X. Dou, Y. Dai, X. Wang, C. Min, and X. Yuan, “All-optical manipulation of micrometer-sized metallic particles,” Photon. Res. 6, 66–71 (2018).
[Crossref]

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

2017 (2)

J. Liu and Z.-Y. Li, “Light-driven crystallization of polystyrene micro-spheres,” Photon. Res. 5, 201–206 (2017).
[Crossref]

H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
[Crossref]

2016 (3)

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

G. Wang, Z. Ying, H.-P. Ho, Y. Huang, N. Zou, and X. Zhang, “Nano-optical conveyor belt with waveguide-coupled excitation,” Opt. Lett. 41, 528–531 (2016).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

2015 (1)

2014 (5)

D. B. Ruffner and D. G. Grier, “Universal, strong and long-ranged trapping by optical conveyors,” Opt. Express 22, 26834–26843 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: theory,” Nano Lett. 14, 2965–2970 (2014).
[Crossref]

Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971–2976 (2014).
[Crossref]

N. Roos, “Entropic forces in Brownian motion,” Am. J. Phys. 82, 1161–1166 (2014).
[Crossref]

2013 (1)

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[Crossref]

2012 (1)

D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109, 163903 (2012).
[Crossref]

2011 (1)

2009 (2)

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

2008 (1)

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

2007 (2)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

2006 (1)

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

2005 (1)

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

2003 (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref]

2000 (1)

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

1997 (1)

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

1994 (1)

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
[Crossref]

1993 (1)

W. Wright, G. Sonek, and M. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[Crossref]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref]

1991 (1)

1986 (1)

1985 (1)

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[Crossref]

1975 (1)

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[Crossref]

Akinwande, D.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Alieva, T.

Andrade, U.

Arai, F.

F. Arai, T. Endo, R. Yamuchi, and T. Fukuda, “3D 6DOF manipulation of micro-object using laser trapped microtool,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2006), pp. 1390–1395.

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref]

A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[Crossref]

Aspelmeyer, M.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Bangalore Rajeeva, B.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Berns, M.

W. Wright, G. Sonek, and M. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[Crossref]

Bjorkholm, J.

Bjorkholm, J. E.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[Crossref]

Boltasseva, A.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Bragheri, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Cable, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[Crossref]

Cai, Y.

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

Chang, T.-H.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Chen, C.-A.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Chen, Z.

Cheng, Y.-T.

Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971–2976 (2014).
[Crossref]

Christodoulides, D. N.

Chu, S.

A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[Crossref]

Cižmár, T.

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Cooper, J.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Cristiani, I.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
[Crossref]

Dai, Y.

De Angelis, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Deng, H.

H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
[Crossref]

Dholakia, K.

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref]

Di Fabrizio, E.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Di Leonardo, R.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Dickinson, M.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Ding, W.

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1, 024001 (2019).
[Crossref]

Dong, Z.-G.

Dou, X.

Dunn, A. K.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Dziedzic, J. M.

Efremidis, N. K.

Endo, T.

F. Arai, T. Endo, R. Yamuchi, and T. Fukuda, “3D 6DOF manipulation of micro-object using laser trapped microtool,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2006), pp. 1390–1395.

Erickson, D.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Fesel, J.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Fields, B. M.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Flyvbjerg, H.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Fukuda, T.

F. Arai, T. Endo, R. Yamuchi, and T. Fukuda, “3D 6DOF manipulation of micro-object using laser trapped microtool,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2006), pp. 1390–1395.

Gao, X.

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, and H. Li, “Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers,” Biochemistry 58, 4751–4760 (2019).
[Crossref]

Garcés-Chávez, V.

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Gong, T.

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

Grass, D.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Grier, D. G.

D. B. Ruffner and D. G. Grier, “Universal, strong and long-ranged trapping by optical conveyors,” Opt. Express 22, 26834–26843 (2014).
[Crossref]

D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109, 163903 (2012).
[Crossref]

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
[Crossref]

Grigorenko, A.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Guo, S.

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Hänsch, T. W.

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[Crossref]

Hansen, P.

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: theory,” Nano Lett. 14, 2965–2970 (2014).
[Crossref]

Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971–2976 (2014).
[Crossref]

He, C.

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

He, M.

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

Hesselink, L.

Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971–2976 (2014).
[Crossref]

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: theory,” Nano Lett. 14, 2965–2970 (2014).
[Crossref]

Ho, H.-P.

Hofer, S. G.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Hollberg, L.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[Crossref]

Howard, J.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Hu, C.

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, and H. Li, “Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers,” Biochemistry 58, 4751–4760 (2019).
[Crossref]

Hu, X.

H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, and H. Li, “Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers,” Biochemistry 58, 4751–4760 (2019).
[Crossref]

H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, and H. Li, “Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers,” Biochemistry 58, 4751–4760 (2019).
[Crossref]

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Huang, Y.

Hung, C.-L.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Igarashi, T.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Jarrett, J. W.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Jin, R.-C.

Jin, Y.

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Jülicher, F.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Kabuto, K.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Kaneda, S.

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[Crossref]

Keen, S.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Kiesel, N.

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

Kildishev, A. V.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Kim, M. E.

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Kitamura, N.

Klug, M.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Kollipara, P.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Koshioka, M.

Leach, J.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Lei, M.

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

Y. Liang, S. Yan, B. Yao, and M. Lei, “Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams,” Opt. Express 27, 37975–37985 (2019).
[Crossref]

Li, B.

X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, and B. Li, “Bidirectional transport of nanoparticles and cells with a bio-conveyor belt,” Small 15, 1905209 (2019).
[Crossref]

Li, H.

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, and H. Li, “Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers,” Biochemistry 58, 4751–4760 (2019).
[Crossref]

Li, J.-Q.

Li, L.

Li, R.

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

Li, S.

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

Li, X.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Li, Y.

X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, and B. Li, “Bidirectional transport of nanoparticles and cells with a bio-conveyor belt,” Small 15, 1905209 (2019).
[Crossref]

Li, Z.-Y.

Liang, L.

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Liang, Y.

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

Y. Liang, S. Yan, B. Yao, and M. Lei, “Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams,” Opt. Express 27, 37975–37985 (2019).
[Crossref]

Liberale, C.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Lin, L.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Lipson, M.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Liu, H.

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Liu, J.

Liu, X.

X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, and B. Li, “Bidirectional transport of nanoparticles and cells with a bio-conveyor belt,” Small 15, 1905209 (2019).
[Crossref]

Liu, Y.

R.-C. Jin, J.-Q. Li, L. Li, Z.-G. Dong, and Y. Liu, “Dual-mode subwavelength trapping by plasmonic tweezers based on v-type nanoantennas,” Opt. Lett. 44, 319–322 (2019).
[Crossref]

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Liu, Z.

H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
[Crossref]

Lu, T.-J.

Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971–2976 (2014).
[Crossref]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref]

Marr, D.

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

Masuhara, H.

Mendes, J.

Mills, M. S.

Min, C.

Minzioni, P.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Mio, C.

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

Misawa, H.

Moore, S. D.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Moura, T.

Mushfique, H.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Ndukaife, J. C.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Nishio, I.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Nnanna, A. G. A.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Ohshima, Y.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Okumoto, K.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Padgett, M.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Pavone, F. S.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Peng, X.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Prakash, J.

Qiu, C.-W.

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1, 024001 (2019).
[Crossref]

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Reif, F.

F. Reif, Fundamentals of Statistical and Thermal Physics (Waveland, 2009).

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Roberts, N.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Rocha, M.

Rodrigo, J. A.

Roos, N.

N. Roos, “Entropic forces in Brownian motion,” Am. J. Phys. 82, 1161–1166 (2014).
[Crossref]

Ruffner, D. B.

D. B. Ruffner and D. G. Grier, “Universal, strong and long-ranged trapping by optical conveyors,” Opt. Express 22, 26834–26843 (2014).
[Crossref]

D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109, 163903 (2012).
[Crossref]

Ruocco, G.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Ryan, J.

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: theory,” Nano Lett. 14, 2965–2970 (2014).
[Crossref]

Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971–2976 (2014).
[Crossref]

Sakagami, H.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Sasaki, K.

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
[Crossref]

Schäffer, E.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Schawlow, A. L.

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[Crossref]

Schmidt, B. S.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Sekino, H.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Shalaev, V. M.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Shintaku, K.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Sonek, G.

W. Wright, G. Sonek, and M. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[Crossref]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref]

Tanaka, Y.

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[Crossref]

Terray, A.

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

Tokoyoda, A.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Tolic-Nørrelykke, S. F.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Toride, S.

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Wang, G.

Wang, H.

H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, and H. Li, “Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers,” Biochemistry 58, 4751–4760 (2019).
[Crossref]

Wang, X.

Wang, Z.

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

Wereley, S. T.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Wright, W.

W. Wright, G. Sonek, and M. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[Crossref]

Wu, Y.

X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, and B. Li, “Bidirectional transport of nanoparticles and cells with a bio-conveyor belt,” Small 15, 1905209 (2019).
[Crossref]

Xiao, A.

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

Xu, X.

X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, and B. Li, “Bidirectional transport of nanoparticles and cells with a bio-conveyor belt,” Small 15, 1905209 (2019).
[Crossref]

Yamuchi, R.

F. Arai, T. Endo, R. Yamuchi, and T. Fukuda, “3D 6DOF manipulation of micro-object using laser trapped microtool,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2006), pp. 1390–1395.

Yan, S.

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

Y. Liang, S. Yan, B. Yao, and M. Lei, “Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams,” Opt. Express 27, 37975–37985 (2019).
[Crossref]

Yang, A. H.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Yang, Y.

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Yao, B.

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

Y. Liang, S. Yan, B. Yao, and M. Lei, “Direct observation and characterization of optical guiding of microparticles by tightly focused non-diffracting beams,” Opt. Express 27, 37975–37985 (2019).
[Crossref]

Yao, K.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

Ying, Z.

Yuan, L.

H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
[Crossref]

Yuan, T.

H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
[Crossref]

Yuan, X.

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Zemánek, P.

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Zhang, P.

Zhang, X.

H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
[Crossref]

G. Wang, Z. Ying, H.-P. Ho, Y. Huang, N. Zou, and X. Zhang, “Nano-optical conveyor belt with waveguide-coupled excitation,” Opt. Lett. 41, 528–531 (2016).
[Crossref]

Zhang, Y.

X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, and B. Li, “Bidirectional transport of nanoparticles and cells with a bio-conveyor belt,” Small 15, 1905209 (2019).
[Crossref]

Y. Zhang, X. Dou, Y. Dai, X. Wang, C. Min, and X. Yuan, “All-optical manipulation of micrometer-sized metallic particles,” Photon. Res. 6, 66–71 (2018).
[Crossref]

H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
[Crossref]

H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
[Crossref]

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

Zhang, Z.

Zheng, Y.

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: theory,” Nano Lett. 14, 2965–2970 (2014).
[Crossref]

Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971–2976 (2014).
[Crossref]

Zhou, F.

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Zhou, L.-M.

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1, 024001 (2019).
[Crossref]

Zhu, D.

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Zhu, T.

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1, 024001 (2019).
[Crossref]

Zhu, X.

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Zou, N.

ACS Nano (1)

Y. Liu, L. Lin, B. Bangalore Rajeeva, J. W. Jarrett, X. Li, X. Peng, P. Kollipara, K. Yao, D. Akinwande, A. K. Dunn, and Y. Zheng, “Nanoradiator-mediated deterministic opto-thermoelectric manipulation,” ACS Nano 12, 10383–10392 (2018).
[Crossref]

ACS Photonics (1)

H. Deng, Y. Zhang, T. Yuan, X. Zhang, Y. Zhang, Z. Liu, and L. Yuan, “Fiber-based optical gun for particle shooting,” ACS Photonics 4, 642–648 (2017).
[Crossref]

Adv. Photonics (1)

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1, 024001 (2019).
[Crossref]

Am. J. Phys. (1)

N. Roos, “Entropic forces in Brownian motion,” Am. J. Phys. 82, 1161–1166 (2014).
[Crossref]

Appl. Phys. Lett. (3)

W. Wright, G. Sonek, and M. Berns, “Radiation trapping forces on microspheres with optical tweezers,” Appl. Phys. Lett. 63, 715–717 (1993).
[Crossref]

D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer, “Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers,” Appl. Phys. Lett. 108, 221103 (2016).
[Crossref]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Biochemistry (1)

H. Wang, X. Gao, X. Hu, X. Hu, C. Hu, and H. Li, “Mechanical unfolding and folding of a complex slipknot protein probed by using optical tweezers,” Biochemistry 58, 4751–4760 (2019).
[Crossref]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref]

Lab Chip (1)

X. Hu, H. Liu, Y. Jin, L. Liang, D. Zhu, X. Zhu, S. Guo, F. Zhou, and Y. Yang, “Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip,” Lab Chip 18, 3405–3412 (2018).
[Crossref]

Nano Lett. (3)

P. Hansen, Y. Zheng, J. Ryan, and L. Hesselink, “Nano-optical conveyor belt, part I: theory,” Nano Lett. 14, 2965–2970 (2014).
[Crossref]

Y. Zheng, J. Ryan, P. Hansen, Y.-T. Cheng, T.-J. Lu, and L. Hesselink, “Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps,” Nano Lett. 14, 2971–2976 (2014).
[Crossref]

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[Crossref]

Nanoscale (1)

C. He, S. Li, X. Gao, A. Xiao, C. Hu, X. Hu, X. Hu, and H. Li, “Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers,” Nanoscale 11, 3945–3951 (2019).
[Crossref]

Nat. Commun. (1)

M. E. Kim, T.-H. Chang, B. M. Fields, C.-A. Chen, and C.-L. Hung, “Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices,” Nat. Commun. 10, 1647 (2019).
[Crossref]

Nat. Nanotechnol. (2)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11, 53–59 (2016).
[Crossref]

Nat. Photonics (2)

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2, 365–370 (2008).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1, 723–727 (2007).
[Crossref]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3, 477–480 (2007).
[Crossref]

Nature (2)

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref]

Opt. Commun. (1)

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Optica (1)

Photon. Res. (2)

Phys. Rev. E (1)

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxén’s correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 026301 (2009).
[Crossref]

Phys. Rev. Lett. (4)

D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109, 163903 (2012).
[Crossref]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55, 48–51 (1985).
[Crossref]

J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73, 352–355 (1994).
[Crossref]

Y. Ohshima, H. Sakagami, K. Okumoto, A. Tokoyoda, T. Igarashi, K. Shintaku, S. Toride, H. Sekino, K. Kabuto, and I. Nishio, “Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure,” Phys. Rev. Lett. 78, 3963–3966 (1997).
[Crossref]

Rep. Prog. Phys. (1)

Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, and M. Lei, “Simultaneous optical trapping and imaging in the axial plane: a review of current progress,” Rep. Prog. Phys. 83, 032401 (2020).
[Crossref]

Rev. Sci. Instrum. (2)

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Small (1)

X. Liu, Y. Wu, X. Xu, Y. Li, Y. Zhang, and B. Li, “Bidirectional transport of nanoparticles and cells with a bio-conveyor belt,” Small 15, 1905209 (2019).
[Crossref]

Other (2)

F. Arai, T. Endo, R. Yamuchi, and T. Fukuda, “3D 6DOF manipulation of micro-object using laser trapped microtool,” in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2006), pp. 1390–1395.

F. Reif, Fundamentals of Statistical and Thermal Physics (Waveland, 2009).

Supplementary Material (7)

NameDescription
» Visualization 1       The implementation of the opto-conveyor for delivering micropaticle
» Visualization 2       The targeting delivery of the microparticles
» Visualization 3       The delivery of the microparticles for five different optical powers
» Visualization 4       The control of the delivery distance
» Visualization 5       The steering of the delivery direction
» Visualization 6       The dynamical steering of the delivery direction
» Visualization 7       The simultaneous delivery of microparticles

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic diagrams of (a) the experimental setup and the opto-conveyor. R1, reflection mirror 1; L1, L2, L3, and L4, lenses. SL and ST denote the long and short axes of the opto-conveyor. FL and FT represent the driving and confining forces acting on the microparticle. The azimuthal angle α denotes the angle between the longitudinal direction and the y direction. The two insets show the schematic diagrams of the opto-conveyor for azimuthal angles of 0° and 90°, respectively. (b) The optical gradient force and (c) the optical scattering force (FS) acting on the microsphere, respectively. FGL and FGT denote the longitudinal and transverse components of the optical gradient forces, respectively. FSy and FSz denote the components of the optical scattering forces along the y and z directions. FST and FSL are the transverse and longitudinal components of FSy, respectively. (d) The measured elliptical spot of the opto-conveyors on the substrate. The Gaussian waists along long and short axes are estimated as 55 μm and 4.3 μm, respectively.
Fig. 2.
Fig. 2. (a) Formation of the opto-conveyor on the substrate. The distributions of the electric intensity in (b) xoy, (c) xoz, and (d) yoz planes, respectively. The dimensionless optical force (DOF) of a microsphere with a radius r=3.5  μm when it moves along the (e) x, (f) y, and (g) z axes, respectively. Sx, Sy, and Sz are the relative positions of the microsphere along the x, y, and z axes.
Fig. 3.
Fig. 3. Confining forces (FT) for the azimuthal angles of (a) 0°, (b) 45°, and (c) 90°, respectively. The red dotted lines show the equilibrium points of the confining force. Driving forces (FL) for the azimuthal angles of (d) 0°, (e) 45°, and (f) 90°, respectively. The black dotted lines show the positions of the maximum driving force for the azimuthal angles of 0° and 45°, and the equilibrium point of the positive and negative driving force for the azimuthal angle of 90°, respectively. ST and SL are the relative positions of the microsphere along the short and long axes of the opto-conveyor, respectively.
Fig. 4.
Fig. 4. (a) Targeting delivery processes and (b) the delivery trajectories of the PS microparticles at six different start points. The yellow dotted lines show the trajectories of microparticle movement. The green ellipses denote the opto-conveyor, and the reddish dots denote the positions of the microparticles every second.
Fig. 5.
Fig. 5. Delivery processes of the microspheres for five different optical powers of 221.7 mW, 337.6 mW, 484.1 mW, 702.5 mW, and 769.4 mW, respectively. The incident angle θ is 30°, and the azimuthal angle α is 0°. The yellow dotted lines show the trajectories of microparticle movement, and the reddish dots denote the positions of the microparticles every second.
Fig. 6.
Fig. 6. Speed distributions during microparticle delivery processes as functions of (a) time and (b) position for five different optical powers of 221.7 mW, 337.6 mW, 484.1 mW, 702.5 mW, and 769.4 mW in the experiments, respectively. (c) The theoretical and experimental distributions of the transport speed and driving force at the optical power of 337.6 mW. (d) The experimental and theoretical maximum speed and the delivery time consumption versus the optical power, respectively.
Fig. 7.
Fig. 7. (a) Relationship between the irradiation time, optical power, and the delivery distance, and (b) relationship between the irradiation time and the delivery distance at the optical power of 484.1 mW. The dotted lines show the delivery distance at the irradiation times of 4 s, 5 s, 6 s, and 22 s, respectively.
Fig. 8.
Fig. 8. Delivery distances of microparticles at the optical power of 484.1 mW with the delivery periods of 4 s, 5 s, 6 s, and 26 s, respectively. The incident angle θ is 30°, and the azimuthal angle α is 0°.
Fig. 9.
Fig. 9. (a) Delivery trajectories for different azimuthal angles at the optical power of 484.1 mW and the incident angle of 45°. The optical images of the opto-conveyors are shown in each inset. (b) The experimental and theoretical delivery distances, and (c) the experimental and theoretical maximum speeds of the microparticles versus azimuthal angles.
Fig. 10.
Fig. 10. Simultaneous delivery of microparticles to a targeting object at the optical power of 484.1 mW, the incident angle of 30°, and the azimuthal angle of 0°. The dotted lines denote the opto-conveyor.
Fig. 11.
Fig. 11. Geometry for calculating the optical force due to the scattering of incident rays by a microsphere.

Tables (1)

Tables Icon

Table 1. Theoretical and Experimental Results on the Control of the Delivery Distance

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

FL=FGL+FSL=FGL+FS×cos(θ)×cos(α),
FT=FGT+FST=FGT+FS×cos(θ)×sin(α).
E(x,y,z)=E0ω0xω0yωx(z)ωy(z)×exp{i[kzη(z)]x2[1ωx2(z)+ik2Rx(z)]y2[1ωy2(z)+ik2Ry(z)]},
m·ddt(dldt)FL+FD(vl)=0,
FD(vl)=6πηrvl,
ηc=η1(916)(rs)+(19)(rs)3,
m·ddt(dldt)FL+FD(vl)=m·ddt(dldt)FL+6πηcrvl=0.
Fz=FS=npcQS=npc[1+Rcos(2θ1)T2cos(2θ12θ2)+Rcos(2θ1)1+R2+2Rcos(2θ2)],
Fy=FG=npcQG=npc[Rsin(2θ1)+T2sin(2θ12θ2)+Rsin(2θ1)1+R2+2Rcos(2θ2)],