Abstract

We demonstrate low-voltage waveguide silicon-germanium avalanche photodiodes (APDs) integrated with distributed Bragg reflectors (DBRs). The internal quantum efficiency is improved from 60% to 90% at 1550 nm assisted with DBRs while still achieving a 25 GHz bandwidth. A low breakdown voltage of 10 V and a gain bandwidth product of near 500 GHz are obtained. APDs with DBRs at a data rate of 64 Gb/s pulse amplitude modulation with four levels (PAM4) show a 30%–40% increase in optical modulation amplitude (OMA) compared to APDs with no DBR. A sensitivity of around 13  dBm at a data rate of 64 Gb/s PAM4 and a bit error rate of 2.4×104 is realized for APDs with DBRs, which improves the sensitivity by 2  dB compared to APDs with no DBR.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5, 1354–1370 (2018).
    [Crossref]
  2. B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
    [Crossref]
  3. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
    [Crossref]
  4. J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
    [Crossref]
  5. T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
    [Crossref]
  6. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
    [Crossref]
  7. V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Opt. Express 26, 13106–13121 (2018).
    [Crossref]
  8. “IEEE P802.3bs 400GbE,” http://www.ieee802.org/3/bs .
  9. B. Wang, Z. Huang, W. V. Sorin, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links,” J. Lightwave Technol. (2019).
    [Crossref]
  10. G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
    [Crossref]
  11. J. C. Campbell, “Recent advances in avalanche photodiodes,” J. Lightwave Technol. 34, 278–285 (2016).
    [Crossref]
  12. Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
    [Crossref]
  13. N. Duan, T.-Y. Liow, A. E.-J. Lim, L. Ding, and G. Q. Lo, “310  GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550  nm light detection,” Opt. Express 20, 11031–11036 (2012).
    [Crossref]
  14. Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
    [Crossref]
  15. M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.
  16. M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM® POWER7™ approach,” in International Symposium on High-Performance Computer Architecture (2010), pp. 1–11.
  17. L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
    [Crossref]
  18. H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
    [Crossref]
  19. B. Wang, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, and R. G. Beausoleil, “60  Gb/s PAM4 low-voltage waveguide Si-Ge avalanche photodiode,” in European Conference on Optical Communication (ECOC) (2019), paper Tu.1.E.4.
  20. X. Zeng, Z. Huang, B. Wang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region,” Optica 6, 772–777 (2019).
    [Crossref]
  21. J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
    [Crossref]
  22. D. Dai, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in 6th International Conference on Group IV Photonics (2009), pp. 1–3.
  23. B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. 37, 3229–3235 (2019).
    [Crossref]
  24. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
    [Crossref]
  25. D. Dai, M. J. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
    [Crossref]

2019 (3)

2018 (2)

2016 (5)

2015 (2)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

2014 (1)

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

2012 (1)

2010 (1)

D. Dai, M. J. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

2009 (4)

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
[Crossref]

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Absil, P.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Alloatti, L.

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Opt. Express 26, 13106–13121 (2018).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Atabaki, A.

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Bahadori, M.

Bauwelinck, J.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Beausoleil, R. G.

X. Zeng, Z. Huang, B. Wang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region,” Optica 6, 772–777 (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. 37, 3229–3235 (2019).
[Crossref]

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

B. Wang, Z. Huang, W. V. Sorin, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links,” J. Lightwave Technol. (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, and R. G. Beausoleil, “60  Gb/s PAM4 low-voltage waveguide Si-Ge avalanche photodiode,” in European Conference on Optical Communication (ECOC) (2019), paper Tu.1.E.4.

Beling, A.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Bergman, K.

Bhargava, P.

Boeuf, F.

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Bowers, J. E.

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

D. Dai, M. J. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
[Crossref]

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

D. Dai, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in 6th International Conference on Group IV Photonics (2009), pp. 1–3.

Brock, B.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM® POWER7™ approach,” in International Symposium on High-Performance Computer Architecture (2010), pp. 1–11.

Cai, P.

M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.

Campbell, J. C.

J. C. Campbell, “Recent advances in avalanche photodiodes,” J. Lightwave Technol. 34, 278–285 (2016).
[Crossref]

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
[Crossref]

Carter, J. B.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM® POWER7™ approach,” in International Symposium on High-Performance Computer Architecture (2010), pp. 1–11.

Cassan, E.

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Chen, H. T.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Chen, H. W.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Chen, H.-W.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
[Crossref]

D. Dai, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in 6th International Conference on Group IV Photonics (2009), pp. 1–3.

Chen, K.

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

Chen, Y. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Cheng, Q.

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Crozat, P.

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Cunningham, J. E.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Dai, D.

D. Dai, M. J. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

D. Dai, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in 6th International Conference on Group IV Photonics (2009), pp. 1–3.

Davenport, M.

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

De Coster, J.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

De Heyn, P.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Ding, L.

Duan, N.

Fédéli, J. M.

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Fiorentino, M.

Floyd, M.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM® POWER7™ approach,” in International Symposium on High-Performance Computer Architecture (2010), pp. 1–11.

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Glick, M.

Hartmann, J. M.

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

He, S.

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Hong, C. Y.

M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.

Hong, F. C.

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

Hou, G.

M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.

Huang, M.

M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.

Huang, Q.

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

Huang, Z.

X. Zeng, Z. Huang, B. Wang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region,” Optica 6, 772–777 (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. 37, 3229–3235 (2019).
[Crossref]

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

B. Wang, Z. Huang, W. V. Sorin, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links,” J. Lightwave Technol. (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, and R. G. Beausoleil, “60  Gb/s PAM4 low-voltage waveguide Si-Ge avalanche photodiode,” in European Conference on Optical Communication (ECOC) (2019), paper Tu.1.E.4.

Hulme, J.

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

Kang, Y.

D. Dai, M. J. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
[Crossref]

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

D. Dai, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in 6th International Conference on Group IV Photonics (2009), pp. 1–3.

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Komljenovic, T.

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Kuo, F. M.

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

Kuo, Y. H.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Kurczveil, G.

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Lepage, G.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Li, C.

Li, G.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Li, S.

M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.

Liang, D.

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

X. Zeng, Z. Huang, B. Wang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region,” Optica 6, 772–777 (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. 37, 3229–3235 (2019).
[Crossref]

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref]

B. Wang, Z. Huang, W. V. Sorin, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links,” J. Lightwave Technol. (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, and R. G. Beausoleil, “60  Gb/s PAM4 low-voltage waveguide Si-Ge avalanche photodiode,” in European Conference on Optical Communication (ECOC) (2019), paper Tu.1.E.4.

Lim, A. E.-J.

Lin, S.

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Opt. Express 26, 13106–13121 (2018).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Liow, T.-Y.

Litski, S.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Liu, A. Y.

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

Liu, H. D.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Lo, G. Q.

Marris-Morini, D.

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

McIntosh, D. C.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Mehta, N.

Moazeni, S.

Moeneclaey, B.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Morse, M.

D. Dai, M. J. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
[Crossref]

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

D. Dai, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in 6th International Conference on Group IV Photonics (2009), pp. 1–3.

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Palermo, S.

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, and R. G. Beausoleil, “25  Gbps low-voltage waveguide Si–Ge avalanche photodiode,” Optica 3, 793–798 (2016).
[Crossref]

Pan, D.

M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.

Paniccia, M. J.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
[Crossref]

D. Dai, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in 6th International Conference on Group IV Photonics (2009), pp. 1–3.

Pauchard, A.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
[Crossref]

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Pavanello, F.

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Opt. Express 26, 13106–13121 (2018).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Popovic, M.

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Rajamani, K.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM® POWER7™ approach,” in International Symposium on High-Performance Computer Architecture (2010), pp. 1–11.

Ram, R. J.

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Opt. Express 26, 13106–13121 (2018).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Rawson, F.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM® POWER7™ approach,” in International Symposium on High-Performance Computer Architecture (2010), pp. 1–11.

Rodwell, M. J.

D. Dai, M. J. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

Roelkens, G.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Rubio, J. C.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM® POWER7™ approach,” in International Symposium on High-Performance Computer Architecture (2010), pp. 1–11.

Rumley, S.

Santis, C. T.

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

Santori, C.

Sarid, G.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Shi, J. W.

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

Shubin, I.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Sorin, W.

Sorin, W. V.

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. 37, 3229–3235 (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, and R. G. Beausoleil, “60  Gb/s PAM4 low-voltage waveguide Si-Ge avalanche photodiode,” in European Conference on Optical Communication (ECOC) (2019), paper Tu.1.E.4.

B. Wang, Z. Huang, W. V. Sorin, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links,” J. Lightwave Technol. (2019).
[Crossref]

Spott, A.

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

Srinivasan, S.

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

Stanton, E. J.

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

Stojanovic, V.

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Su, T. I.

M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.

Sun, C.

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Opt. Express 26, 13106–13121 (2018).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Tan, M. R.

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

Van Campenhout, J.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Verbist, J.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Verheyen, P.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Virot, L.

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Vivien, L.

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Wade, M.

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Wang, B.

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

X. Zeng, Z. Huang, B. Wang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region,” Optica 6, 772–777 (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. 37, 3229–3235 (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, and R. G. Beausoleil, “60  Gb/s PAM4 low-voltage waveguide Si-Ge avalanche photodiode,” in European Conference on Optical Communication (ECOC) (2019), paper Tu.1.E.4.

B. Wang, Z. Huang, W. V. Sorin, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links,” J. Lightwave Technol. (2019).
[Crossref]

Ware, M.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM® POWER7™ approach,” in International Symposium on High-Performance Computer Architecture (2010), pp. 1–11.

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Wu, Y. S.

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

Yin, X.

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

Yu, K.

Zadka, M.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Zaoui, W. S.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17, 12641–12649 (2009).
[Crossref]

Zeng, X.

X. Zeng, Z. Huang, B. Wang, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region,” Optica 6, 772–777 (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, W. V. Sorin, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A compact model for Si-Ge avalanche photodiodes over a wide range of multiplication gain,” J. Lightwave Technol. 37, 3229–3235 (2019).
[Crossref]

B. Wang, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, and R. G. Beausoleil, “60  Gb/s PAM4 low-voltage waveguide Si-Ge avalanche photodiode,” in European Conference on Optical Communication (ECOC) (2019), paper Tu.1.E.4.

B. Wang, Z. Huang, W. V. Sorin, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links,” J. Lightwave Technol. (2019).
[Crossref]

Zhang, C.

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2016).
[Crossref]

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

Zhang, J.

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

Zhang, N.

M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.

Zheng, X.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

IEEE Electron Device Lett. (1)

J. W. Shi, F. M. Kuo, F. C. Hong, and Y. S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product,” IEEE Electron Device Lett. 30, 1164–1166 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Dai, M. J. Rodwell, J. E. Bowers, Y. Kang, and M. Morse, “Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector,” IEEE J. Sel. Top. Quantum Electron. 16, 1328–1336 (2010).
[Crossref]

IEEE Photon. J. (1)

H. T. Chen, J. Verbist, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, P. Absil, B. Moeneclaey, X. Yin, J. Bauwelinck, J. Van Campenhout, and G. Roelkens, “25-Gb/s 1310-nm optical receiver based on a sub-5-V waveguide-coupled germanium avalanche photodiode,” IEEE Photon. J. 7, 7902909 (2015).
[Crossref]

J. Lightwave Technol. (3)

Nat. Commun. (1)

L. Virot, P. Crozat, J. M. Fédéli, J. M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, and L. Vivien, “Germanium avalanche receiver for low power interconnects,” Nat. Commun. 5, 4957 (2014).
[Crossref]

Nat. Photonics (1)

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3, 59–63 (2009).
[Crossref]

Nature (1)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Opt. Express (4)

Optica (3)

Proc. IEEE (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Proc. SPIE (1)

J. E. Bowers, T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, and C. Zhang, “Recent advances in silicon photonic integrated circuits,” Proc. SPIE 9774, 977402 (2016).
[Crossref]

Prog. Electromagn. Res. (1)

B. Wang, Q. Huang, K. Chen, J. Zhang, G. Kurczveil, D. Liang, S. Palermo, M. R. Tan, R. G. Beausoleil, and S. He, “Modulation on silicon for datacom: past, present, and future,” Prog. Electromagn. Res. 166, 119–145 (2019).
[Crossref]

Other (6)

D. Dai, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, and M. J. Paniccia, “Equivalent circuit model of a Ge/Si avalanche photodiode,” in 6th International Conference on Group IV Photonics (2009), pp. 1–3.

M. Huang, P. Cai, S. Li, G. Hou, N. Zhang, T. I. Su, C. Y. Hong, and D. Pan, “56 GHz waveguide Ge/Si avalanche photodiode,” in Optical Fiber Communications Conference and Exposition (OFC) (2018), paper W4D.6.

M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson, and J. B. Carter, “Architecting for power management: the IBM® POWER7™ approach,” in International Symposium on High-Performance Computer Architecture (2010), pp. 1–11.

B. Wang, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, and R. G. Beausoleil, “60  Gb/s PAM4 low-voltage waveguide Si-Ge avalanche photodiode,” in European Conference on Optical Communication (ECOC) (2019), paper Tu.1.E.4.

“IEEE P802.3bs 400GbE,” http://www.ieee802.org/3/bs .

B. Wang, Z. Huang, W. V. Sorin, X. Zeng, D. Liang, M. Fiorentino, and R. G. Beausoleil, “A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links,” J. Lightwave Technol. (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of a waveguide SiGe APD integrated with a DBR. (b) SEM cross-section view of an APD. (c) Top views of FDTD simulated photo-carrier generation profiles for 4  μmwideby10  μm long APDs with no DBR, DBR1, and DBR2. (d) Calculated reflectivity versus number of period for two DBR designs. The inset is the reflectivity spectra for the two types of DBRs with 2, 4, and 6 periods, respectively.
Fig. 2.
Fig. 2. (a) Dark and photo current versus bias voltage with input optical power of 10, 5, and 0 dBm for a 4  μm×10  μm APD with a 6-period DBR2. (b) Photocurrent versus input optical power for 4  μm×10  μm APDs with no DBR, DBR1, and DBR2, respectively. (c) Responsivity at unity gain and quantum efficiency for three types of APDs, each with the same waveguide width of 4 μm but various waveguide lengths of 10 μm, 25 μm, and 50 μm. (d) Measured impulse responses of a 4  μm×10  μm APD with DBR2 at various multiplication gains. The shortest pulse has an FWHM of 14.5 ps. (e) and (f) Device bandwidth versus multiplication gain for APDs with DBR1 and DBR2, respectively. A 25 GHz bandwidth was achieved for both designs.
Fig. 3.
Fig. 3. Experimental setup for eye diagram and BER measurement: MZ, Mach–Zehnder; EDFA, erbium-doped fiber amplifier; BPF, bandpass filter; DUT, device under test; Scope, sampling oscilloscope; BERT, bit error rate tester.
Fig. 4.
Fig. 4. Measured 64 Gb/s PAM4 eye diagrams for 4  μm×10  μm waveguide APDs with and without DBRs at reverse bias of (a) 8 V and (b) 10 V, respectively. The DCA sampling scope was set with 10 ps/div in the x axis and 10 mV/div in the y axis.
Fig. 5.
Fig. 5. 32 Gb/s NRZ and 64 Gb/s PAM4 BERs versus received average optical power with a 5 dB ER for 4  μm×10  μm waveguide APDs with and without DBRs at a reverse bias of (a) 8 V and (b) 10 V, respectively. These BER curves were measured without a transimpedance amplifier (TIA).

Tables (1)

Tables Icon

Table 1. Design Parameters for DBR1 and DBR2

Metrics