Abstract

To achieve high quality lighting and visible light communication (VLC) simultaneously, GaN based white light emitting diodes (WLEDs) oriented for lighting in VLC has attracted great interest. However, the overall bandwidth of conventional phosphor converted WLEDs is limited by the long lifetime of phosphor, the slow Stokes transfer process, the resistance-capacitance (RC) time delay, and the quantum-confined Stark effect (QCSE). Here by adopting a self-assembled InGaN quantum dots (QDs) structure, we have fabricated phosphor-free single chip WLEDs with tunable correlated color temperature (CCT, from 1600 K to 6000 K), a broadband spectrum, a moderate color rendering index (CRI) of 75, and a significantly improved modulation bandwidth (maximum of 150 MHz) at a low current density of 72  A/cm2. The broadband spectrum and high modulation bandwidth are ascribed to the capture of carriers by different localized states of InGaN QDs with alleviative QCSE as compared to the traditional InGaN/GaN quantum well (QW) structures. We believe the approach reported in this work will find its potential application in GaN WLEDs and advance the development of semiconductor lighting-communication integration.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” Commun. Surveys Tuts. 17, 2047–2077 (2015).
    [Crossref]
  2. H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34, 1533–1544 (2016).
    [Crossref]
  3. J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: history, progress, and future,” Laser Photon. Rev. 11, 1600147 (2017).
    [Crossref]
  4. R. Wan, S. Zhang, Z. Liu, X. Yi, L. Wang, J. Wang, J. Li, W. Zhu, and J. Li, “Simultaneously improve the luminous efficiency and color-rendering index of GaN-based white-light-emitting diodes using metal localized surface plasmon resonance,” Opt. Lett. 44, 4155–4158 (2019).
    [Crossref]
  5. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).
    [Crossref]
  6. S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
    [Crossref]
  7. D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
    [Crossref]
  8. T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
    [Crossref]
  9. N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
    [Crossref]
  10. H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
    [Crossref]
  11. S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
    [Crossref]
  12. Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
    [Crossref]
  13. H. Han, H. Lin, C. Lin, W. Chong, J. Li, K. Chen, P. Yu, T. Chen, H. Chen, K. Lau, and H. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23, 32504–32515 (2015).
    [Crossref]
  14. H. Lin, C. Sher, D. Hsieh, X. Chen, H. P. Chen, T. Chen, K. Lau, C. Chen, C. Lin, and H. Kuo, “Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold,” Photon. Res. 5, 411–416 (2017).
    [Crossref]
  15. H. Cao, S. Lin, Z. Ma, X. Li, J. Li, and L. Zhao, “Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth,” IEEE Electron Device Lett. 40, 267–270 (2018).
    [Crossref]
  16. D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41, 5752–5755 (2016).
    [Crossref]
  17. A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth,” IEEE Electron Device Lett. 39, 520–523 (2018).
    [Crossref]
  18. R. G. Baets, D. G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).
    [Crossref]
  19. S. H. Chen, C. Shen, T. Wu, Z. Liao, L. Chen, J. Zhou, C. Lee, C. Lin, C. Lin, C. Sher, P. Lee, A. Tzou, Z. Chen, and H. Kuo, “Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer,” Photon. Res. 7, 416–422 (2019).
    [Crossref]
  20. N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24, 21663–21673 (2016).
    [Crossref]
  21. H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
    [Crossref]
  22. T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
    [Crossref]
  23. P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, and G. Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes,” J. Appl. Phys. 117, 073101 (2015).
    [Crossref]
  24. G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
    [Crossref]
  25. Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59, 10283–10288 (1999).
    [Crossref]
  26. S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, “Bimodal size distribution of self-assembled InxGa1-xAs quantum dots,” Phys. Rev. B 66, 125309 (2002).
    [Crossref]
  27. L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
    [Crossref]
  28. Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
    [Crossref]
  29. K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24, 1001–1005 (1977).
    [Crossref]
  30. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
    [Crossref]
  31. J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” J. Lightwave Technol. 26, 3883–3892 (2009).
    [Crossref]
  32. C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
    [Crossref]
  33. H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, and H. Wang, “Characteristics of micro size light emitting diode for illumination and visible light communication,” Phys. Status Solidi A 215, 1800484 (2018).
    [Crossref]

2019 (3)

2018 (6)

H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, and H. Wang, “Characteristics of micro size light emitting diode for illumination and visible light communication,” Phys. Status Solidi A 215, 1800484 (2018).
[Crossref]

S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
[Crossref]

H. Cao, S. Lin, Z. Ma, X. Li, J. Li, and L. Zhao, “Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth,” IEEE Electron Device Lett. 40, 267–270 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth,” IEEE Electron Device Lett. 39, 520–523 (2018).
[Crossref]

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

2017 (3)

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: history, progress, and future,” Laser Photon. Rev. 11, 1600147 (2017).
[Crossref]

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

H. Lin, C. Sher, D. Hsieh, X. Chen, H. P. Chen, T. Chen, K. Lau, C. Chen, C. Lin, and H. Kuo, “Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold,” Photon. Res. 5, 411–416 (2017).
[Crossref]

2016 (5)

N. Chi, M. Zhang, Y. Zhou, and J. Zhao, “3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding,” Opt. Express 24, 21663–21673 (2016).
[Crossref]

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34, 1533–1544 (2016).
[Crossref]

D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, and B. Corbett, “GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes,” Opt. Lett. 41, 5752–5755 (2016).
[Crossref]

2015 (4)

H. Han, H. Lin, C. Lin, W. Chong, J. Li, K. Chen, P. Yu, T. Chen, H. Chen, K. Lau, and H. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23, 32504–32515 (2015).
[Crossref]

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” Commun. Surveys Tuts. 17, 2047–2077 (2015).
[Crossref]

P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, and G. Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes,” J. Appl. Phys. 117, 073101 (2015).
[Crossref]

G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
[Crossref]

2014 (2)

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

2013 (1)

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

2012 (1)

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

2010 (1)

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

2009 (3)

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” J. Lightwave Technol. 26, 3883–3892 (2009).
[Crossref]

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).
[Crossref]

2003 (1)

R. G. Baets, D. G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).
[Crossref]

2002 (1)

S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, “Bimodal size distribution of self-assembled InxGa1-xAs quantum dots,” Phys. Rev. B 66, 125309 (2002).
[Crossref]

1999 (1)

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59, 10283–10288 (1999).
[Crossref]

1977 (1)

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24, 1001–1005 (1977).
[Crossref]

Akiyama, H.

G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
[Crossref]

Anders, S.

S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, “Bimodal size distribution of self-assembled InxGa1-xAs quantum dots,” Phys. Rev. B 66, 125309 (2002).
[Crossref]

Aragon, A.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth,” IEEE Electron Device Lett. 39, 520–523 (2018).
[Crossref]

Baets, R. G.

R. G. Baets, D. G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).
[Crossref]

Bienstman, P.

R. G. Baets, D. G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).
[Crossref]

Bockstaele, R.

R. G. Baets, D. G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).
[Crossref]

Cao, H.

H. Cao, S. Lin, Z. Ma, X. Li, J. Li, and L. Zhao, “Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth,” IEEE Electron Device Lett. 40, 267–270 (2018).
[Crossref]

Chen, C.

Chen, H.

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

H. Han, H. Lin, C. Lin, W. Chong, J. Li, K. Chen, P. Yu, T. Chen, H. Chen, K. Lau, and H. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23, 32504–32515 (2015).
[Crossref]

Chen, H. P.

Chen, K.

Chen, L.

Chen, S.

G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
[Crossref]

Chen, S. H.

Chen, T.

Chen, W.

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Chen, X.

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

H. Lin, C. Sher, D. Hsieh, X. Chen, H. P. Chen, T. Chen, K. Lau, C. Chen, C. Lin, and H. Kuo, “Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold,” Photon. Res. 5, 411–416 (2017).
[Crossref]

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

Chen, Y. T.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

Chen, Z.

Chi, N.

Cho, J.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: history, progress, and future,” Laser Photon. Rev. 11, 1600147 (2017).
[Crossref]

Chong, W.

Chun, H.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Colvin, V. L.

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

Corbett, B.

Dawson, M. D.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Delbeke, D. G.

R. G. Baets, D. G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).
[Crossref]

Denault, K. A.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

DenBaars, S. P.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).
[Crossref]

Detchprohm, T.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Ding, J.

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

Dinh, D. V.

Faulkner, G.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Feezell, D.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth,” IEEE Electron Device Lett. 39, 520–523 (2018).
[Crossref]

Feng, X.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” Commun. Surveys Tuts. 17, 2047–2077 (2015).
[Crossref]

Feng, Z.

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Feng, Z. C.

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Ferguson, I.

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Fischer, A. M.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Fujita, S.

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59, 10283–10288 (1999).
[Crossref]

George, N. C.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

Grubor, J.

Gu, E.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Guo, R.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
[Crossref]

Haas, H.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34, 1533–1544 (2016).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Han, H.

Herrnsdorf, J.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

Horiuchi, S.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24, 1001–1005 (1977).
[Crossref]

Hsieh, D.

Hu, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” Commun. Surveys Tuts. 17, 2047–2077 (2015).
[Crossref]

Hu, X.

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Huang, C.

H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, and H. Wang, “Characteristics of micro size light emitting diode for illumination and visible light communication,” Phys. Status Solidi A 215, 1800484 (2018).
[Crossref]

Huang, C. Y.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

Huang, H.

H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, and H. Wang, “Characteristics of micro size light emitting diode for illumination and visible light communication,” Phys. Status Solidi A 215, 1800484 (2018).
[Crossref]

Huang, J. J.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

Ikeda, K.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24, 1001–1005 (1977).
[Crossref]

Ji, C.

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

Jung, D.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Kang, J.

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, and G. Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes,” J. Appl. Phys. 117, 073101 (2015).
[Crossref]

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Kao, H. Y.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

Kawakami, Y.

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59, 10283–10288 (1999).
[Crossref]

Keller, M. W.

S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, “Bimodal size distribution of self-assembled InxGa1-xAs quantum dots,” Phys. Rev. B 66, 125309 (2002).
[Crossref]

Kim, C. S.

S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, “Bimodal size distribution of self-assembled InxGa1-xAs quantum dots,” Phys. Rev. B 66, 125309 (2002).
[Crossref]

Kim, J. K.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: history, progress, and future,” Laser Photon. Rev. 11, 1600147 (2017).
[Crossref]

Klein, B.

S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, “Bimodal size distribution of self-assembled InxGa1-xAs quantum dots,” Phys. Rev. B 66, 125309 (2002).
[Crossref]

Kuo, H.

Langer, K.-D.

Lau, K.

Lee, C.

Lee, K.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Lee, P.

Lee, Y.

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Lee, Y.-C.

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Li, D.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Li, H.

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, and G. Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes,” J. Appl. Phys. 117, 073101 (2015).
[Crossref]

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Li, J.

Li, P.

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, and G. Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes,” J. Appl. Phys. 117, 073101 (2015).
[Crossref]

Li, T.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Li, X.

H. Cao, S. Lin, Z. Ma, X. Li, J. Li, and L. Zhao, “Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth,” IEEE Electron Device Lett. 40, 267–270 (2018).
[Crossref]

Li, Z.

P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, and G. Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes,” J. Appl. Phys. 117, 073101 (2015).
[Crossref]

G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
[Crossref]

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Liao, Z.

Lin, C.

Lin, G. R.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

Lin, H.

Lin, S.

H. Cao, S. Lin, Z. Ma, X. Li, J. Li, and L. Zhao, “Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth,” IEEE Electron Device Lett. 40, 267–270 (2018).
[Crossref]

Lin, T. C.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

Lin, Y. H.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

Liu, J.

G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
[Crossref]

Liu, L.

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Liu, N.

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Liu, R.

S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
[Crossref]

Liu, X.

S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
[Crossref]

Liu, Z.

R. Wan, S. Zhang, Z. Liu, X. Yi, L. Wang, J. Wang, J. Li, W. Zhu, and J. Li, “Simultaneously improve the luminous efficiency and color-rendering index of GaN-based white-light-emitting diodes using metal localized surface plasmon resonance,” Opt. Lett. 44, 4155–4158 (2019).
[Crossref]

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Lu, M.

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

Ma, J.

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

Ma, Z.

H. Cao, S. Lin, Z. Ma, X. Li, J. Li, and L. Zhao, “Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth,” IEEE Electron Device Lett. 40, 267–270 (2018).
[Crossref]

Manousiadis, P.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

McKendry, J. J. D.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Mei, S.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
[Crossref]

Minh, H. L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Mirin, R. P.

S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, “Bimodal size distribution of self-assembled InxGa1-xAs quantum dots,” Phys. Rev. B 66, 125309 (2002).
[Crossref]

Mohapatra, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” Commun. Surveys Tuts. 17, 2047–2077 (2015).
[Crossref]

Monavarian, M.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth,” IEEE Electron Device Lett. 39, 520–523 (2018).
[Crossref]

Nakamura, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).
[Crossref]

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59, 10283–10288 (1999).
[Crossref]

Narukawa, Y.

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59, 10283–10288 (1999).
[Crossref]

Norman, A. G.

S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, “Bimodal size distribution of self-assembled InxGa1-xAs quantum dots,” Phys. Rev. B 66, 125309 (2002).
[Crossref]

O’Brien, D.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Oh, Y.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Parbrook, P. J.

Park, J. H.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: history, progress, and future,” Laser Photon. Rev. 11, 1600147 (2017).
[Crossref]

Pathak, P. H.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” Commun. Surveys Tuts. 17, 2047–2077 (2015).
[Crossref]

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).
[Crossref]

Ponce, F. A.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Qu, S.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

Quan, Z.

Rajbhandari, S.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Randel, S.

Rashidi, A.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth,” IEEE Electron Device Lett. 39, 520–523 (2018).
[Crossref]

Rishinaramangalam, A.

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth,” IEEE Electron Device Lett. 39, 520–523 (2018).
[Crossref]

Rogach, A. L.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

Roycroft, B.

Ruan, C.

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

Samuel, I. D. W.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Schubert, E. F.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: history, progress, and future,” Laser Photon. Rev. 11, 1600147 (2017).
[Crossref]

Seshadri, R.

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

Shen, C.

Sher, C.

Speck, J. S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).
[Crossref]

Sun, C.

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

Susaki, W.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24, 1001–1005 (1977).
[Crossref]

Tanaka, T.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24, 1001–1005 (1977).
[Crossref]

Tian, P.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
[Crossref]

Tian, Z.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

Tsai, C. T.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

Tsonev, D.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Turnbull, G. A.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Tzou, A.

Videv, S.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Vithanage, D. A.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Walewski, J. W.

Wan, R.

Wang, B.

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Wang, C.

H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, and H. Wang, “Characteristics of micro size light emitting diode for illumination and visible light communication,” Phys. Status Solidi A 215, 1800484 (2018).
[Crossref]

Wang, G.

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, and G. Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes,” J. Appl. Phys. 117, 073101 (2015).
[Crossref]

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Wang, H.

H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, and H. Wang, “Characteristics of micro size light emitting diode for illumination and visible light communication,” Phys. Status Solidi A 215, 1800484 (2018).
[Crossref]

Wang, J.

Wang, L.

R. Wan, S. Zhang, Z. Liu, X. Yi, L. Wang, J. Wang, J. Li, W. Zhu, and J. Li, “Simultaneously improve the luminous efficiency and color-rendering index of GaN-based white-light-emitting diodes using metal localized surface plasmon resonance,” Opt. Lett. 44, 4155–4158 (2019).
[Crossref]

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Wang, Y.

Watson, I. M.

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

Wei, Q. Y.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Weng, G.

G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
[Crossref]

Weng, Y.

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Wetzel, C.

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Won, E. T.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Wu, C.

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

Wu, H.

H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, and H. Wang, “Characteristics of micro size light emitting diode for illumination and visible light communication,” Phys. Status Solidi A 215, 1800484 (2018).
[Crossref]

Wu, T.

Xie, E.

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

Xue, D.

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

Yang, W.

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Yang, Z.

H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, and H. Wang, “Characteristics of micro size light emitting diode for illumination and visible light communication,” Phys. Status Solidi A 215, 1800484 (2018).
[Crossref]

Yi, X.

R. Wan, S. Zhang, Z. Liu, X. Yi, L. Wang, J. Wang, J. Li, W. Zhu, and J. Li, “Simultaneously improve the luminous efficiency and color-rendering index of GaN-based white-light-emitting diodes using metal localized surface plasmon resonance,” Opt. Lett. 44, 4155–4158 (2019).
[Crossref]

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, and G. Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes,” J. Appl. Phys. 117, 073101 (2015).
[Crossref]

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

Yin, L.

Yin, Y. F.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

You, Z. X.

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

Yu, P.

Yu, W. W.

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

Zeng, L.

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

Zhang, B.

G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
[Crossref]

Zhang, M.

Zhang, S.

Zhang, W.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
[Crossref]

Zhang, X.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

Zhang, Y.

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

Zhao, J.

Zhao, L.

H. Cao, S. Lin, Z. Ma, X. Li, J. Li, and L. Zhao, “Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth,” IEEE Electron Device Lett. 40, 267–270 (2018).
[Crossref]

Zhao, W.

G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
[Crossref]

Zheng, C.

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

Zheng, L.

S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
[Crossref]

Zhou, D.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

Zhou, G.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

Zhou, J.

Zhou, X.

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

Zhou, Y.

Zhu, W.

ACS Appl. Mater. Interfaces (1)

S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, and P. Tian, “High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication,” ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).
[Crossref]

Annu. Rev. Mater. Res. (1)

N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for solid-state white lighting,” Annu. Rev. Mater. Res. 43, 481–501 (2013).
[Crossref]

Appl. Phys. Lett. (1)

T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett. 96, 031906 (2010).
[Crossref]

Commun. Surveys Tuts. (1)

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: a survey, potential and challenges,” Commun. Surveys Tuts. 17, 2047–2077 (2015).
[Crossref]

IEEE Electron Device Lett. (2)

H. Cao, S. Lin, Z. Ma, X. Li, J. Li, and L. Zhao, “Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth,” IEEE Electron Device Lett. 40, 267–270 (2018).
[Crossref]

A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, and D. Feezell, “Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth,” IEEE Electron Device Lett. 39, 520–523 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, and D. O’Brien, “Visible light communication using a blue GaN μLED and fluorescent polymer colour converter,” IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[Crossref]

IEEE Trans. Electron. Dev. (2)

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24, 1001–1005 (1977).
[Crossref]

T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, and J. J. Huang, “Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication,” IEEE Trans. Electron. Dev. 65, 4375–4380 (2018).
[Crossref]

J. Appl. Phys. (3)

P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, and G. Wang, “Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes,” J. Appl. Phys. 117, 073101 (2015).
[Crossref]

L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).
[Crossref]

Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, and G. Wang, “Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells,” J. Appl. Phys. 115, 083112 (2014).
[Crossref]

J. Lightwave Technol. (2)

Laser Photon. Rev. (1)

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: history, progress, and future,” Laser Photon. Rev. 11, 1600147 (2017).
[Crossref]

Nanomaterials (1)

C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, and W. W. Yu, “White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication,” Nanomaterials 6, 13 (2016).
[Crossref]

Nanoscale (1)

Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, and A. L. Rogach, “Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication,” Nanoscale 11, 3489–3494 (2019).
[Crossref]

Nanoscale Res. Lett. (1)

G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, and B. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10, 31 (2015).
[Crossref]

Nanotechnology (1)

D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, and W. W. Yu, “Enhanced bandwidth of white light communication using nanomaterial phosphors,” Nanotechnology 29, 455708 (2018).
[Crossref]

Nat. Photonics (1)

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3, 180–182 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Photon. Res. (2)

Phys. Rev. B (2)

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B 59, 10283–10288 (1999).
[Crossref]

S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, and A. G. Norman, “Bimodal size distribution of self-assembled InxGa1-xAs quantum dots,” Phys. Rev. B 66, 125309 (2002).
[Crossref]

Phys. Status Solidi A (1)

H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, and H. Wang, “Characteristics of micro size light emitting diode for illumination and visible light communication,” Phys. Status Solidi A 215, 1800484 (2018).
[Crossref]

Proc. SPIE (1)

R. G. Baets, D. G. Delbeke, R. Bockstaele, and P. Bienstman, “Resonant cavity light-emitting diodes: a review,” Proc. SPIE 4996, 42–49 (2003).
[Crossref]

Sci. Rep. (1)

H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, and G. Wang, “Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots,” Sci. Rep. 6, 35217 (2016).
[Crossref]

Semicond. Sci. Technol. (1)

S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol. 32, 023001 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic epitaxial structure. (b) HRTEM image of the QWs. (c) ω-2θ scan of the epitaxial layer. (d) ω-scan rocking curves of (0002) and (10-12) planes.
Fig. 2.
Fig. 2. (a) TDPL spectra of the InGaN QDs sample. (b) Peak wavelength and FWHM of TDPL spectra versus measurement temperatures. (c) PL decay curve of the InGaN QDs sample at 300 K.
Fig. 3.
Fig. 3. (a) Voltage-current and optical power-current characteristics of InGaN QDs LEDs. (b) EL spectra of the InGaN QDs LEDs with injection current varying. (c) The change of red, green, and blue peaks’ position with injection current varying. (d) Intensity ratio in red, green, and blue peaks versus injection current. (e) EL images of InGaN QDs LEDs at injection currents of 5, 10, 20, 100, and 150 mA.
Fig. 4.
Fig. 4. Schematic illustration of the carrier recombination mechanism of InGaN QDs based single chip WLED.
Fig. 5.
Fig. 5. (a) CIE-1931 chromaticity coordinates. (b) CCT and CRI of single chip WLED versus injection current.
Fig. 6.
Fig. 6. (a) The frequency response and (b) bandwidth of single chip WLED versus injection current density. (c) EL spectra of the single chip WLED at 72  A/cm2 (90 mA), with the corresponding EL image in the inset.
Fig. 7.
Fig. 7. (a) The BER and (b) eye diagram versus the data rate of single chip WLED at 72  A/cm2 (90 mA).

Tables (1)

Tables Icon

Table 1. Comparison of the Characteristics of GaN-Based WLEDs

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I(t)=A1exp(t/τ1)+A2exp(t/τ2),
f3dB=32πτeff,
Pc(t)=Pc_0Hc(ω)exp(jωt),
Pr(t)=Pr_0Hr(ω)exp(jωt),
Pg(t)=Pg_0Hg(ω)exp(jωt),
Pb(t)=Pb_0Hb(ω)exp(jωt),
Pw(t)=Pr(t)+Pg(t)+Pb(t)=Pr_0Hr(ω)exp(jωt)+Pg_0Hg(ω)exp(jωt)+Pb_0Hb(ω)exp(jωt)=Pw_0[xHr(ω)+yHg(ω)+(1xy)Hb(ω)]exp(jωt).
Hw(ω)=x/(1+jωτr)+y/(1+jωτg)+(1xy)/(1+jωτb).

Metrics