Abstract

Ultra-narrow-linewidth mode-locked lasers with wide wavelength tunability can be versatile light sources for a variety of newly emergent applications. However, it is very challenging to achieve the stable mode locking of substantially long, anomalously dispersive fiber laser cavities employing a narrowband spectral filter at the telecom band. Here, we show that a nearly dispersion-insensitive dissipative mode-locking regime can be accessed through a subtle counterbalance among significantly narrowband spectral filtering, sufficiently deep saturable absorption, and moderately strong in-fiber Kerr nonlinearity. This achieves ultra-narrow-linewidth (a few gigahertz) nearly transform-limited self-starting stable dissipative soliton generation at low repetition rates (a few megahertz) without cavity dispersion management over a broad tuning range of wavelengths covering the entire telecom C-band. This unique laser may have immediate application as an idealized pump source for high-efficiency nonlinear frequency conversion and nonclassical light generation in dispersion-engineered tightly light-confining microphotonic/nanophotonic systems.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
    [Crossref]
  2. S. T. Le, V. Aref, and H. Buelow, “Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 11, 570–576 (2017).
    [Crossref]
  3. J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
    [Crossref]
  4. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
    [Crossref]
  5. C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
    [Crossref]
  6. D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
    [Crossref]
  7. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
    [Crossref]
  8. J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, X. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P. K. A. Wai, “Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber,” Opt. Lett. 40, 1338–1341 (2015).
    [Crossref]
  9. M. I. M. A. Khudus, T. Lee, F. De Lucia, C. Corbari, P. Sazio, P. Horak, and G. Brambilla, “All-fiber fourth and fifth harmonic generation from a single source,” Opt. Express 24, 21777–21793 (2016).
    [Crossref]
  10. Y. Wang, T. Lee, F. De Lucia, M. I. M. A. Khudus, P. J. A. Sazio, M. Beresna, and G. Brambilla, “All-fiber sixth harmonic generation of deep UV,” Opt. Lett. 42, 4671–4674 (2017).
    [Crossref]
  11. X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
    [Crossref]
  12. S. Signorini, M. Mancinelli, M. Borghi, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Intermodal four-wave mixing in silicon waveguides,” Photon. Res. 6, 805–814 (2018).
    [Crossref]
  13. J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings,” Optica 5, 103–108 (2018).
    [Crossref]
  14. M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36, 190–192 (2011).
    [Crossref]
  15. A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. A. Levenson, “Quantum theory analysis of triple photons generated by a χ(3) process,” Phys. Rev. A 85, 023809 (2012).
    [Crossref]
  16. S. Afshar, M. A. Lohe, T. Lee, T. M. Monro, and N. G. R. Broderick, “Efficient third and one-third harmonic generation in nonlinear waveguides,” Opt. Lett. 38, 329–331 (2013).
    [Crossref]
  17. J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
    [Crossref]
  18. M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
    [Crossref]
  19. A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, and G. Reali, “Low repetition rate, hybrid fiber/solid-state, 1064  nm picosecond master oscillator power amplifier laser system,” J. Opt. Soc. Am. B 30, 2960–2965 (2013).
    [Crossref]
  20. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
    [Crossref]
  21. A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
    [Crossref]
  22. J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
    [Crossref]
  23. Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
    [Crossref]
  24. Q. Lu, J. Ma, D. Duan, X. Lin, and Q. Mao, “Reducing the pulse repetition rate of picosecond dissipative soliton passively mode-locked fiber laser,” Opt. Express 27, 2809–2816 (2019).
    [Crossref]
  25. C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
    [Crossref]
  26. S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photon. Technol. Lett. 26, 2256–2259 (2014).
    [Crossref]
  27. I. A. Litago, D. Leandro, M. Á. Quintela, R. A. Pérez-Herrera, M. López-Amo, and J. M. López-Higuera, “Tunable SESAM-based mode-locked soliton fiber laser in linear cavity by axial-strain applied to an FBG,” J. Lightwave Technol. 35, 5003–5009 (2017).
    [Crossref]
  28. T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, and L. Zhang, “Narrow bandwidth passively mode locked picosecond erbium doped fiber laser using a 45° tilted fiber grating device,” Opt. Express 25, 16708–16714 (2017).
    [Crossref]
  29. M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
    [Crossref]
  30. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked laser,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  31. J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008).
    [Crossref]
  32. X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
    [Crossref]
  33. M. Alsaleh, T. Uthayakumar, E. T. Felenou, P. T. Dinda, P. Grelu, and K. Porsezian, “Pulse breaking through spectral filtering in dispersion-managed fiber lasers,” J. Opt. Soc. Am. B 35, 276–283 (2018).
    [Crossref]
  34. M. S. Kang, N. Y. Joly, and P. St. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38, 561–563 (2013).
    [Crossref]
  35. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [Crossref]
  36. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  37. X. Li, X. Kiu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35, 3249–3251 (2010).
    [Crossref]
  38. X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, and H. Ming, “Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser,” Opt. Lett. 37, 1334–1336 (2012).
    [Crossref]
  39. L. A. Rodrigues-Morales, I. Armas-Rivera, B. Ibarra-Escamilla, O. Pottiez, H. Santiago-Hernandez, M. Durán-Sánchez, M. V. Andrés, and E. A. Kuzin, “Long cavity ring fiber mode-locked laser with decreased net value of nonlinear polarization rotation,” Opt. Express 27, 14030–14040 (2019).
    [Crossref]
  40. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [Crossref]
  41. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008).
    [Crossref]
  42. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
    [Crossref]
  43. R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express 18, 5041–5054 (2010).
    [Crossref]
  44. F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16, 235–237 (1991).
    [Crossref]
  45. R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
    [Crossref]
  46. M. Endo, T. D. Shoji, and T. R. Schibli, “High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators,” Sci. Rep. 8, 4388 (2018).
    [Crossref]
  47. K. Jung and J. Kim, “Sub-femtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37, 2958–2960 (2012).
    [Crossref]
  48. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
    [Crossref]
  49. E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
    [Crossref]
  50. V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13, 6798–6806 (2005).
    [Crossref]
  51. J. Lægsgaard, “Theory of surface second-harmonic generation in silica nanowires,” J. Opt. Soc. Am. B 27, 1317–1324 (2010).
    [Crossref]
  52. R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Noise-mediated Casimir-like pulse interaction mechanism in lasers,” Optica 3, 189–192 (2016).
    [Crossref]
  53. K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
    [Crossref]
  54. K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, and M. S. Kang, “Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background,” Commun. Phys. 2, 141 (2019).
    [Crossref]

2019 (4)

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Q. Lu, J. Ma, D. Duan, X. Lin, and Q. Mao, “Reducing the pulse repetition rate of picosecond dissipative soliton passively mode-locked fiber laser,” Opt. Express 27, 2809–2816 (2019).
[Crossref]

L. A. Rodrigues-Morales, I. Armas-Rivera, B. Ibarra-Escamilla, O. Pottiez, H. Santiago-Hernandez, M. Durán-Sánchez, M. V. Andrés, and E. A. Kuzin, “Long cavity ring fiber mode-locked laser with decreased net value of nonlinear polarization rotation,” Opt. Express 27, 14030–14040 (2019).
[Crossref]

K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, and M. S. Kang, “Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background,” Commun. Phys. 2, 141 (2019).
[Crossref]

2018 (7)

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

M. Endo, T. D. Shoji, and T. R. Schibli, “High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators,” Sci. Rep. 8, 4388 (2018).
[Crossref]

X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
[Crossref]

M. Alsaleh, T. Uthayakumar, E. T. Felenou, P. T. Dinda, P. Grelu, and K. Porsezian, “Pulse breaking through spectral filtering in dispersion-managed fiber lasers,” J. Opt. Soc. Am. B 35, 276–283 (2018).
[Crossref]

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

S. Signorini, M. Mancinelli, M. Borghi, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Intermodal four-wave mixing in silicon waveguides,” Photon. Res. 6, 805–814 (2018).
[Crossref]

J. B. Surya, X. Guo, C.-L. Zou, and H. X. Tang, “Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings,” Optica 5, 103–108 (2018).
[Crossref]

2017 (7)

Y. Wang, T. Lee, F. De Lucia, M. I. M. A. Khudus, P. J. A. Sazio, M. Beresna, and G. Brambilla, “All-fiber sixth harmonic generation of deep UV,” Opt. Lett. 42, 4671–4674 (2017).
[Crossref]

S. T. Le, V. Aref, and H. Buelow, “Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 11, 570–576 (2017).
[Crossref]

J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
[Crossref]

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

I. A. Litago, D. Leandro, M. Á. Quintela, R. A. Pérez-Herrera, M. López-Amo, and J. M. López-Higuera, “Tunable SESAM-based mode-locked soliton fiber laser in linear cavity by axial-strain applied to an FBG,” J. Lightwave Technol. 35, 5003–5009 (2017).
[Crossref]

T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, and L. Zhang, “Narrow bandwidth passively mode locked picosecond erbium doped fiber laser using a 45° tilted fiber grating device,” Opt. Express 25, 16708–16714 (2017).
[Crossref]

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

2016 (7)

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

M. I. M. A. Khudus, T. Lee, F. De Lucia, C. Corbari, P. Sazio, P. Horak, and G. Brambilla, “All-fiber fourth and fifth harmonic generation from a single source,” Opt. Express 24, 21777–21793 (2016).
[Crossref]

X. Guo, C.-L. Zou, and H. X. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency,” Optica 3, 1126–1131 (2016).
[Crossref]

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
[Crossref]

R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Noise-mediated Casimir-like pulse interaction mechanism in lasers,” Optica 3, 189–192 (2016).
[Crossref]

2015 (2)

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, X. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P. K. A. Wai, “Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber,” Opt. Lett. 40, 1338–1341 (2015).
[Crossref]

2014 (1)

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photon. Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

2013 (5)

2012 (7)

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
[Crossref]

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[Crossref]

J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
[Crossref]

A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. A. Levenson, “Quantum theory analysis of triple photons generated by a χ(3) process,” Phys. Rev. A 85, 023809 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked laser,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

K. Jung and J. Kim, “Sub-femtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37, 2958–2960 (2012).
[Crossref]

X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, and H. Ming, “Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser,” Opt. Lett. 37, 1334–1336 (2012).
[Crossref]

2011 (1)

2010 (3)

2008 (4)

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008).
[Crossref]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

2006 (1)

2005 (2)

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13, 6798–6806 (2005).
[Crossref]

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

1991 (1)

Abreu-Afonso, J.

M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
[Crossref]

Afshar, S.

Agnesi, A.

A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, and G. Reali, “Low repetition rate, hybrid fiber/solid-state, 1064  nm picosecond master oscillator power amplifier laser system,” J. Opt. Soc. Am. B 30, 2960–2965 (2013).
[Crossref]

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[Crossref]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Ahn, K. J.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Ahn, Y. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked laser,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Almeida, P. J.

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

Alsaleh, M.

Andrés, M. V.

Aref, V.

S. T. Le, V. Aref, and H. Buelow, “Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 11, 570–576 (2017).
[Crossref]

Armas-Rivera, I.

Backus, S.

Bae, S.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Bai, J.-T.

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

Baumgartl, M.

M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
[Crossref]

Bekker, A.

Bencheikh, K.

A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. A. Levenson, “Quantum theory analysis of triple photons generated by a χ(3) process,” Phys. Rev. A 85, 023809 (2012).
[Crossref]

Beresna, M.

Bernard, M.

Boivinet, S.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photon. Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Bonneau, D.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

Borghi, M.

Borne, A.

A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. A. Levenson, “Quantum theory analysis of triple photons generated by a χ(3) process,” Phys. Rev. A 85, 023809 (2012).
[Crossref]

Boulanger, B.

A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. A. Levenson, “Quantum theory analysis of triple photons generated by a χ(3) process,” Phys. Rev. A 85, 023809 (2012).
[Crossref]

Brabec, T.

Brambilla, G.

Broderick, N. G. R.

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Buckley, J.

Buelow, H.

S. T. Le, V. Aref, and H. Buelow, “Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 11, 570–576 (2017).
[Crossref]

Carlson, D. R.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Carrá, L.

Carrà, L.

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[Crossref]

Caspani, L.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Chen, G.

Chen, H.-W.

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

Choi, S. Y.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Chong, A.

Chu, S. T.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Corbari, C.

Corona, M.

De Lucia, F.

Di Marco, C.

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[Crossref]

Diddams, S. A.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Dietzek, B.

Díez, A.

Dìez, A.

M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[Crossref]

Dinda, P. T.

Dot, A.

A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. A. Levenson, “Quantum theory analysis of triple photons generated by a χ(3) process,” Phys. Rev. A 85, 023809 (2012).
[Crossref]

Duan, D.

Durán-Sánchez, M.

Endo, M.

M. Endo, T. D. Shoji, and T. R. Schibli, “High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators,” Sci. Rep. 8, 4388 (2018).
[Crossref]

Felenou, E. T.

Feng, X.-Q.

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

Fischer, B.

Fotiadi, A. A.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photon. Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Fridman, M.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

Fu, W.

Garay-Palmett, K.

Gat, O.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Noise-mediated Casimir-like pulse interaction mechanism in lasers,” Optica 3, 189–192 (2016).
[Crossref]

Gerhardt, I.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Ghulinyan, M.

Golling, M.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Gottschall, T.

Grange, R.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Grelu, P.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

M. Alsaleh, T. Uthayakumar, E. T. Felenou, P. T. Dinda, P. Grelu, and K. Porsezian, “Pulse breaking through spectral filtering in dispersion-managed fiber lasers,” J. Opt. Soc. Am. B 35, 276–283 (2018).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked laser,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Grubsky, V.

Gu, C.

Guo, X.

Ha, C. K.

K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, and M. S. Kang, “Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background,” Commun. Phys. 2, 141 (2019).
[Crossref]

Haiml, M.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Han, D. S.

K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, and M. S. Kang, “Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background,” Commun. Phys. 2, 141 (2019).
[Crossref]

Han, Y.

Hansson, T.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

Harvey, C. M.

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

Hernandez, Y.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photon. Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Hickstein, D. D.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Hong, B. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Horak, P.

Hou, L.

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

Hu, X.

Huang, K.-X.

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

Hwang, J.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Ibarra-Escamilla, B.

Jeong, H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Joly, N. Y.

Jung, K.

Kang, J.

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

Kang, M. S.

K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, and M. S. Kang, “Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background,” Commun. Phys. 2, 141 (2019).
[Crossref]

M. S. Kang, N. Y. Joly, and P. St. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38, 561–563 (2013).
[Crossref]

Kang, Z.

X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
[Crossref]

Keller, U.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Khudus, M. I. M. A.

Khurgin, J. B.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Kim, J.

Kim, M. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Kim, S. J.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Kiu, X.

Klein, A.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

Knight, J. C.

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

Kowligy, A.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Krainer, L.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Krausz, F.

Kues, M.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Kutz, J. N.

X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
[Crossref]

Kuzin, E. A.

Lægsgaard, J.

J. Lægsgaard, “Theory of surface second-harmonic generation in silica nanowires,” J. Opt. Soc. Am. B 27, 1317–1324 (2010).
[Crossref]

J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008).
[Crossref]

Le, S. T.

S. T. Le, V. Aref, and H. Buelow, “Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 11, 570–576 (2017).
[Crossref]

Leandro, D.

Lecourt, J.-B.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photon. Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Lee, E. J.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Lee, K.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Lee, K. S.

K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, and M. S. Kang, “Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background,” Commun. Phys. 2, 141 (2019).
[Crossref]

Lee, T.

Levenson, J. A.

A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. A. Levenson, “Quantum theory analysis of triple photons generated by a χ(3) process,” Phys. Rev. A 85, 023809 (2012).
[Crossref]

Li, F.

X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
[Crossref]

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, X. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P. K. A. Wai, “Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber,” Opt. Lett. 40, 1338–1341 (2015).
[Crossref]

Li, X.

Lib, O.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

Limpert, J.

M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
[Crossref]

Lin, X.

Litago, I. A.

Little, B. E.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Liu, J.

J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
[Crossref]

Liu, Y.

Liu, Z.

Lohe, M. A.

López-Amo, M.

López-Higuera, J. M.

Lougovski, P.

Lu, B.-L.

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

Lu, H.

Lu, Q.

Lukens, J. M.

Ma, J.

Mancinelli, M.

Mao, Q.

Masri, G.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

Mégret, P.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photon. Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Meyer, T.

Ming, H.

Monro, T. M.

Moon, K. J.

K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, and M. S. Kang, “Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background,” Commun. Phys. 2, 141 (2019).
[Crossref]

Morandotti, R.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Moss, D. J.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Mou, C.

Mundoor, H.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Nakkeeran, K.

X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
[Crossref]

O’Brien, J. L.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

Ostinelli, O.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Papp, S. B.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Park, J.-K.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Park, J.-Y.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Park, N. H.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Paschotta, R.

R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express 18, 5041–5054 (2010).
[Crossref]

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Pavesi, L.

Pérez-Herrera, R. A.

Piccoli, R.

A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, and G. Reali, “Low repetition rate, hybrid fiber/solid-state, 1064  nm picosecond master oscillator power amplifier laser system,” J. Opt. Soc. Am. B 30, 2960–2965 (2013).
[Crossref]

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[Crossref]

Pirzio, F.

Popp, J.

Porsezian, K.

Pottiez, O.

Pucker, G.

Qi, X. Y.

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

Quintela, M. Á.

Reali, G.

A. Agnesi, L. Carrá, F. Pirzio, R. Piccoli, and G. Reali, “Low repetition rate, hybrid fiber/solid-state, 1064  nm picosecond master oscillator power amplifier laser system,” J. Opt. Soc. Am. B 30, 2960–2965 (2013).
[Crossref]

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[Crossref]

Reimer, C.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008).
[Crossref]

Rodrigues-Morales, L. A.

Rotermund, F.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Rothhardt, M.

M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
[Crossref]

Roztocki, P.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Sandoghdar, V.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Sang, X.

Santiago-Hernandez, H.

Savchenko, A.

Sazio, P.

Sazio, P. J. A.

Schibli, T. R.

M. Endo, T. D. Shoji, and T. R. Schibli, “High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators,” Sci. Rep. 8, 4388 (2018).
[Crossref]

Shoji, T. D.

M. Endo, T. D. Shoji, and T. R. Schibli, “High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators,” Sci. Rep. 8, 4388 (2018).
[Crossref]

Sidorenko, P.

Signorini, S.

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

Smalyukh, I. I.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Smulakovsky, V.

Son, S.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Song, Y.

Spielmann, C.

Spühler, G. J.

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Srinivasan, K.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

St. J. Russell, P.

Steinberg, H.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

Sulimany, K.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

Sun, B.

Surya, J. B.

Tam, H. Y.

Tang, H. X.

Thompson, M. G.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

Tünnermann, A.

M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
[Crossref]

U’Ren, A. B.

Uthayakumar, T.

Viktorov, E. A.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

Wadsworth, W. J.

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

Wai, P. K. A.

X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
[Crossref]

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, X. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P. K. A. Wai, “Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber,” Opt. Lett. 40, 1338–1341 (2015).
[Crossref]

Wang, A.

Wang, K.

Wang, L.

Wang, P.

J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
[Crossref]

Wang, T.

Wang, Y.

Weill, R.

Westly, D.

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

Wetzel, B.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Wise, F.

Wise, F. W.

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

Wrigge, G.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Wright, L. G.

Wu, Q.

Wuilpart, M.

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photon. Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

Xu, C.

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

Xu, J.

J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
[Crossref]

Xu, L.

Yan, B.

Yan, Z.

Yeom, D.-I.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Yim, W.

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Yu, C.

Yu, F.

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

Yuan, J.

X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
[Crossref]

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, X. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P. K. A. Wai, “Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber,” Opt. Lett. 40, 1338–1341 (2015).
[Crossref]

Zhang, D.-L.

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

Zhang, L.

Zhang, X.

X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
[Crossref]

X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, and H. Ming, “Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser,” Opt. Lett. 37, 1334–1336 (2012).
[Crossref]

Zhao, W.

Zhou, G.

Zhou, K.

Zhou, X.

Zou, C.-L.

Zumofen, G.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. B (2)

M. Baumgartl, J. Abreu-Afonso, A. Dìez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013).
[Crossref]

R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Commun. Phys. (1)

K. S. Lee, C. K. Ha, K. J. Moon, D. S. Han, and M. S. Kang, “Tailoring of multi-pulse dynamics in mode-locked laser via optoacoustic manipulation of quasi-continuous-wave background,” Commun. Phys. 2, 141 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 390–402 (2016).
[Crossref]

X. Zhang, F. Li, K. Nakkeeran, J. Yuan, Z. Kang, J. N. Kutz, and P. K. A. Wai, “Impact of spectral filtering on multipulsing instability in mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 24, 1101309 (2018).
[Crossref]

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (5)

C. M. Harvey, F. Yu, J. C. Knight, W. J. Wadsworth, and P. J. Almeida, “Reduced repetition rate Yb3+ mode-locked picosecond fiber laser with hollow core fiber,” IEEE Photon. Technol. Lett. 28, 669–672 (2016).
[Crossref]

S. Boivinet, J.-B. Lecourt, Y. Hernandez, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “All-fiber 1-μm PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate,” IEEE Photon. Technol. Lett. 26, 2256–2259 (2014).
[Crossref]

A. Agnesi, L. Carrà, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19-ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085 nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012).
[Crossref]

J. Liu, J. Xu, and P. Wang, “High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 24, 539–541 (2012).
[Crossref]

Y. Wang, B.-L. Lu, X. Y. Qi, L. Hou, J. Kang, K.-X. Huang, X.-Q. Feng, D.-L. Zhang, H.-W. Chen, and J.-T. Bai, “Environmentally stable pulse energy-tunable picosecond fiber laser,” IEEE Photon. Technol. Lett. 29, 150–153 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

J. Phys. B (1)

J. Lægsgaard, “Control of fibre laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008).
[Crossref]

Nat. Commun. (1)

E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, “Active control of all-fibre graphene devices with electrical gating,” Nat. Commun. 6, 6851 (2015).
[Crossref]

Nat. Photonics (5)

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Viktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11, 159–162 (2017).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked laser,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

C. Xu and F. W. Wise, “Recent advances in fiber lasers for nonlinear microscopy,” Nat. Photonics 7, 875–882 (2013).
[Crossref]

D. D. Hickstein, D. R. Carlson, H. Mundoor, J. B. Khurgin, K. Srinivasan, D. Westly, A. Kowligy, I. I. Smalyukh, S. A. Diddams, and S. B. Papp, “Self-organized nonlinear gratings for ultrafast nanophotonics,” Nat. Photonics 13, 494–499 (2019).
[Crossref]

S. T. Le, V. Aref, and H. Buelow, “Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 11, 570–576 (2017).
[Crossref]

Nat. Phys. (1)

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4, 60–66 (2008).
[Crossref]

Opt. Express (9)

V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13, 6798–6806 (2005).
[Crossref]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[Crossref]

R. Paschotta, “Timing jitter and phase noise of mode-locked fiber lasers,” Opt. Express 18, 5041–5054 (2010).
[Crossref]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012).
[Crossref]

T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, and L. Zhang, “Narrow bandwidth passively mode locked picosecond erbium doped fiber laser using a 45° tilted fiber grating device,” Opt. Express 25, 16708–16714 (2017).
[Crossref]

M. I. M. A. Khudus, T. Lee, F. De Lucia, C. Corbari, P. Sazio, P. Horak, and G. Brambilla, “All-fiber fourth and fifth harmonic generation from a single source,” Opt. Express 24, 21777–21793 (2016).
[Crossref]

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

Q. Lu, J. Ma, D. Duan, X. Lin, and Q. Mao, “Reducing the pulse repetition rate of picosecond dissipative soliton passively mode-locked fiber laser,” Opt. Express 27, 2809–2816 (2019).
[Crossref]

L. A. Rodrigues-Morales, I. Armas-Rivera, B. Ibarra-Escamilla, O. Pottiez, H. Santiago-Hernandez, M. Durán-Sánchez, M. V. Andrés, and E. A. Kuzin, “Long cavity ring fiber mode-locked laser with decreased net value of nonlinear polarization rotation,” Opt. Express 27, 14030–14040 (2019).
[Crossref]

Opt. Lett. (9)

Y. Wang, T. Lee, F. De Lucia, M. I. M. A. Khudus, P. J. A. Sazio, M. Beresna, and G. Brambilla, “All-fiber sixth harmonic generation of deep UV,” Opt. Lett. 42, 4671–4674 (2017).
[Crossref]

J. Yuan, X. Sang, Q. Wu, G. Zhou, F. Li, X. Zhou, C. Yu, K. Wang, B. Yan, Y. Han, H. Y. Tam, and P. K. A. Wai, “Enhanced intermodal four-wave mixing for visible and near-infrared wavelength generation in a photonic crystal fiber,” Opt. Lett. 40, 1338–1341 (2015).
[Crossref]

S. Afshar, M. A. Lohe, T. Lee, T. M. Monro, and N. G. R. Broderick, “Efficient third and one-third harmonic generation in nonlinear waveguides,” Opt. Lett. 38, 329–331 (2013).
[Crossref]

M. S. Kang, N. Y. Joly, and P. St. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38, 561–563 (2013).
[Crossref]

X. Li, X. Kiu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35, 3249–3251 (2010).
[Crossref]

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Experimental proposal for the generation of entangled photon triplets by third-order spontaneous parametric downconversion in optical fibers,” Opt. Lett. 36, 190–192 (2011).
[Crossref]

X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, and H. Ming, “Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser,” Opt. Lett. 37, 1334–1336 (2012).
[Crossref]

K. Jung and J. Kim, “Sub-femtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37, 2958–2960 (2012).
[Crossref]

F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16, 235–237 (1991).
[Crossref]

Optica (4)

Photon. Res. (1)

Phys. Rev. A (2)

A. Dot, A. Borne, B. Boulanger, K. Bencheikh, and J. A. Levenson, “Quantum theory analysis of triple photons generated by a χ(3) process,” Phys. Rev. A 85, 023809 (2012).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

Phys. Rev. Lett. (1)

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by Casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121, 133902 (2018).
[Crossref]

Sci. Rep. (1)

M. Endo, T. D. Shoji, and T. R. Schibli, “High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators,” Sci. Rep. 8, 4388 (2018).
[Crossref]

Science (1)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref]

Other (1)

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the widely tunable ultra-narrow-linewidth passively mode-locked erbium fiber laser. LD, laser diode; WDM, wavelength division multiplexer; EDF, erbium-doped fiber; TBF, tunable bandpass filter; SESAM, semiconductor saturable absorber mirror; PC, polarization controller.
Fig. 2.
Fig. 2. Characterization of the laser output. (a) Oscilloscope trace, (b) intensity autocorrelation. Note that the width of the autocorrelation trace is larger than the actual pulse width by a factor of 1.54 for sech2-shaped pulses. Although the autocorrelation trace is slightly asymmetric due to a minor imperfection in our intensity autocorrelator that appears around the +200  ps bound of the scan range, such asymmetry does not hinder the reliable determination of the pulse width. (c) Electrical spectrum over a narrower frequency span (40 MHz), (d) electrical spectrum over a wider frequency span (6 GHz), (e) optical spectrum measured with a grating-based optical spectrum analyzer with a resolution bandwidth of 0.05 nm, (f) high-resolution optical spectrum obtained from the electrical spectrum of the beat note (peaking at 17.5 GHz in this case) that is formed by a continuous-wave local oscillator and the laser output. In (a)–(f), the pump power is fixed at 265.2 mW. (g)–(j) Pump power dependence of the laser output parameters: (g) pulse width, (h) linewidth, (i) time–bandwidth product (TBP), (j) pulse energy. The pulse width is determined from the intensity autocorrelation signal in (b), assuming a sech2 pulse shape. The linewidth is determined from the electrical spectrum of the beat note in (f). Each error bar represents the standard deviation of 20 repeated measurements. The laser center wavelength is fixed at 1550 nm for all measurements.
Fig. 3.
Fig. 3. Numerical modeling of mode-locked laser pulses. (a) Temporal pulse profiles and (b) pulse spectra at three different small-signal gain coefficients (11.7 dB for red, 12.5 dB for green, and 13.2 dB for blue); (c)–(f) calculated pulse parameters, (c) pulse width, (d) linewidth, (e) time–bandwidth product (TBP), and (f) pulse energy over a range of small-signal gain coefficient values. The three vertical arrows in (c) indicate the small-signal gain coefficients that correspond to the curves of respective colors in (a) and (b). The laser wavelength is fixed at 1550 nm for all calculations.
Fig. 4.
Fig. 4. Theoretical analysis of our ultra-narrow-linewidth dissipative soliton fiber laser. (a)–(d) Intracavity evolution of the pulse parameters: (a) pulse width, (b) linewidth, (c) time–bandwidth product (TBP), (d) pulse energy. F, bandpass filter; EDF, erbium-doped fiber; O, 50/50 output coupler; S, saturable absorber; A, attenuator. (e) Calculated pulse widths over a varying SESAM modulation depth for five different intracavity filter bandwidths (0.09, 0.11, 0.13, 0.17, and 0.23 nm). The gray region indicates where the stationary single-pulse solution does not exist. The small-signal gain coefficient is fixed at g0=12.5  dB for all the calculations.
Fig. 5.
Fig. 5. Dependence of pulse parameters on the delay line length measured over a range of pump power values. (a)–(d) Measured pulse parameters, (a) pulse width, (b) linewidth, (c) time–bandwidth product (TBP), and (d) pulse energy for six different lengths of standard single-mode fiber (SMF) delay line (40, 50, 60, 70, 80, and 140 m), which yield net cavity dispersions of 1.1, 1.3, 1.5, 1.7, 1.8, and 2.8 ps/nm, respectively. (e)–(h) Measured pulse parameters, (e) pulse width, (f) linewidth, (g) TBP, and (h) pulse energy for six different lengths of non-zero dispersion-shifted fiber (NZDSF) delay line (40, 50, 60, 70, 80, and 140 m), which yield net cavity dispersions of 0.16, 0.11, 0.065, 0.013, 0.0079, and 0.24  ps/nm, respectively. The colored numbers in (a) and (e) indicate the net cavity dispersions in ps/nm. The laser wavelength is fixed at 1550 nm for all measurements.
Fig. 6.
Fig. 6. Characteristics of laser wavelength tuning. (a) Normalized optical output spectra of the laser with an 80-m-long single-mode fiber (SMF) delay line obtained by a grating-based optical spectrum analyzer (OSA). The laser wavelength can be tuned without pulse breakup over a 34.3 nm range (1529.3–1563.6 nm) by changing the center wavelength of the intracavity tunable bandpass filter and the pump power. (b)–(e) Pump power dependence of pulse parameters, (b) pulse width, (c) linewidth, (d) time–bandwidth product (TBP), and (e) pulse energy measured at six different laser wavelengths. (f) Normalized optical output spectra of the laser with an 80-m-long non-zero dispersion-shifted fiber (NZDSF) delay line obtained by a grating-based OSA. The laser wavelength can be tuned without pulse breakup over a 33.4 nm range (1529.7–1563.1 nm). (g)–(j) Pump power dependence of pulse parameters, (g) pulse width, (h) linewidth, (i) TBP, and (j) pulse energy measured at six different laser wavelengths. The colored numbers in (b) and (g) indicate the laser wavelengths in nm, which correspond to the colors of the laser spectra in (a) and (e), respectively. The laser spectra in black in (a) and (f) are obtained close to the lower and upper bounds of the wavelength tuning range.
Fig. 7.
Fig. 7. Characteristics of the laser noise. (a) Timing jitter power spectrum, (b) integrated timing jitter, (c) relative intensity noise (RIN) power spectrum, (d) integrated RIN. In all measurements, we fix the pump power as 265.2 mW, the single-mode fiber delay line length as 80 m, and the laser wavelength as 1550 nm. PSD, power spectral density.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A(z,t)z=α2Aiβ222At2+iγ|A|2A,
g(Ω)=g01+PPS+Ω2Δg2,
q(t)t=qq0τ|A(t)|2ESq.

Metrics