Abstract

Magnetostrictive optomechanical cavities provide a new optical readout approach to room-temperature magnetometry. Here we report ultrasensitive and ultrahigh bandwidth cavity optomechanical magnetometers constructed by embedding a grain of the magnetostrictive material Terfenol-D within a high quality (Q) optical microcavity on a silicon chip. By engineering their physical structure, we achieve a peak sensitivity of 26  pT/Hz comparable to the best cryogenic microscale magnetometers, along with a 3 dB bandwidth as high as 11.3 MHz. Two classes of magnetic response are observed, which we postulate arise from the crystallinity of the Terfenol-D. This allows single crystalline and polycrystalline grains to be distinguished at the level of a single particle. Our results may enable applications such as lab-on-chip nuclear magnetic spectroscopy and magnetic navigation.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref]
  2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  3. M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1, 031105 (2014).
    [Crossref]
  4. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
    [Crossref]
  5. LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref]
  6. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
    [Crossref]
  7. W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
    [Crossref]
  8. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
    [Crossref]
  9. F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104, 221111 (2014).
    [Crossref]
  10. S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10, 132 (2019).
    [Crossref]
  11. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
    [Crossref]
  12. S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
    [Crossref]
  13. C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
    [Crossref]
  14. W. P. Bowen and C. Yu, “Cavity optomechanical magnetometry,” in High Sensitivity Magnetometers, Smart Sensors, Measurement and Instrumentation (Springer International Publishing, 2016), Vol. 19.
  15. B.-B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schafereier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–857 (2018).
    [Crossref]
  16. B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
    [Crossref]
  17. J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
    [Crossref]
  18. M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).
  19. J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010).
    [Crossref]
  20. M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
    [Crossref]
  21. J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
    [Crossref]
  22. F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
    [Crossref]
  23. J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
    [Crossref]
  24. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
    [Crossref]
  25. M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98, 200801 (2007).
    [Crossref]
  26. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
    [Crossref]
  27. T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
    [Crossref]
  28. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  29. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref]
  30. T. G. McRae, K. H. Lee, M. McGovern, D. Gwyther, and W. P. Bowen, “Thermo-optic locking of a semiconductor laser to a microcavity resonance,” Opt. Express 17, 21977–21985 (2009).
    [Crossref]
  31. G. Engdahl, Handbook of Giant Magnetostrictive Materials (Academic, 2000).
  32. Y. J. Bi and J. S. Abell, “Microstructural characterisation of Terfenol-D crystals prepared by the Czochralski technique,” J. Cryst. Growth 172, 440–449 (1997).
    [Crossref]
  33. G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan, “⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,” Appl. Phys. Lett. 67, 2005–2007 (1995).
    [Crossref]

2019 (2)

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10, 132 (2019).
[Crossref]

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
[Crossref]

2018 (2)

B.-B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schafereier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–857 (2018).
[Crossref]

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

2017 (1)

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

2016 (4)

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

2015 (1)

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
[Crossref]

2014 (4)

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1, 031105 (2014).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

2012 (2)

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

2010 (2)

J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010).
[Crossref]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

2009 (3)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

T. G. McRae, K. H. Lee, M. McGovern, D. Gwyther, and W. P. Bowen, “Thermo-optic locking of a semiconductor laser to a microcavity resonance,” Opt. Express 17, 21977–21985 (2009).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

2008 (2)

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

2007 (1)

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98, 200801 (2007).
[Crossref]

2003 (2)

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

1997 (2)

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
[Crossref]

Y. J. Bi and J. S. Abell, “Microstructural characterisation of Terfenol-D crystals prepared by the Czochralski technique,” J. Cryst. Growth 172, 440–449 (1997).
[Crossref]

1995 (2)

G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan, “⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,” Appl. Phys. Lett. 67, 2005–2007 (1995).
[Crossref]

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Abell, J. S.

Y. J. Bi and J. S. Abell, “Microstructural characterisation of Terfenol-D crystals prepared by the Czochralski technique,” J. Cryst. Growth 172, 440–449 (1997).
[Crossref]

Achard, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Andersen, U. L.

Anetsberger, G.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Arcizet, O.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Armin, A.

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10, 132 (2019).
[Crossref]

Arregui, G.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Balasubramanian, G.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Barclay, P. E.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
[Crossref]

Basiri-Esfahani, S.

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10, 132 (2019).
[Crossref]

Baudenbacher, F.

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

Beck, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Bi, Y. J.

Y. J. Bi and J. S. Abell, “Microstructural characterisation of Terfenol-D crystals prepared by the Czochralski technique,” J. Cryst. Growth 172, 440–449 (1997).
[Crossref]

Bilek, J.

Birks, T. A.

Blanton, S. H.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Bonell, F.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

Bowen, W. P.

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10, 132 (2019).
[Crossref]

B.-B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schafereier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–857 (2018).
[Crossref]

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

T. G. McRae, K. H. Lee, M. McGovern, D. Gwyther, and W. P. Bowen, “Thermo-optic locking of a semiconductor laser to a microcavity resonance,” Opt. Express 17, 21977–21985 (2009).
[Crossref]

W. P. Bowen and C. Yu, “Cavity optomechanical magnetometry,” in High Sensitivity Magnetometers, Smart Sensors, Measurement and Instrumentation (Springer International Publishing, 2016), Vol. 19.

Brawley, G. A.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

Bulla, D.

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

Burgess, J. A. J.

J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010).
[Crossref]

Capuj, N. E.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

Castellanos-Beltran, M. A.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Cervantes, F. G.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

Chavez-Angel, E.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

Cheung, G.

Colombano, M. F.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

Costache, M. V.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Davis, J. P.

J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010).
[Crossref]

Dehghan-Manshadi, A.

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

Donner, T.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Engdahl, G.

G. Engdahl, Handbook of Giant Magnetostrictive Materials (Academic, 2000).

Firdous, T.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
[Crossref]

Fong, L. E.

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

Forstner, S.

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10, 132 (2019).
[Crossref]

B.-B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schafereier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–857 (2018).
[Crossref]

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Fortin, D. C.

J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010).
[Crossref]

Foster, S.

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

Freeman, M. R.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
[Crossref]

J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010).
[Crossref]

Fung, Y.-K.-K.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Gallagher, W. J.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Gehring, T.

Gibbons, J.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Gibson, G. W.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Guzman, J.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98, 200801 (2007).
[Crossref]

Gwyther, D.

Harlow, J. W.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Harris, G. I.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Hemmer, P. R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Hiebert, W. K.

J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010).
[Crossref]

Higbie, J. M.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98, 200801 (2007).
[Crossref]

Hoff, U. B.

Holland, C. M.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Holzer, J. R.

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

Huber, M. E.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Humphreys, C. L.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

Isoya, J.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Jacques, F.

Jacques, V.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Janousek, J.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

Jelezko, F.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Jermain, C. L.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Jia, K.-C.

G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan, “⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,” Appl. Phys. Lett. 67, 2005–2007 (1995).
[Crossref]

Jiang, W. C.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Ketchen, M. B.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Kirtley, J. R.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Knight, J. C.

Knittel, J.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Kolesov, R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Kumanchik, L.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

Lam, P. K.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

Lee, K. H.

Lehnert, K. W.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Leslie, S. R.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98, 200801 (2007).
[Crossref]

Li, B.-B.

B.-B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schafereier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–857 (2018).
[Crossref]

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

Li, J.-Y.

G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan, “⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,” Appl. Phys. Lett. 67, 2005–2007 (1995).
[Crossref]

Lin, Q.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Losby, J. E.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
[Crossref]

Lu, T.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Madsen, L. S.

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Markham, M.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

McAuslan, D. L.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

McGovern, M.

McRae, T. G.

Metcalfe, M.

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1, 031105 (2014).
[Crossref]

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Moler, K. A.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Nakamura, K.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
[Crossref]

Navarro-Urrios, D.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

Neumann, P.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Ohshima, T.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
[Crossref]

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Palmstrom, J. C.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Paulius, L.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Pitanti, A.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

Prakash, V.

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

B.-B. Li, J. Bilek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schafereier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5, 850–857 (2018).
[Crossref]

Prams, S.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Pratt, J.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

Radparvar, M.

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

Ralph, D. C.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Rivière, R.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Romalis, M. V.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Rosenberg, A. J.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Rubinsztein-Dunlop, H.

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Sadler, L. E.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98, 200801 (2007).
[Crossref]

Sani, F. F.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
[Crossref]

Savukov, I.

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

Schafereier, C.

Schiessl, D.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Schliesser, A.

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Sheridan, E.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

Sotomayor-Torres, C. M.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

Spanton, E. M.

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Stamper-Kurn, D. M.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98, 200801 (2007).
[Crossref]

Stawiasz, K. G.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Sumiya, H.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
[Crossref]

Sun, J. Z.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Swaim, J. D.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Szorkovszky, A.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Taylor, J.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

Teufel, J. D.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Twitchen, D.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Valenzuela, S. O.

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

van Ooijen, E. D.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

Vengalattore, M.

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98, 200801 (2007).
[Crossref]

Vick, D.

J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010).
[Crossref]

Wang, J.-H.

G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan, “⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,” Appl. Phys. Lett. 67, 2005–2007 (1995).
[Crossref]

Wind, S. J.

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Wolf, T.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
[Crossref]

Wrachtrup, J.

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Wu, G.-H.

G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan, “⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,” Appl. Phys. Lett. 67, 2005–2007 (1995).
[Crossref]

Wu, M.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
[Crossref]

Wu, N. L.-Y.

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
[Crossref]

Yang, L.

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

Yu, C.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

W. P. Bowen and C. Yu, “Cavity optomechanical magnetometry,” in High Sensitivity Magnetometers, Smart Sensors, Measurement and Instrumentation (Springer International Publishing, 2016), Vol. 19.

Yu, W.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Zhan, W.-S.

G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan, “⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,” Appl. Phys. Lett. 67, 2005–2007 (1995).
[Crossref]

Zhang, Y.

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

Zhao, G.

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

Zhao, X.-G.

G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan, “⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,” Appl. Phys. Lett. 67, 2005–2007 (1995).
[Crossref]

Zhu, J.

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

Adv. Mater. (1)

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26, 6348–6353 (2014).
[Crossref]

APL Photon. (1)

B.-B. Li, D. Bulla, V. Prakash, S. Forstner, A. Dehghan-Manshadi, H. Rubinsztein-Dunlop, S. Foster, and W. P. Bowen, “Invited article: scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3, 120806 (2018).
[Crossref]

Appl. Phys. Lett. (6)

J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett. 96, 072513 (2010).
[Crossref]

J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton, and S. J. Wind, “High-resolution scanning SQUID microscope,” Appl. Phys. Lett. 66, 1138–1140 (1995).
[Crossref]

F. Baudenbacher, L. E. Fong, J. R. Holzer, and M. Radparvar, “Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples,” Appl. Phys. Lett. 82, 3487–3489 (2003).
[Crossref]

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Appl. Phys. Lett. 104, 221111 (2014).
[Crossref]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

G.-H. Wu, X.-G. Zhao, J.-H. Wang, J.-Y. Li, K.-C. Jia, and W.-S. Zhan, “⟨111⟩ oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible,” Appl. Phys. Lett. 67, 2005–2007 (1995).
[Crossref]

Appl. Phys. Rev. (1)

M. Metcalfe, “Applications of cavity optomechanics,” Appl. Phys. Rev. 1, 031105 (2014).
[Crossref]

J. Cryst. Growth (1)

Y. J. Bi and J. S. Abell, “Microstructural characterisation of Terfenol-D crystals prepared by the Czochralski technique,” J. Cryst. Growth 172, 440–449 (1997).
[Crossref]

Nat. Commun. (2)

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10, 132 (2019).
[Crossref]

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Nat. Mater. (1)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009).
[Crossref]

Nat. Nanotechnol. (2)

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4, 820–823 (2009).
[Crossref]

M. Wu, N. L.-Y. Wu, T. Firdous, F. F. Sani, J. E. Losby, M. R. Freeman, and P. E. Barclay, “Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry,” Nat. Nanotechnol. 12, 127–132 (2019).
[Crossref]

Nat. Photonics (1)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

New J. Phys. (1)

A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Phys. Rev. Appl. (1)

C. Yu, J. Janousek, E. Sheridan, D. L. McAuslan, H. Rubinsztein-Dunlop, P. K. Lam, Y. Zhang, and W. P. Bowen, “Optomechanical magnetometry with a macroscopic resonator,” Phys. Rev. Appl. 5, 044007 (2016).
[Crossref]

Phys. Rev. Lett. (3)

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometry,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref]

M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn, “High-resolution magnetometry with a spinor Bose-Einstein condensate,” Phys. Rev. Lett. 98, 200801 (2007).
[Crossref]

Phys. Rev. X (1)

T. Wolf, P. Neumann, K. Nakamura, H. Sumiya, T. Ohshima, J. Isoya, and J. Wrachtrup, “Subpicotesla diamond magnetometry,” Phys. Rev. X 5, 041001 (2015).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

J. R. Kirtley, L. Paulius, A. J. Rosenberg, J. C. Palmstrom, C. M. Holland, E. M. Spanton, D. Schiessl, C. L. Jermain, J. Gibbons, Y.-K.-K. Fung, M. E. Huber, D. C. Ralph, M. B. Ketchen, G. W. Gibson, and K. A. Moler, “Scanning SQUID susceptometers with submicron spatial resolution,” Rev. Sci. Instrum. 87, 093702 (2016).
[Crossref]

Sci. Rep. (1)

J. Zhu, G. Zhao, I. Savukov, and L. Yang, “Polymer encapsulated microcavity optomechanical magnetometer,” Sci. Rep. 7, 8896 (2017).
[Crossref]

Science (1)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Other (3)

M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, “Resonant magnon assisted optomechanical magnetometer,” arXiv:1909.03924v1 (2019).

W. P. Bowen and C. Yu, “Cavity optomechanical magnetometry,” in High Sensitivity Magnetometers, Smart Sensors, Measurement and Instrumentation (Springer International Publishing, 2016), Vol. 19.

G. Engdahl, Handbook of Giant Magnetostrictive Materials (Academic, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a)–(c) Optical microscope images showing the Terfenol-D deposition process. (d) and (e) The SEM images of a microtoroid before and after the Terfenol-D deposition. The scale bar in (d) is 40 μm. (f) A schematic of the side view of a magnetometer, with a principal radius of R, minor diameter of d, and a pedestal width of Wped. (g)–(i) Top view optical microscope images of a fabricated magnetometer, with gradually decreased pedestal width, marked in the area between the two white dotted circles.
Fig. 2.
Fig. 2. Magnetic field sensitivity improvement by etching down the width of the silicon pedestal. (a) and (b) The noise power spectra and sensitivity spectra for a magnetometer with pedestal width of 4.5 μm (red curve) and 0.5 μm (black curve). (c) The peak sensitivity frequency and (d) peak sensitivity of the magnetometer, as a function of the pedestal width.
Fig. 3.
Fig. 3. Measurement results for the two types of magnetometers. (a)–(c) The noise power spectrum, system response, and sensitivity spectrum for a Type I magnetometer. The inset of (c) shows the profile of the radial breathing mode (where the peak sensitivity occurs) of the magnetometer, obtained through finite element method simulation using COMSOL Multiphysics. (d)–(f) The corresponding results for a Type II magnetometer. The peak sensitivities are 44  pT/Hz and 26  pT/Hz for the Type I magnetometer and the Type II magnetometer, respectively.
Fig. 4.
Fig. 4. Zoom-in on (a) the system response and (b) the sensitivity spectrum of the Type II magnetometer around its peak sensitivity frequency. The peak sensitivity is around 26  pT/Hz.
Fig. 5.
Fig. 5. Measured peak sensitivities of 26 magnetometers, eighteen of which show Type I magnetic response (red squares) and eight show Type II magnetic response (blue circles).
Fig. 6.
Fig. 6. (a) and (b) Measured amplitude and phase of the magnetic response in the frequency range between 32 MHz and 37 MHz, for a Type II magnetometer (No. 26 in Fig. 5). (c) and (d) Theoretically generated amplitude and phase of the system response obtained from the interference of multiple waves from different sources with different amplitudes and phases.
Fig. 7.
Fig. 7. Accumulated bandwidth as a function of the threshold sensitivity for the Type I (black curve, device No. 25 in Fig. 5) and the Type II (red curve, device No. 9 in Fig. 5) magnetometers in Fig. 3. The 3 dB bandwidths for the Type I and Type II magnetometers are 11.3 MHz and 120 kHz, respectively. In the inset, it shows the definition of the accumulated bandwidth to be the total frequency range in the shaded area.
Fig. 8.
Fig. 8. (a) Magnetic response for different DC magnetic fields applied to the magnetometer, in the frequency range between 32 and 37 MHz, for a Type II magnetometer (No. 26 in Fig. 5). (b) Theoretically predicted response obtained from the interference of multiple wave components with different amplitudes and phases, with varied relative amplitudes of the different wave components, which simulates the effect of changing DC magnetic fields applied to the magnetometer.

Metrics