Abstract

A horizontal pin ridge waveguide emitter on a silicon (100) substrate with a Ge0.91Sn0.09/Ge multi-quantum-well (MQW) active layer was fabricated by molecular beam epitaxy. The device structure was designed to reduce light absorption of metal electrodes and improve injection efficiency. Electroluminescence (EL) at a wavelength of 2160 nm was observed at room temperature. Theoretical calculations indicate that the emission peak corresponds well to the direct bandgap transition (n1Γn1HH). The light output power was about 2.0 μW with an injection current density of 200  kA/cm2. These results show that the horizontal GeSn/Ge MQW ridge waveguide emitters have great prospects for group-IV light sources.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
    [Crossref]
  3. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
    [Crossref]
  4. D. J. Richardson, “Beating the electronics bottleneck,” Nat. Photonics 3, 562–564 (2009).
    [Crossref]
  5. W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
    [Crossref]
  6. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref]
  7. H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “−1  V bias 67  GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56  Gbps and beyond,” Opt. Express 24, 4622–4631 (2016).
    [Crossref]
  8. Z. Liu, J. Zhang, X. Li, L. Wang, J. Li, C. Xue, J. An, and B. Cheng, “25 × 50  Gbps wavelength division multiplexing silicon photonics receiver chip based on a silicon nanowire-arrayed waveguide grating,” Photon. Res. 7, 659–663 (2019).
    [Crossref]
  9. M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80, 2234–2252 (1996).
    [Crossref]
  10. P. Moontragoon, Z. Ikonić, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22, 742–748 (2007).
    [Crossref]
  11. K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
    [Crossref]
  12. W. Huang, B. Cheng, C. Xue, and Z. Liu, “Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: a first-principles calculation with GGA+U approach,” J. Appl. Phys. 118, 165704 (2015).
    [Crossref]
  13. S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113, 073707 (2013).
    [Crossref]
  14. W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
    [Crossref]
  15. B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
    [Crossref]
  16. Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
    [Crossref]
  17. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
    [Crossref]
  18. D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
    [Crossref]
  19. D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
    [Crossref]
  20. G. T. Reed, M. R. Watts, Y.-L. Lin, Y.-H. Huang, S.-W. Chen, and G.-E. Chang, “GeSn waveguide structures for efficient light detection and emission,” Proc. SPIE 9367, 93671G (2015).
    [Crossref]
  21. Z. Liu, B.-W. Cheng, Y.-M. Li, C.-B. Li, C.-L. Xue, and Q.-M. Wang, “Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate,” Chin. Phys. B 22, 116804 (2013).
  22. C. Popescu, J. C. Manifacier, and R. Ardebili, “I-V curve shape factor for thin p-n junctions at high injection levels,” Phys. Status Solidi A 158, 611–621 (1996).
    [Crossref]
  23. C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in P-N junctions and P-N junction characteristics,” Proc. IRE 45, 1228–1243 (1957).
    [Crossref]
  24. V. R. D’Costa, D. Schmidt, W. Wang, and Y.-C. Yeo, “Temperature dependence of the dielectric function and interband transitions of pseudomorphic GeSn alloys,” J. Vac. Sci. Technol. B 34, 041204 (2016).
    [Crossref]
  25. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [Crossref]
  26. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  27. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).
    [Crossref]
  28. H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4K,” Appl. Phys. Lett. 91, 161909 (2007).
    [Crossref]
  29. W.-J. Yin, X.-G. Gong, and S.-H. Wei, “Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys,” Phys. Rev. B 78, 161203 (2008).
    [Crossref]
  30. N. Yahyaoui, N. Sfina, J. L. Lazzari, A. Bournel, and M. Said, “Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection,” Phys. Stat. Solidi C 11, 1561–1565 (2014).
    [Crossref]
  31. A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
    [Crossref]
  32. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 032106 (2009).
    [Crossref]
  33. M.-Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett. 102, 171908 (2013).
    [Crossref]
  34. W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
    [Crossref]
  35. W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
    [Crossref]
  36. Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
    [Crossref]
  37. G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys. 108, 033107 (2010).
    [Crossref]

2019 (3)

Z. Liu, J. Zhang, X. Li, L. Wang, J. Li, C. Xue, J. An, and B. Cheng, “25 × 50  Gbps wavelength division multiplexing silicon photonics receiver chip based on a silicon nanowire-arrayed waveguide grating,” Photon. Res. 7, 659–663 (2019).
[Crossref]

B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
[Crossref]

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

2018 (1)

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

2016 (3)

2015 (4)

W. Huang, B. Cheng, C. Xue, and Z. Liu, “Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: a first-principles calculation with GGA+U approach,” J. Appl. Phys. 118, 165704 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

G. T. Reed, M. R. Watts, Y.-L. Lin, Y.-H. Huang, S.-W. Chen, and G.-E. Chang, “GeSn waveguide structures for efficient light detection and emission,” Proc. SPIE 9367, 93671G (2015).
[Crossref]

2014 (4)

N. Yahyaoui, N. Sfina, J. L. Lazzari, A. Bournel, and M. Said, “Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection,” Phys. Stat. Solidi C 11, 1561–1565 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

2013 (4)

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113, 073707 (2013).
[Crossref]

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
[Crossref]

Z. Liu, B.-W. Cheng, Y.-M. Li, C.-B. Li, C.-L. Xue, and Q.-M. Wang, “Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate,” Chin. Phys. B 22, 116804 (2013).

M.-Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett. 102, 171908 (2013).
[Crossref]

2012 (2)

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

2010 (2)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys. 108, 033107 (2010).
[Crossref]

2009 (2)

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 032106 (2009).
[Crossref]

D. J. Richardson, “Beating the electronics bottleneck,” Nat. Photonics 3, 562–564 (2009).
[Crossref]

2008 (1)

W.-J. Yin, X.-G. Gong, and S.-H. Wei, “Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys,” Phys. Rev. B 78, 161203 (2008).
[Crossref]

2007 (2)

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4K,” Appl. Phys. Lett. 91, 161909 (2007).
[Crossref]

P. Moontragoon, Z. Ikonić, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22, 742–748 (2007).
[Crossref]

2006 (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2003 (1)

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

1996 (2)

C. Popescu, J. C. Manifacier, and R. Ardebili, “I-V curve shape factor for thin p-n junctions at high injection levels,” Phys. Status Solidi A 158, 611–621 (1996).
[Crossref]

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80, 2234–2252 (1996).
[Crossref]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

1957 (1)

C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in P-N junctions and P-N junction characteristics,” Proc. IRE 45, 1228–1243 (1957).
[Crossref]

Abbaslou, S.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Absil, P.

An, J.

Ardebili, R.

C. Popescu, J. C. Manifacier, and R. Ardebili, “I-V curve shape factor for thin p-n junctions at high injection levels,” Phys. Status Solidi A 158, 611–621 (1996).
[Crossref]

Armand-Pilon, F.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Balakrishnan, S.

Beeler, R. T.

M.-Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett. 102, 171908 (2013).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Bournel, A.

N. Yahyaoui, N. Sfina, J. L. Lazzari, A. Bournel, and M. Said, “Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection,” Phys. Stat. Solidi C 11, 1561–1565 (2014).
[Crossref]

Buca, D.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Capellini, G.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

Chang, C.-Y.

B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
[Crossref]

Chang, G.-E.

B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
[Crossref]

G. T. Reed, M. R. Watts, Y.-L. Lin, Y.-H. Huang, S.-W. Chen, and G.-E. Chang, “GeSn waveguide structures for efficient light detection and emission,” Proc. SPIE 9367, 93671G (2015).
[Crossref]

Chang, H. S.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Chang, W. H.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Chen, H.

Chen, P. S.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Chen, S.-W.

G. T. Reed, M. R. Watts, Y.-L. Lin, Y.-H. Huang, S.-W. Chen, and G.-E. Chang, “GeSn waveguide structures for efficient light detection and emission,” Proc. SPIE 9367, 93671G (2015).
[Crossref]

Chen, W. Y.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Chen, Z.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

Cheng, B.

Z. Liu, J. Zhang, X. Li, L. Wang, J. Li, C. Xue, J. An, and B. Cheng, “25 × 50  Gbps wavelength division multiplexing silicon photonics receiver chip based on a silicon nanowire-arrayed waveguide grating,” Photon. Res. 7, 659–663 (2019).
[Crossref]

W. Huang, B. Cheng, C. Xue, and Z. Liu, “Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: a first-principles calculation with GGA+U approach,” J. Appl. Phys. 118, 165704 (2015).
[Crossref]

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Cheng, B.-W.

Z. Liu, B.-W. Cheng, Y.-M. Li, C.-B. Li, C.-L. Xue, and Q.-M. Wang, “Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate,” Chin. Phys. B 22, 116804 (2013).

Cheng, H. H.

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys. 108, 033107 (2010).
[Crossref]

Cheng, H.-H.

B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Chou, A. T.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Christodoulides, D. N.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Chuang, S. L.

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).

Conley, B. R.

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

D’Costa, V. R.

V. R. D’Costa, D. Schmidt, W. Wang, and Y.-C. Yeo, “Temperature dependence of the dielectric function and interband transitions of pseudomorphic GeSn alloys,” J. Vac. Sci. Technol. B 34, 041204 (2016).
[Crossref]

De Coster, J.

De Heyn, P.

Dou, W.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

Du, W.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

Eisenschmidt, C.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Fan, W.

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Fischetti, M. V.

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80, 2234–2252 (1996).
[Crossref]

Gatdula, R.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Ghetmiri, S. A.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

Gong, X.-G.

W.-J. Yin, X.-G. Gong, and S.-H. Wei, “Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys,” Phys. Rev. B 78, 161203 (2008).
[Crossref]

Grutzmacher, D.

Grützmacher, D.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Gupta, S.

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113, 073707 (2013).
[Crossref]

Han, G.

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Harris, T. R.

M.-Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett. 102, 171908 (2013).
[Crossref]

Harrison, P.

P. Moontragoon, Z. Ikonić, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22, 742–748 (2007).
[Crossref]

Hartmann, J. M.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Hartmann, J.-M.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

Hsieh, Y.-D.

B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
[Crossref]

Hsu, T. M.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Hu, W.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Huang, B.-J.

B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
[Crossref]

Huang, W.

W. Huang, B. Cheng, C. Xue, and Z. Liu, “Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: a first-principles calculation with GGA+U approach,” J. Appl. Phys. 118, 165704 (2015).
[Crossref]

Huang, Y.-H.

G. T. Reed, M. R. Watts, Y.-L. Lin, Y.-H. Huang, S.-W. Chen, and G.-E. Chang, “GeSn waveguide structures for efficient light detection and emission,” Proc. SPIE 9367, 93671G (2015).
[Crossref]

Ikonic, Z.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

P. Moontragoon, Z. Ikonić, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22, 742–748 (2007).
[Crossref]

Jiang, W.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Kimerling, L. C.

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 032106 (2009).
[Crossref]

Kouvetakis, J.

M.-Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett. 102, 171908 (2013).
[Crossref]

Lai, L. S.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Lai, W. Y.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Laux, S. E.

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80, 2234–2252 (1996).
[Crossref]

Lazzari, J. L.

N. Yahyaoui, N. Sfina, J. L. Lazzari, A. Bournel, and M. Said, “Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection,” Phys. Stat. Solidi C 11, 1561–1565 (2014).
[Crossref]

Lee, S. W.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Lepage, G.

Li, B.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

Li, C.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Li, C.-B.

Z. Liu, B.-W. Cheng, Y.-M. Li, C.-B. Li, C.-L. Xue, and Q.-M. Wang, “Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate,” Chin. Phys. B 22, 116804 (2013).

Li, J.

Li, X.

Li, Y.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Li, Y.-M.

Z. Liu, B.-W. Cheng, Y.-M. Li, C.-B. Li, C.-L. Xue, and Q.-M. Wang, “Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate,” Chin. Phys. B 22, 116804 (2013).

Lin, Y.-L.

G. T. Reed, M. R. Watts, Y.-L. Lin, Y.-H. Huang, S.-W. Chen, and G.-E. Chang, “GeSn waveguide structures for efficient light detection and emission,” Proc. SPIE 9367, 93671G (2015).
[Crossref]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Liu, J.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 032106 (2009).
[Crossref]

Liu, Z.

Z. Liu, J. Zhang, X. Li, L. Wang, J. Li, C. Xue, J. An, and B. Cheng, “25 × 50  Gbps wavelength division multiplexing silicon photonics receiver chip based on a silicon nanowire-arrayed waveguide grating,” Photon. Res. 7, 659–663 (2019).
[Crossref]

W. Huang, B. Cheng, C. Xue, and Z. Liu, “Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: a first-principles calculation with GGA+U approach,” J. Appl. Phys. 118, 165704 (2015).
[Crossref]

Z. Liu, B.-W. Cheng, Y.-M. Li, C.-B. Li, C.-L. Xue, and Q.-M. Wang, “Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate,” Chin. Phys. B 22, 116804 (2013).

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Lu, M.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Lu, S. C.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Lu Low, K.

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Magyari-Köpe, B.

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113, 073707 (2013).
[Crossref]

Manifacier, J. C.

C. Popescu, J. C. Manifacier, and R. Ardebili, “I-V curve shape factor for thin p-n junctions at high injection levels,” Phys. Status Solidi A 158, 611–621 (1996).
[Crossref]

Mantl, S.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Margetis, J.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

Marzban, B.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

Michel, J.

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 032106 (2009).
[Crossref]

Moontragoon, P.

P. Moontragoon, Z. Ikonić, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22, 742–748 (2007).
[Crossref]

Mortazavi, M.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

Mosleh, A.

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

Mussler, G.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Naseem, H. A.

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

Navarro-Contreras, H.

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4K,” Appl. Phys. Lett. 91, 161909 (2007).
[Crossref]

Nazzal, A.

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

Nishi, Y.

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113, 073707 (2013).
[Crossref]

Noyce, R. N.

C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in P-N junctions and P-N junction characteristics,” Proc. IRE 45, 1228–1243 (1957).
[Crossref]

Ojo, S.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

Pease, R. F.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Pei, Z.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Pérez Ladrón de Guevara, H.

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4K,” Appl. Phys. Lett. 91, 161909 (2007).
[Crossref]

Popescu, C.

C. Popescu, J. C. Manifacier, and R. Ardebili, “I-V curve shape factor for thin p-n junctions at high injection levels,” Phys. Status Solidi A 158, 611–621 (1996).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Provine, J.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Rainko, D.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

Reed, G. T.

G. T. Reed, M. R. Watts, Y.-L. Lin, Y.-H. Huang, S.-W. Chen, and G.-E. Chang, “GeSn waveguide structures for efficient light detection and emission,” Proc. SPIE 9367, 93671G (2015).
[Crossref]

Richardson, D. J.

D. J. Richardson, “Beating the electronics bottleneck,” Nat. Photonics 3, 562–564 (2009).
[Crossref]

Rodríguez, A. G.

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4K,” Appl. Phys. Lett. 91, 161909 (2007).
[Crossref]

Roelkens, G.

Ryu, M.-Y.

M.-Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett. 102, 171908 (2013).
[Crossref]

Sah, C. T.

C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in P-N junctions and P-N junction characteristics,” Proc. IRE 45, 1228–1243 (1957).
[Crossref]

Said, M.

N. Yahyaoui, N. Sfina, J. L. Lazzari, A. Bournel, and M. Said, “Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection,” Phys. Stat. Solidi C 11, 1561–1565 (2014).
[Crossref]

Saraswat, K. C.

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113, 073707 (2013).
[Crossref]

Schilling, J.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Schmidt, D.

V. R. D’Costa, D. Schmidt, W. Wang, and Y.-C. Yeo, “Temperature dependence of the dielectric function and interband transitions of pseudomorphic GeSn alloys,” J. Vac. Sci. Technol. B 34, 041204 (2016).
[Crossref]

Schmidt, G.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
[Crossref]

Schulte-Braucks, C.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

Sfina, N.

N. Yahyaoui, N. Sfina, J. L. Lazzari, A. Bournel, and M. Said, “Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection,” Phys. Stat. Solidi C 11, 1561–1565 (2014).
[Crossref]

Shah Hosseini, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Shen, L.

Shockley, W.

C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in P-N junctions and P-N junction characteristics,” Proc. IRE 45, 1228–1243 (1957).
[Crossref]

Sigg, H.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Song, W.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Soref, R.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

Soref, R. A.

B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys. 108, 033107 (2010).
[Crossref]

Stange, D.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

Stein, A.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

Stoica, T.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Sun, G.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys. 108, 033107 (2010).
[Crossref]

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Sun, X.

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 032106 (2009).
[Crossref]

Talalaev, V. G.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
[Crossref]

Tiedemann, A. T.

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Tolle, J.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

Tonkikh, A. A.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
[Crossref]

Tran, H.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

Tsai, M. J.

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Van Campenhout, J.

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Verheyen, P.

Vidal, M. A.

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4K,” Appl. Phys. Lett. 91, 161909 (2007).
[Crossref]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

von den Driesch, N.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Wang, L.

Wang, Q.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Wang, Q.-M.

Z. Liu, B.-W. Cheng, Y.-M. Li, C.-B. Li, C.-L. Xue, and Q.-M. Wang, “Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate,” Chin. Phys. B 22, 116804 (2013).

Wang, W.

V. R. D’Costa, D. Schmidt, W. Wang, and Y.-C. Yeo, “Temperature dependence of the dielectric function and interband transitions of pseudomorphic GeSn alloys,” J. Vac. Sci. Technol. B 34, 041204 (2016).
[Crossref]

Watts, M. R.

G. T. Reed, M. R. Watts, Y.-L. Lin, Y.-H. Huang, S.-W. Chen, and G.-E. Chang, “GeSn waveguide structures for efficient light detection and emission,” Proc. SPIE 9367, 93671G (2015).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Wei, S.-H.

W.-J. Yin, X.-G. Gong, and S.-H. Wei, “Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys,” Phys. Rev. B 78, 161203 (2008).
[Crossref]

Werner, P.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
[Crossref]

Wirths, S.

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grutzmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24, 1358–1367 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Witzens, J.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Xue, C.

Z. Liu, J. Zhang, X. Li, L. Wang, J. Li, C. Xue, J. An, and B. Cheng, “25 × 50  Gbps wavelength division multiplexing silicon photonics receiver chip based on a silicon nanowire-arrayed waveguide grating,” Photon. Res. 7, 659–663 (2019).
[Crossref]

W. Huang, B. Cheng, C. Xue, and Z. Liu, “Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: a first-principles calculation with GGA+U approach,” J. Appl. Phys. 118, 165704 (2015).
[Crossref]

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Xue, C.-L.

Z. Liu, B.-W. Cheng, Y.-M. Li, C.-B. Li, C.-L. Xue, and Q.-M. Wang, “Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate,” Chin. Phys. B 22, 116804 (2013).

Yahyaoui, N.

N. Yahyaoui, N. Sfina, J. L. Lazzari, A. Bournel, and M. Said, “Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection,” Phys. Stat. Solidi C 11, 1561–1565 (2014).
[Crossref]

Yang, Y.

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Yao, W.

Yeo, Y. K.

M.-Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett. 102, 171908 (2013).
[Crossref]

Yeo, Y.-C.

V. R. D’Costa, D. Schmidt, W. Wang, and Y.-C. Yeo, “Temperature dependence of the dielectric function and interband transitions of pseudomorphic GeSn alloys,” J. Vac. Sci. Technol. B 34, 041204 (2016).
[Crossref]

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Yin, W.-J.

W.-J. Yin, X.-G. Gong, and S.-H. Wei, “Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys,” Phys. Rev. B 78, 161203 (2008).
[Crossref]

Yu, S.-Q.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

Zabel, T.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

Zakharov, N. D.

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
[Crossref]

Zaumseil, P.

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

Zhang, J.

Zhou, Y.

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

Zuo, Y.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

ACS Photon. (3)

B.-J. Huang, C.-Y. Chang, Y.-D. Hsieh, R. A. Soref, G. Sun, H.-H. Cheng, and G.-E. Chang, “Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms,” ACS Photon. 6, 1931–1938 (2019).
[Crossref]

Y. Zhou, W. Dou, W. Du, S. Ojo, H. Tran, S. A. Ghetmiri, J. Liu, G. Sun, R. Soref, J. Margetis, J. Tolle, B. Li, Z. Chen, M. Mortazavi, and S.-Q. Yu, “Optically pumped GeSn lasers operating at 270  K with broad waveguide structures on Si,” ACS Photon. 6, 1434–1441 (2019).
[Crossref]

D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, D. Rainko, B. Marzban, P. Zaumseil, J.-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photon. 5, 4628–4636 (2018).
[Crossref]

Appl. Phys. Lett. (8)

A. A. Tonkikh, C. Eisenschmidt, V. G. Talalaev, N. D. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing,” Appl. Phys. Lett. 103, 032106 (2013).
[Crossref]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-on-Si,” Appl. Phys. Lett. 95, 032106 (2009).
[Crossref]

M.-Y. Ryu, T. R. Harris, Y. K. Yeo, R. T. Beeler, and J. Kouvetakis, “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Appl. Phys. Lett. 102, 171908 (2013).
[Crossref]

W. Du, S. A. Ghetmiri, B. R. Conley, A. Mosleh, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1-xSnx,” Appl. Phys. Lett. 105, 051104 (2014).
[Crossref]

W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, “Room-temperature electroluminescence at 1.3 and 1.5 μm from Ge/Si self-assembled quantum dots,” Appl. Phys. Lett. 83, 2958–2960 (2003).
[Crossref]

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type strain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S.-Q. Yu, “Room-temperature electroluminescence from Ge/Ge1-xSnx/Ge diodes on Si substrates,” Appl. Phys. Lett. 104, 241110 (2014).
[Crossref]

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Nonlinear behavior of the energy gap in Ge1-xSnx alloys at 4K,” Appl. Phys. Lett. 91, 161909 (2007).
[Crossref]

Chin. Phys. B (1)

Z. Liu, B.-W. Cheng, Y.-M. Li, C.-B. Li, C.-L. Xue, and Q.-M. Wang, “Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate,” Chin. Phys. B 22, 116804 (2013).

J. Appl. Phys. (5)

K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

W. Huang, B. Cheng, C. Xue, and Z. Liu, “Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: a first-principles calculation with GGA+U approach,” J. Appl. Phys. 118, 165704 (2015).
[Crossref]

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113, 073707 (2013).
[Crossref]

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80, 2234–2252 (1996).
[Crossref]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys. 108, 033107 (2010).
[Crossref]

J. Vac. Sci. Technol. B (1)

V. R. D’Costa, D. Schmidt, W. Wang, and Y.-C. Yeo, “Temperature dependence of the dielectric function and interband transitions of pseudomorphic GeSn alloys,” J. Vac. Sci. Technol. B 34, 041204 (2016).
[Crossref]

Nat. Commun. (2)

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y. Lai, J. Provine, R. F. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Nat. Photonics (3)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
[Crossref]

D. J. Richardson, “Beating the electronics bottleneck,” Nat. Photonics 3, 562–564 (2009).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464, 80–84 (2010).
[Crossref]

Opt. Express (2)

Photon. Res. (1)

Phys. Rev. B (2)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B 39, 1871–1883 (1989).
[Crossref]

W.-J. Yin, X.-G. Gong, and S.-H. Wei, “Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys,” Phys. Rev. B 78, 161203 (2008).
[Crossref]

Phys. Stat. Solidi C (1)

N. Yahyaoui, N. Sfina, J. L. Lazzari, A. Bournel, and M. Said, “Band engineering and absorption spectra in compressively strained Ge0.92Sn0.08/Ge (001) double quantum well for infrared photodetection,” Phys. Stat. Solidi C 11, 1561–1565 (2014).
[Crossref]

Phys. Status Solidi A (1)

C. Popescu, J. C. Manifacier, and R. Ardebili, “I-V curve shape factor for thin p-n junctions at high injection levels,” Phys. Status Solidi A 158, 611–621 (1996).
[Crossref]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Proc. IRE (1)

C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in P-N junctions and P-N junction characteristics,” Proc. IRE 45, 1228–1243 (1957).
[Crossref]

Proc. SPIE (1)

G. T. Reed, M. R. Watts, Y.-L. Lin, Y.-H. Huang, S.-W. Chen, and G.-E. Chang, “GeSn waveguide structures for efficient light detection and emission,” Proc. SPIE 9367, 93671G (2015).
[Crossref]

Semicond. Sci. Technol. (1)

P. Moontragoon, Z. Ikonić, and P. Harrison, “Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials,” Semicond. Sci. Technol. 22, 742–748 (2007).
[Crossref]

Other (1)

S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Cross-sectional transmission electron microscopy (TEM) image of the Ge0.91Sn0.09/Ge MQW structure grown on the Si substrate with a Ge cap layer; the inset below is the selected-area diffraction pattern of the Ge0.91Sn0.09 well layer; the inset above shows EDX linear scanning of elemental contents in the GeSn/Ge quantum well structure. The red and blue lines represent Sn and Ge concentrations, respectively. (b) HR-TEM image of the Ge0.91Sn0.09/Ge QW interface. (c) XRD-RSM from the (224) plane of the MQW structure.
Fig. 2.
Fig. 2. (a) Schematic of horizontal GeSn/Ge MQW pin ridge waveguide LEDs on a Si (100) substrate. (b) Cross-sectional schematic of this horizontal device. (c) Scanning electron microscope (SEM) image of the ridge waveguide LEDs device. (d) Typical I-V characteristics of the device; inset: the relationship between lnI and V and the fitted curve of ideal factor η.
Fig. 3.
Fig. 3. (a) EL spectra of horizontal Ge0.91Sn0.09/Ge MQW pin ridge waveguide LEDs at room temperature with different power density. (b) EL spectral peak wavelength as a function of power density. (c) PL spectrum of the as-grown sample and the EL spectrum of the device.
Fig. 4.
Fig. 4. (a) Band diagram for one period of the Ge0.91Sn0.09/Ge quantum well by theoretical calculation. (b) Temperature-dependent PL spectra of the as-grown sample at the temperature range 80 K to 290 K.
Fig. 5.
Fig. 5. Output power of this device plotted as a function of J at room temperature.

Tables (1)

Tables Icon

Table 1. Constants Used for Calculation of GeSn/Ge MQWs Energy Bandgap [2730]