Abstract

Wavelength-dependent polarization state of light carries crucial information about light–matter interactions. However, its measurement is limited to bulky, high energy-consuming devices, which prohibits many modern, portable applications. Here, we propose and demonstrate a chip-scale spectropolarimeter implemented using a complementary metal oxide semiconductor compatible silicon photonics technology. Four compact Vernier microresonator spectrometers are monolithically integrated with a broadband polarimeter consisting of a 2D nanophotonic antenna and a polarimetric circuit to achieve full-Stokes spectropolarimetric analysis. The proposed device offers a solid-state spectropolarimetry solution with a small footprint of 1 mm × 0.6 mm and low power consumption of 360 mW. Full-Stokes spectral detection across a broad spectral range of 50 nm with a resolution of 1 nm is demonstrated in characterizing a material possessing structural chirality. The proposed device may enable a broader application of spectropolarimetry in the fields ranging from biomedical diagnostics and chemical analysis to observational astronomy.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mishchenko and J. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995).
    [Crossref]
  2. D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
    [Crossref]
  3. U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner, and H. Fenniri, “Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes,” Nanoscale 6, 9421–9427 (2014).
    [Crossref]
  4. J. Kessler, V. Andrushchenko, J. Kapitn, and P. Bou, “Insight into vibrational circular dichroism of proteins by density functional modeling,” Phys. Chem. Chem. Phys. 20, 4926–4935 (2018).
    [Crossref]
  5. R. Wehner, “Polarization vision—a uniform sensory capacity?” J. Exp. Biol. 204, 2589–2596 (2001).
    [Crossref]
  6. M. L. Degl’Innocenti and M. Landolfi, Polarization in Spectral Lines (Springer, 2006), Vol. 307.
  7. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  8. L. A. Nguyen, H. He, and C. Pham-Huy, “Chiral drugs: an overview,” Int. J. Biomed. Sci. 2, 85–100 (2006).
  9. A. Taniguchi, K. Oka, H. Okabe, H. Naito, and N. Nakatsuka, “Miniaturized channeled spectropolarimeter,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference (IEEE, 2006), pp. 1–2.
  10. W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
    [Crossref]
  11. H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80, 083104 (2009).
    [Crossref]
  12. D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled spectropolarimetry,” Opt. Express 25, 32041–32063 (2017).
    [Crossref]
  13. S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
    [Crossref]
  14. M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
    [Crossref]
  15. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
    [Crossref]
  16. P. Cheben, J. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
    [Crossref]
  17. H. Wang, Z. Lin, Q. Li, and W. Shi, “On-chip Fourier transform spectrometers by dual-polarized detection,” Opt. Lett. 44, 2923–2926 (2019).
    [Crossref]
  18. A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
    [Crossref]
  19. D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
    [Crossref]
  20. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
    [Crossref]
  21. Z. Lin, L. Rusch, Y. Chen, and W. Shi, “Chip-scale, full-Stokes polarimeter,” Opt. Express 27, 4867–4877 (2019).
    [Crossref]
  22. Z. Lin, Y. Chen, L. Rusch, and W. Shi, “On-chip circular polarization splitter using silicon photonic nanoantenna array,” ACS Photonics 5, 4338–4342 (2018).
    [Crossref]
  23. W. Wu, Y. Yu, W. Liu, and X. Zhang, “Fully integrated CMOS-compatible polarization analyzer,” Nanophotonics 8, 467–474 (2019).
    [Crossref]
  24. A. Espinosa-Soria, F. J. Rodrguez-Fortuño, A. Griol, and A. Martnez, “On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
    [Crossref]
  25. A. Martnez, “Polarimetry enabled by nanophotonics,” Science 362, 750–751 (2018).
    [Crossref]
  26. J. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3, 42–47 (2016).
    [Crossref]
  27. P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
    [Crossref]
  28. Z. Lin, L. A. Rusch, Y. Chen, and W. Shi, “Optimal ultra-miniature polarimeters in silicon photonic integrated circuits,” APL Photonics 4, 100806 (2019).
    [Crossref]
  29. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
    [Crossref]
  30. Z. Lin and W. Shi, “Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio,” Opt. Express 27, 14338–14343 (2019).
    [Crossref]
  31. V. R. Kolli, T. Srinivasulu, G. Hegde, T. Badrinarayana, and S. Talabattula, “Design and analysis of serially coupled double microring resonator based force sensor for 1  μN range measurement,” Optik 131, 1063–1070 (2017).
    [Crossref]
  32. Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E.-J. Lim, G.-Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Express 22, 11367–11375 (2014).
    [Crossref]
  33. P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995), Vol. 83.
  34. Z. Lin and W. Shi, “Broadband silicon photonic polarimeter using subwavelength grating metamaterial waveguides,” Proc. SPIE 11284, 112841K (2020).
    [Crossref]
  35. J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2, 056103 (2017).
    [Crossref]
  36. P. Ying, R. Ge, S. Gao, and X. Cai, “Thermally tunable silicon microring resonators with ultralow tuning power,” Proc. SPIE 11048, 1104839 (2019).
    [Crossref]
  37. A. Atabaki, E. S. Hosseini, A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18, 18312–18323 (2010).
    [Crossref]
  38. L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
    [Crossref]
  39. N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
    [Crossref]
  40. W. S. Zaoui, M. F. Rosa, W. Vogel, M. Berroth, J. Butschke, and F. Letzkus, “Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency,” Opt. Express 20, B238–B243 (2012).
    [Crossref]
  41. S.-Y. Cho and R. Soref, “Interferometric microring-resonant 2 × 2 optical switches,” Opt. Express 16, 13304–13314 (2008).
    [Crossref]
  42. J. Wu, B. Liu, J. Peng, J. Mao, X. Jiang, C. Qiu, C. Tremblay, and Y. Su, “On-chip tunable second-order differential-equation solver based on a silicon photonic mode-split microresonator,” J. Lightwave Technol. 33, 3542–3549 (2015).
    [Crossref]
  43. X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9, L23–L28 (2015).
    [Crossref]
  44. A. Taniguchi, H. Okabe, H. Naito, N. Nakatsuka, and K. Oka, “Stabilized channeled spectropolarimeter using integrated calcite prisms,” Proc. SPIE 5888, 588811 (2005).
    [Crossref]
  45. T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7, 1 (2017).
    [Crossref]

2020 (1)

Z. Lin and W. Shi, “Broadband silicon photonic polarimeter using subwavelength grating metamaterial waveguides,” Proc. SPIE 11284, 112841K (2020).
[Crossref]

2019 (8)

Z. Lin and W. Shi, “Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio,” Opt. Express 27, 14338–14343 (2019).
[Crossref]

P. Ying, R. Ge, S. Gao, and X. Cai, “Thermally tunable silicon microring resonators with ultralow tuning power,” Proc. SPIE 11048, 1104839 (2019).
[Crossref]

Z. Lin, L. Rusch, Y. Chen, and W. Shi, “Chip-scale, full-Stokes polarimeter,” Opt. Express 27, 4867–4877 (2019).
[Crossref]

W. Wu, Y. Yu, W. Liu, and X. Zhang, “Fully integrated CMOS-compatible polarization analyzer,” Nanophotonics 8, 467–474 (2019).
[Crossref]

Z. Lin, L. A. Rusch, Y. Chen, and W. Shi, “Optimal ultra-miniature polarimeters in silicon photonic integrated circuits,” APL Photonics 4, 100806 (2019).
[Crossref]

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

H. Wang, Z. Lin, Q. Li, and W. Shi, “On-chip Fourier transform spectrometers by dual-polarized detection,” Opt. Lett. 44, 2923–2926 (2019).
[Crossref]

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

2018 (5)

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

J. Kessler, V. Andrushchenko, J. Kapitn, and P. Bou, “Insight into vibrational circular dichroism of proteins by density functional modeling,” Phys. Chem. Chem. Phys. 20, 4926–4935 (2018).
[Crossref]

A. Martnez, “Polarimetry enabled by nanophotonics,” Science 362, 750–751 (2018).
[Crossref]

Z. Lin, Y. Chen, L. Rusch, and W. Shi, “On-chip circular polarization splitter using silicon photonic nanoantenna array,” ACS Photonics 5, 4338–4342 (2018).
[Crossref]

2017 (6)

A. Espinosa-Soria, F. J. Rodrguez-Fortuño, A. Griol, and A. Martnez, “On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

V. R. Kolli, T. Srinivasulu, G. Hegde, T. Badrinarayana, and S. Talabattula, “Design and analysis of serially coupled double microring resonator based force sensor for 1  μN range measurement,” Optik 131, 1063–1070 (2017).
[Crossref]

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2, 056103 (2017).
[Crossref]

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled spectropolarimetry,” Opt. Express 25, 32041–32063 (2017).
[Crossref]

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7, 1 (2017).
[Crossref]

2016 (2)

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
[Crossref]

J. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3, 42–47 (2016).
[Crossref]

2015 (3)

2014 (2)

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E.-J. Lim, G.-Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Express 22, 11367–11375 (2014).
[Crossref]

U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner, and H. Fenniri, “Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes,” Nanoscale 6, 9421–9427 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

2010 (1)

2009 (1)

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80, 083104 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

L. A. Nguyen, H. He, and C. Pham-Huy, “Chiral drugs: an overview,” Int. J. Biomed. Sci. 2, 85–100 (2006).

2005 (1)

A. Taniguchi, H. Okabe, H. Naito, N. Nakatsuka, and K. Oka, “Stabilized channeled spectropolarimeter using integrated calcite prisms,” Proc. SPIE 5888, 588811 (2005).
[Crossref]

2001 (1)

R. Wehner, “Polarization vision—a uniform sensory capacity?” J. Exp. Biol. 204, 2589–2596 (2001).
[Crossref]

1995 (1)

1991 (1)

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

Adibi, A.

Andrushchenko, V.

J. Kessler, V. Andrushchenko, J. Kapitn, and P. Bou, “Insight into vibrational circular dichroism of proteins by density functional modeling,” Phys. Chem. Chem. Phys. 20, 4926–4935 (2018).
[Crossref]

Atabaki, A.

Badrinarayana, T.

V. R. Kolli, T. Srinivasulu, G. Hegde, T. Badrinarayana, and S. Talabattula, “Design and analysis of serially coupled double microring resonator based force sensor for 1  μN range measurement,” Optik 131, 1063–1070 (2017).
[Crossref]

Baehr-Jones, T.

Beingessner, R. L.

U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner, and H. Fenniri, “Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes,” Nanoscale 6, 9421–9427 (2014).
[Crossref]

Bergman, K.

Berroth, M.

Bock, P. J.

Bono, D.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Bou, P.

J. Kessler, V. Andrushchenko, J. Kapitn, and P. Bou, “Insight into vibrational circular dichroism of proteins by density functional modeling,” Phys. Chem. Chem. Phys. 20, 4926–4935 (2018).
[Crossref]

Butschke, J.

Cai, H.

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

Cai, X.

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

P. Ying, R. Ge, S. Gao, and X. Cai, “Thermally tunable silicon microring resonators with ultralow tuning power,” Proc. SPIE 11048, 1104839 (2019).
[Crossref]

Calvo, M. L.

Cao, X.

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

Capasso, F.

Chamanzar, M.

Cheben, P.

Chen, B. H.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Chen, J.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

Chen, J.-W.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Chen, W. T.

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
[Crossref]

Chen, Y.

Z. Lin, L. A. Rusch, Y. Chen, and W. Shi, “Optimal ultra-miniature polarimeters in silicon photonic integrated circuits,” APL Photonics 4, 100806 (2019).
[Crossref]

Z. Lin, L. Rusch, Y. Chen, and W. Shi, “Chip-scale, full-Stokes polarimeter,” Opt. Express 27, 4867–4877 (2019).
[Crossref]

Z. Lin, Y. Chen, L. Rusch, and W. Shi, “On-chip circular polarization splitter using silicon photonic nanoantenna array,” ACS Photonics 5, 4338–4342 (2018).
[Crossref]

Chen, Z.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7, 1 (2017).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref]

Chin, L.

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

Cho, J.-Y.

U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner, and H. Fenniri, “Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes,” Nanoscale 6, 9421–9427 (2014).
[Crossref]

Cho, S.-Y.

Chrostowski, L.

Chuang, C.-J.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Chung, T. L.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Craven, J. M.

De Gennes, P.-G.

P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995), Vol. 83.

Degl’Innocenti, M. L.

M. L. Degl’Innocenti and M. Landolfi, Polarization in Spectral Lines (Springer, 2006), Vol. 307.

Delâge, A.

Densmore, A.

Eftekhar, A.

Eftekhar, A. A.

El-Bakkari, M.

U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner, and H. Fenniri, “Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes,” Nanoscale 6, 9421–9427 (2014).
[Crossref]

Espinosa-Soria, A.

A. Espinosa-Soria, F. J. Rodrguez-Fortuño, A. Griol, and A. Martnez, “On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Fainman, Y.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

Favela, D.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Fenniri, H.

U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner, and H. Fenniri, “Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes,” Nanoscale 6, 9421–9427 (2014).
[Crossref]

Florjanczyk, M.

Foreman, M. R.

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
[Crossref]

Frateschi, N. C.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

Gao, S.

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

P. Ying, R. Ge, S. Gao, and X. Cai, “Thermally tunable silicon microring resonators with ultralow tuning power,” Proc. SPIE 11048, 1104839 (2019).
[Crossref]

Ge, R.

P. Ying, R. Ge, S. Gao, and X. Cai, “Thermally tunable silicon microring resonators with ultralow tuning power,” Proc. SPIE 11048, 1104839 (2019).
[Crossref]

Gould, M.

Grieco, A.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

Griol, A.

A. Espinosa-Soria, F. J. Rodrguez-Fortuño, A. Griol, and A. Martnez, “On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Gu, T.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Hayakawa, M.

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80, 083104 (2009).
[Crossref]

He, H.

L. A. Nguyen, H. He, and C. Pham-Huy, “Chiral drugs: an overview,” Int. J. Biomed. Sci. 2, 85–100 (2006).

He, M.

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

Hegde, G.

V. R. Kolli, T. Srinivasulu, G. Hegde, T. Badrinarayana, and S. Talabattula, “Design and analysis of serially coupled double microring resonator based force sensor for 1  μN range measurement,” Optik 131, 1063–1070 (2017).
[Crossref]

Helm, D.

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

Hemraz, U. D.

U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner, and H. Fenniri, “Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes,” Nanoscale 6, 9421–9427 (2014).
[Crossref]

Hochberg, M.

Hosseini, E. S.

Hovenier, J.

Hu, J.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Jaeger, N. A.

Janz, S.

Jiang, X.

Kapitn, J.

J. Kessler, V. Andrushchenko, J. Kapitn, and P. Bou, “Insight into vibrational circular dichroism of proteins by density functional modeling,” Phys. Chem. Chem. Phys. 20, 4926–4935 (2018).
[Crossref]

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

Kessler, J.

J. Kessler, V. Andrushchenko, J. Kapitn, and P. Bou, “Insight into vibrational circular dichroism of proteins by density functional modeling,” Phys. Chem. Chem. Phys. 20, 4926–4935 (2018).
[Crossref]

Kita, D. M.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Kolli, V. R.

V. R. Kolli, T. Srinivasulu, G. Hegde, T. Badrinarayana, and S. Talabattula, “Design and analysis of serially coupled double microring resonator based force sensor for 1  μN range measurement,” Optik 131, 1063–1070 (2017).
[Crossref]

Kwong, D.

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

Labischinski, H.

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

LaCasse, C. F.

Lai, Y.-C.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Lamontagne, B.

Landolfi, M.

M. L. Degl’Innocenti and M. Landolfi, Polarization in Spectral Lines (Springer, 2006), Vol. 307.

Lapointe, J.

Leaird, D. E.

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9, L23–L28 (2015).
[Crossref]

Lee, D. J.

Lee, K.-W.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Leosson, K.

Letzkus, F.

Li, Q.

Liang, R.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7, 1 (2017).
[Crossref]

Liao, C. Y.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
[Crossref]

Lim, A. E.-J.

Lin, H.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Lin, Z.

Z. Lin and W. Shi, “Broadband silicon photonic polarimeter using subwavelength grating metamaterial waveguides,” Proc. SPIE 11284, 112841K (2020).
[Crossref]

H. Wang, Z. Lin, Q. Li, and W. Shi, “On-chip Fourier transform spectrometers by dual-polarized detection,” Opt. Lett. 44, 2923–2926 (2019).
[Crossref]

Z. Lin, L. A. Rusch, Y. Chen, and W. Shi, “Optimal ultra-miniature polarimeters in silicon photonic integrated circuits,” APL Photonics 4, 100806 (2019).
[Crossref]

Z. Lin, L. Rusch, Y. Chen, and W. Shi, “Chip-scale, full-Stokes polarimeter,” Opt. Express 27, 4867–4877 (2019).
[Crossref]

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

Z. Lin and W. Shi, “Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio,” Opt. Express 27, 14338–14343 (2019).
[Crossref]

Z. Lin, Y. Chen, L. Rusch, and W. Shi, “On-chip circular polarization splitter using silicon photonic nanoantenna array,” ACS Photonics 5, 4338–4342 (2018).
[Crossref]

Liu, A.

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

Liu, B.

Liu, P.

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

Liu, W.

W. Wu, Y. Yu, W. Liu, and X. Zhang, “Fully integrated CMOS-compatible polarization analyzer,” Nanophotonics 8, 467–474 (2019).
[Crossref]

Liu, Y.

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9, L23–L28 (2015).
[Crossref]

Lo, G.-Q.

Lu, L.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

Lu, Z.

Magill, P.

Mao, J.

Martnez, A.

A. Martnez, “Polarimetry enabled by nanophotonics,” Science 362, 750–751 (2018).
[Crossref]

A. Espinosa-Soria, F. J. Rodrguez-Fortuño, A. Griol, and A. Martnez, “On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Matoba, J.

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80, 083104 (2009).
[Crossref]

Michon, J.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Miranda, B.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Mishchenko, M.

Mitchell, A.

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2, 056103 (2017).
[Crossref]

Moein, T.

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2, 056103 (2017).
[Crossref]

Momeni, B.

Moss, D. J.

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2, 056103 (2017).
[Crossref]

Mu, T.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7, 1 (2017).
[Crossref]

Mueller, J. B.

Naito, H.

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80, 083104 (2009).
[Crossref]

A. Taniguchi, H. Okabe, H. Naito, N. Nakatsuka, and K. Oka, “Stabilized channeled spectropolarimeter using integrated calcite prisms,” Proc. SPIE 5888, 588811 (2005).
[Crossref]

A. Taniguchi, K. Oka, H. Okabe, H. Naito, and N. Nakatsuka, “Miniaturized channeled spectropolarimeter,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference (IEEE, 2006), pp. 1–2.

Nakatsuka, N.

A. Taniguchi, H. Okabe, H. Naito, N. Nakatsuka, and K. Oka, “Stabilized channeled spectropolarimeter using integrated calcite prisms,” Proc. SPIE 5888, 588811 (2005).
[Crossref]

A. Taniguchi, K. Oka, H. Okabe, H. Naito, and N. Nakatsuka, “Miniaturized channeled spectropolarimeter,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference (IEEE, 2006), pp. 1–2.

Naumann, D.

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

Nguyen, L. A.

L. A. Nguyen, H. He, and C. Pham-Huy, “Chiral drugs: an overview,” Int. J. Biomed. Sci. 2, 85–100 (2006).

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

Oka, K.

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80, 083104 (2009).
[Crossref]

A. Taniguchi, H. Okabe, H. Naito, N. Nakatsuka, and K. Oka, “Stabilized channeled spectropolarimeter using integrated calcite prisms,” Proc. SPIE 5888, 588811 (2005).
[Crossref]

A. Taniguchi, K. Oka, H. Okabe, H. Naito, and N. Nakatsuka, “Miniaturized channeled spectropolarimeter,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference (IEEE, 2006), pp. 1–2.

Okabe, H.

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80, 083104 (2009).
[Crossref]

A. Taniguchi, H. Okabe, H. Naito, N. Nakatsuka, and K. Oka, “Stabilized channeled spectropolarimeter using integrated calcite prisms,” Proc. SPIE 5888, 588811 (2005).
[Crossref]

A. Taniguchi, K. Oka, H. Okabe, H. Naito, and N. Nakatsuka, “Miniaturized channeled spectropolarimeter,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference (IEEE, 2006), pp. 1–2.

Ophir, N.

Pacheco, S.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7, 1 (2017).
[Crossref]

Peng, J.

Pham-Huy, C.

L. A. Nguyen, H. He, and C. Pham-Huy, “Chiral drugs: an overview,” Int. J. Biomed. Sci. 2, 85–100 (2006).

Post, E.

Prost, J.

P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995), Vol. 83.

Qi, M.

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9, L23–L28 (2015).
[Crossref]

Qiu, C.

Ren, G.

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2, 056103 (2017).
[Crossref]

Rodrguez-Fortuño, F. J.

A. Espinosa-Soria, F. J. Rodrguez-Fortuño, A. Griol, and A. Martnez, “On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Rosa, M. F.

Rusch, L.

Z. Lin, L. Rusch, Y. Chen, and W. Shi, “Chip-scale, full-Stokes polarimeter,” Opt. Express 27, 4867–4877 (2019).
[Crossref]

Z. Lin, Y. Chen, L. Rusch, and W. Shi, “On-chip circular polarization splitter using silicon photonic nanoantenna array,” ACS Photonics 5, 4338–4342 (2018).
[Crossref]

Rusch, L. A.

Z. Lin, L. A. Rusch, Y. Chen, and W. Shi, “Optimal ultra-miniature polarimeters in silicon photonic integrated circuits,” APL Photonics 4, 100806 (2019).
[Crossref]

Schmid, J.

Schmid, J. H.

Shi, W.

Z. Lin and W. Shi, “Broadband silicon photonic polarimeter using subwavelength grating metamaterial waveguides,” Proc. SPIE 11284, 112841K (2020).
[Crossref]

H. Wang, Z. Lin, Q. Li, and W. Shi, “On-chip Fourier transform spectrometers by dual-polarized detection,” Opt. Lett. 44, 2923–2926 (2019).
[Crossref]

Z. Lin, L. A. Rusch, Y. Chen, and W. Shi, “Optimal ultra-miniature polarimeters in silicon photonic integrated circuits,” APL Photonics 4, 100806 (2019).
[Crossref]

Z. Lin and W. Shi, “Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio,” Opt. Express 27, 14338–14343 (2019).
[Crossref]

Z. Lin, L. Rusch, Y. Chen, and W. Shi, “Chip-scale, full-Stokes polarimeter,” Opt. Express 27, 4867–4877 (2019).
[Crossref]

Z. Lin, Y. Chen, L. Rusch, and W. Shi, “On-chip circular polarization splitter using silicon photonic nanoantenna array,” ACS Photonics 5, 4338–4342 (2018).
[Crossref]

Soltani, M.

Song, J.

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

Soref, R.

Souza, M. C.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

Srinivasulu, T.

V. R. Kolli, T. Srinivasulu, G. Hegde, T. Badrinarayana, and S. Talabattula, “Design and analysis of serially coupled double microring resonator based force sensor for 1  μN range measurement,” Optik 131, 1063–1070 (2017).
[Crossref]

Su, Y.

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

Talabattula, S.

V. R. Kolli, T. Srinivasulu, G. Hegde, T. Badrinarayana, and S. Talabattula, “Design and analysis of serially coupled double microring resonator based force sensor for 1  μN range measurement,” Optik 131, 1063–1070 (2017).
[Crossref]

Taniguchi, A.

A. Taniguchi, H. Okabe, H. Naito, N. Nakatsuka, and K. Oka, “Stabilized channeled spectropolarimeter using integrated calcite prisms,” Proc. SPIE 5888, 588811 (2005).
[Crossref]

A. Taniguchi, K. Oka, H. Okabe, H. Naito, and N. Nakatsuka, “Miniaturized channeled spectropolarimeter,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference (IEEE, 2006), pp. 1–2.

Török, P.

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
[Crossref]

Tremblay, C.

Tsai, D. P.

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
[Crossref]

Tsai, D. T.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Tsai, W.-Y.

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
[Crossref]

Vachon, M.

Velasco, A. V.

Vogel, W.

Waldron, P.

Wang, C.-M.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Wang, H.

Wang, J.

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

Wang, P.-H.

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9, L23–L28 (2015).
[Crossref]

Wang, Y.

Wehner, R.

R. Wehner, “Polarization vision—a uniform sensory capacity?” J. Exp. Biol. 204, 2589–2596 (2001).
[Crossref]

Weiner, A. M.

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9, L23–L28 (2015).
[Crossref]

Wu, J.

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2, 056103 (2017).
[Crossref]

J. Wu, B. Liu, J. Peng, J. Mao, X. Jiang, C. Qiu, C. Tremblay, and Y. Su, “On-chip tunable second-order differential-equation solver based on a silicon photonic mode-split microresonator,” J. Lightwave Technol. 33, 3542–3549 (2015).
[Crossref]

Wu, P. C.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Wu, P. R.

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
[Crossref]

Wu, W.

W. Wu, Y. Yu, W. Liu, and X. Zhang, “Fully integrated CMOS-compatible polarization analyzer,” Nanophotonics 8, 467–474 (2019).
[Crossref]

Xia, Z.

Xu, D.-X.

Xu, X.

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2, 056103 (2017).
[Crossref]

Xuan, Y.

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9, L23–L28 (2015).
[Crossref]

Xue, X.

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9, L23–L28 (2015).
[Crossref]

Yamazaki, T.

U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner, and H. Fenniri, “Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes,” Nanoscale 6, 9421–9427 (2014).
[Crossref]

Yang, S.

Yang, Y.

Yegnanarayanan, S.

Yin, C.-W.

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

Ying, P.

P. Ying, R. Ge, S. Gao, and X. Cai, “Thermally tunable silicon microring resonators with ultralow tuning power,” Proc. SPIE 11048, 1104839 (2019).
[Crossref]

Yu, Y.

W. Wu, Y. Yu, W. Liu, and X. Zhang, “Fully integrated CMOS-compatible polarization analyzer,” Nanophotonics 8, 467–474 (2019).
[Crossref]

Yun, H.

Zaoui, W. S.

Zhang, C.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7, 1 (2017).
[Crossref]

Zhang, F.

Zhang, X.

W. Wu, Y. Yu, W. Liu, and X. Zhang, “Fully integrated CMOS-compatible polarization analyzer,” Nanophotonics 8, 467–474 (2019).
[Crossref]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

Zhang, Y.

Zhao, Y.

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

Zheng, S.

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

Zhou, L.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

Zhou, N.

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

Zhu, Y.

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

Zou, J.

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

ACS Photonics (2)

Z. Lin, Y. Chen, L. Rusch, and W. Shi, “On-chip circular polarization splitter using silicon photonic nanoantenna array,” ACS Photonics 5, 4338–4342 (2018).
[Crossref]

P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. T. Tsai, “Visible metasurfaces for on-chip polarimetry,” ACS Photonics 5, 2568–2573 (2017).
[Crossref]

APL Photonics (2)

Z. Lin, L. A. Rusch, Y. Chen, and W. Shi, “Optimal ultra-miniature polarimeters in silicon photonic integrated circuits,” APL Photonics 4, 100806 (2019).
[Crossref]

J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell, and D. J. Moss, “Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity,” APL Photonics 2, 056103 (2017).
[Crossref]

Electron. Lett. (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett. 26, 87–88 (1990).
[Crossref]

IEEE Photonics J. (1)

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable Vernier microring optical filters with p-i-p-type microheaters,” IEEE Photonics J. 5, 6601211 (2013).
[Crossref]

Int. J. Biomed. Sci. (1)

L. A. Nguyen, H. He, and C. Pham-Huy, “Chiral drugs: an overview,” Int. J. Biomed. Sci. 2, 85–100 (2006).

J. Exp. Biol. (1)

R. Wehner, “Polarization vision—a uniform sensory capacity?” J. Exp. Biol. 204, 2589–2596 (2001).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9, L23–L28 (2015).
[Crossref]

Nano Lett. (1)

A. Espinosa-Soria, F. J. Rodrguez-Fortuño, A. Griol, and A. Martnez, “On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light,” Nano Lett. 17, 3139–3144 (2017).
[Crossref]

Nanophotonics (1)

W. Wu, Y. Yu, W. Liu, and X. Zhang, “Fully integrated CMOS-compatible polarization analyzer,” Nanophotonics 8, 467–474 (2019).
[Crossref]

Nanoscale (1)

U. D. Hemraz, M. El-Bakkari, T. Yamazaki, J.-Y. Cho, R. L. Beingessner, and H. Fenniri, “Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes,” Nanoscale 6, 9421–9427 (2014).
[Crossref]

Nanotechnology (1)

W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, “Integrated plasmonic metasurfaces for spectropolarimetry,” Nanotechnology 27, 224002 (2016).
[Crossref]

Nat. Commun. (3)

S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, and A. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 2349 (2019).
[Crossref]

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Nature (1)

D. Naumann, D. Helm, and H. Labischinski, “Microbiological characterizations by FT-IR spectroscopy,” Nature 351, 81–82 (1991).
[Crossref]

Opt. Express (10)

P. Cheben, J. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15, 2299–2306 (2007).
[Crossref]

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref]

Z. Lin, L. Rusch, Y. Chen, and W. Shi, “Chip-scale, full-Stokes polarimeter,” Opt. Express 27, 4867–4877 (2019).
[Crossref]

D. J. Lee, C. F. LaCasse, and J. M. Craven, “Compressed channeled spectropolarimetry,” Opt. Express 25, 32041–32063 (2017).
[Crossref]

Y. Zhang, S. Yang, Y. Yang, M. Gould, N. Ophir, A. E.-J. Lim, G.-Q. Lo, P. Magill, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A high-responsivity photodetector absent metal-germanium direct contact,” Opt. Express 22, 11367–11375 (2014).
[Crossref]

Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795–3808 (2015).
[Crossref]

Z. Lin and W. Shi, “Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio,” Opt. Express 27, 14338–14343 (2019).
[Crossref]

A. Atabaki, E. S. Hosseini, A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18, 18312–18323 (2010).
[Crossref]

W. S. Zaoui, M. F. Rosa, W. Vogel, M. Berroth, J. Butschke, and F. Letzkus, “Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency,” Opt. Express 20, B238–B243 (2012).
[Crossref]

S.-Y. Cho and R. Soref, “Interferometric microring-resonant 2 × 2 optical switches,” Opt. Express 16, 13304–13314 (2008).
[Crossref]

Opt. Lett. (3)

Optica (1)

Optik (1)

V. R. Kolli, T. Srinivasulu, G. Hegde, T. Badrinarayana, and S. Talabattula, “Design and analysis of serially coupled double microring resonator based force sensor for 1  μN range measurement,” Optik 131, 1063–1070 (2017).
[Crossref]

Phys. Chem. Chem. Phys. (1)

J. Kessler, V. Andrushchenko, J. Kapitn, and P. Bou, “Insight into vibrational circular dichroism of proteins by density functional modeling,” Phys. Chem. Chem. Phys. 20, 4926–4935 (2018).
[Crossref]

Proc. SPIE (3)

P. Ying, R. Ge, S. Gao, and X. Cai, “Thermally tunable silicon microring resonators with ultralow tuning power,” Proc. SPIE 11048, 1104839 (2019).
[Crossref]

Z. Lin and W. Shi, “Broadband silicon photonic polarimeter using subwavelength grating metamaterial waveguides,” Proc. SPIE 11284, 112841K (2020).
[Crossref]

A. Taniguchi, H. Okabe, H. Naito, N. Nakatsuka, and K. Oka, “Stabilized channeled spectropolarimeter using integrated calcite prisms,” Proc. SPIE 5888, 588811 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

H. Okabe, M. Hayakawa, J. Matoba, H. Naito, and K. Oka, “Error-reduced channeled spectroscopic ellipsometer with palm-size sensing head,” Rev. Sci. Instrum. 80, 083104 (2009).
[Crossref]

Sci. Adv. (1)

N. Zhou, S. Zheng, X. Cao, Y. Zhao, S. Gao, Y. Zhu, M. He, X. Cai, and J. Wang, “Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6  μm2 footprint,” Sci. Adv. 5, eaau9593 (2019).
[Crossref]

Sci. Rep. (1)

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7, 1 (2017).
[Crossref]

Science (1)

A. Martnez, “Polarimetry enabled by nanophotonics,” Science 362, 750–751 (2018).
[Crossref]

Other (4)

P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995), Vol. 83.

M. L. Degl’Innocenti and M. Landolfi, Polarization in Spectral Lines (Springer, 2006), Vol. 307.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

A. Taniguchi, K. Oka, H. Okabe, H. Naito, and N. Nakatsuka, “Miniaturized channeled spectropolarimeter,” in Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference (IEEE, 2006), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic of the proposed spectropolarimeter. The black arrows point to the propagating direction of light. SPS, surface polarization splitter; PA, polarization analyzer; Si-DMRS, our silicon dual-microring resonator spectrometer; PDi, Ge photodetector of the ith Si-DMRS.
Fig. 2.
Fig. 2. Principle of the proposed Si-DMRS. FSR1(2) in the left side is the free spectral range of the single microring; the subscript 1(2) indicates the first (second) microring of the SDMR. FSR in the right side is the extended free spectral range of the SDMR.
Fig. 3.
Fig. 3. Image of the fabricated spectropolarimeter. (a) The prototype of the fully packaged, plug-and-play spectropolarimeter with a ribbon cable for control and signal readout. (b) The optical micrograph of the fabricated chip before being packaged. (c), (d), and (e) are the SEM images of the Si layer of the SPS, BDC, and SDMR, respectively. The inset in (d) presents the asymmetric-waveguide-based phase control section of the BDC for a broadband operation. SPS, surface polarization splitter; PA, polarization analyzer; Si-DMRS, our silicon dual-microring resonator spectrometer.
Fig. 4.
Fig. 4. Dual-MR characterization. (a) Optical micrography of a Si-DMRS. (b), (c) The experimental transmission spectra from the drop port of the SDMR. (d) Relation between resonance wavelength and heating power on the heaters of MR1 (red square) and MR2 (blue square). (e) The experimental transmission spectra of the drop port for the resonance wavelength from 1530 nm to 1579 nm.
Fig. 5.
Fig. 5. Broadband spectrum reconstruction with the Si-DMRS. Solid black line is the spectrum recorded by a commercial OSA. The dotted lines are the measured results of the Si-DMRS over a week using the same calibration.
Fig. 6.
Fig. 6. On-chip spectropolarimeter characterization. (a) Schematic of the CLC sample. (b) Normalized Stokes spectra of the CLC sample, with a linear polarization input, measured by a commercial benchtop instrument (dotted lines) and our on-chip spectropolarimeter (solid lines).
Fig. 7.
Fig. 7. (a) Schematic of the SPS. The parameters Λ and D are the period and diameter of the hole, respectively. (b) The simulated transmission spectrum of the SPS.
Fig. 8.
Fig. 8. (a) Schematic of the SDMR. t1,(2,3) and κ1,(2,3) are normalized transmission and cross-coupling coefficients, respectively. (b) The simulated transmission spectra of the drop port in the case of κ2=0.005, κ2=0.015, and κ2=0.040 when the resonant wavelength is near 1550 nm.
Fig. 9.
Fig. 9. (a) Cross-sectional schematic of the Ge-PD. (b) I-V curve in darkness. (c) Photocurrent as a function of optical power for the bias voltage of 4  V.
Fig. 10.
Fig. 10. (a) Schematic of the electric connections. (b) The flowchart of searching the corresponding (Ui1, Ui2) for each wavelength. Ui1 and Ui2 are the power applied to first and second MRs of the ith SDMR, respectively. PDi means the photodetector of the ith SDMR. IPDi is the current read from the PDi.
Fig. 11.
Fig. 11. Photocurrent as a function of U11 and U12 at a wavelength of 1562 nm.
Fig. 12.
Fig. 12. (a)–(d) are the calibrated heating powers of MRi1 (red) and MRi2 (blue) for each spectral channel.
Fig. 13.
Fig. 13. Experiment setup for calibrating the synthesis matrix or characterizing a chiral material. HWP, half-wave plate; QWP, quarter-wave plate; SMU, source measure unit used for reading the current from the photodetector.

Tables (1)

Tables Icon

Table 1. Performance of Recently Demonstrated Spectropolarimeters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S(λ)MS(λ)·I(λ),
MS(λ)=2(1001100110411401).
FSR=FSR1·FSR2|FSR1FSR2|=λ2π|D1ng2D2ng1|λ2πng1|D1D2|,
Δλ=λ0ng(λ0,T0)·[neff(λ0,T0)T+αL]·ΔT,
(EAED)=(C3P2C2P1C1)(EinET)=M(EinET),
C1(2,3)=iκ1(2,3)(t1(2,3)11t1(2,3)),
P1(2)=(0α1(2)exp(iπβ1(2)R1(2))α1(2)exp(iπβ1(2)R1(2))0),
M=(m11m12m21m22),
|ED|2=|Det(M)m12|2,|ET|2=|m11m12|2.