Abstract

Radio frequency (RF) switches are essential for implementing routing of RF signals. However, the increasing demand for RF signal frequency and bandwidth is posing a challenge of switching speed to the conventional solutions, i.e., the capability of operating at a sub-nanosecond speed or faster. In addition, signal frequency reconfigurability is also a desirable feature to facilitate new innovations of flexible system functions. Utilizing microwave photonics as an alternative path, we present here a photonic implementation of an RF switch providing not only the capability of switching at a sub-nanosecond speed but also options of frequency doubling of the input RF signals, allowing for flexible output waveforms. The core device is a traveling-wave silicon modulator with a device size of 0.2  mm×1.8  mm and a modulation bandwidth of 10 GHz. Using microwave frequencies, i.e., 15 GHz and 20 GHz, as two simultaneous RF input signals, we experimentally demonstrated their amplitude and frequency switching as well as that of the doubled frequencies, i.e., 30 GHz and 40 GHz, at a switching frequency of 5 GHz. The results of this work point to a solution for creating high-speed RF switches with high compactness and flexibility.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hindle, “The state of RF/microwave switches,” Microwave J. 53, 20–36 (2010).
  2. P. Bacon, D. Fischer, and R. Lourens, “Overview of RF switch technology and applications,” Microwave J. 57, 76–88 (2014).
  3. H. Emami and N. Sarkhosh, “Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar,” J. Opt. Soc. Am. A 31, 1320–1325 (2014).
    [Crossref]
  4. S. Pranonsatit, A. S. Holmes, I. D. Robertson, and S. Lucyszyn, “Single-pole eight-throw RF MEMS rotary switch,” J. Microelectromech. Syst. 15, 1735–1744 (2006).
    [Crossref]
  5. G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microw. 2, 59–71 (2001).
    [Crossref]
  6. Agilent, Understanding RF/Microwave Solid State Switches and Their Applications, Application Note (Agilent Technologies, 2010).
  7. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  8. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  9. L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
    [Crossref]
  10. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31, 571–586 (2013).
    [Crossref]
  11. J. Ge and M. P. Fok, “Ultra high-speed radio frequency switch based on photonics,” Sci. Rep. 5, 17263 (2015).
    [Crossref]
  12. K. Tsuji and T. Uehara, “Photonic generation of a phase-switchable ASK signal using orthogonal polarization modes of a single optical phase modulator,” in Opto-Electronics and Communications Conference (2017), paper s1257.
  13. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
    [Crossref]
  14. Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
    [Crossref]
  15. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  16. C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
    [Crossref]
  17. Y. Xie, L. Zhuang, and A. J. Lowery, “Silicon microring modulator-based RF mixer for millimeter-wave phase-coded signal generation,” Opt. Lett. 42, 2742–2745 (2017).
    [Crossref]
  18. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [Crossref]
  19. A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
    [Crossref]
  20. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  21. L. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21, 3114–3124 (2013).
    [Crossref]
  22. C. H. Cox, Analog Optical Links (Cambridge University, 2004).
  23. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  24. Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, and A. J. Lowery, “Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.
  25. H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
    [Crossref]
  26. X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5, 6600606 (2013).
    [Crossref]
  27. C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8 × 8 × 40 Gbps fully integrated silicon photonic network on chip,” Optica 3, 785–786 (2016).
    [Crossref]

2017 (2)

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

Y. Xie, L. Zhuang, and A. J. Lowery, “Silicon microring modulator-based RF mixer for millimeter-wave phase-coded signal generation,” Opt. Lett. 42, 2742–2745 (2017).
[Crossref]

2016 (1)

2015 (2)

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

J. Ge and M. P. Fok, “Ultra high-speed radio frequency switch based on photonics,” Sci. Rep. 5, 17263 (2015).
[Crossref]

2014 (3)

P. Bacon, D. Fischer, and R. Lourens, “Overview of RF switch technology and applications,” Microwave J. 57, 76–88 (2014).

H. Emami and N. Sarkhosh, “Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar,” J. Opt. Soc. Am. A 31, 1320–1325 (2014).
[Crossref]

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

2013 (6)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

L. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21, 3114–3124 (2013).
[Crossref]

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5, 6600606 (2013).
[Crossref]

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31, 571–586 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

2012 (1)

2010 (2)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

P. Hindle, “The state of RF/microwave switches,” Microwave J. 53, 20–36 (2010).

2009 (1)

2007 (2)

2006 (1)

S. Pranonsatit, A. S. Holmes, I. D. Robertson, and S. Lucyszyn, “Single-pole eight-throw RF MEMS rotary switch,” J. Microelectromech. Syst. 15, 1735–1744 (2006).
[Crossref]

2001 (1)

G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microw. 2, 59–71 (2001).
[Crossref]

Bacon, P.

P. Bacon, D. Fischer, and R. Lourens, “Overview of RF switch technology and applications,” Microwave J. 57, 76–88 (2014).

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Beeker, W.

L. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21, 3114–3124 (2013).
[Crossref]

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Boller, K. J.

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

Bowers, J. E.

C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8 × 8 × 40 Gbps fully integrated silicon photonic network on chip,” Optica 3, 785–786 (2016).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Broeke, R.

Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, and A. J. Lowery, “Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Burla, M.

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

Capmany, J.

Chen, K. K.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Chetrit, Y.

Chu, T.

Ciftcioglu, B.

Cox, C. H.

C. H. Cox, Analog Optical Links (Cambridge University, 2004).

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Dijk, P.

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Doerr, C.

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Duan, N.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Emami, H.

Fang, Q.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Fischer, D.

P. Bacon, D. Fischer, and R. Lourens, “Overview of RF switch technology and applications,” Microwave J. 57, 76–88 (2014).

Fok, M. P.

J. Ge and M. P. Fok, “Ultra high-speed radio frequency switch based on photonics,” Sci. Rep. 5, 17263 (2015).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Gasulla, I.

Ge, J.

J. Ge and M. P. Fok, “Ultra high-speed radio frequency switch based on photonics,” Sci. Rep. 5, 17263 (2015).
[Crossref]

Geng, Z.

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, and A. J. Lowery, “Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Heideman, R.

L. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21, 3114–3124 (2013).
[Crossref]

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Hindle, P.

P. Hindle, “The state of RF/microwave switches,” Microwave J. 53, 20–36 (2010).

Hoekman, M.

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Holmes, A. S.

S. Pranonsatit, A. S. Holmes, I. D. Robertson, and S. Lucyszyn, “Single-pole eight-throw RF MEMS rotary switch,” J. Microelectromech. Syst. 15, 1735–1744 (2006).
[Crossref]

Hu, Y.

Izhaky, N.

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Leinse, A.

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

L. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21, 3114–3124 (2013).
[Crossref]

Li, C.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Li, X.

Li, Z.

Liao, L.

Lim, A. E.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Liow, T. Y.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Liu, A.

Liu, X.

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5, 6600606 (2013).
[Crossref]

Lloret, J.

Lourens, R.

P. Bacon, D. Fischer, and R. Lourens, “Overview of RF switch technology and applications,” Microwave J. 57, 76–88 (2014).

Lowery, A. J.

Y. Xie, L. Zhuang, and A. J. Lowery, “Silicon microring modulator-based RF mixer for millimeter-wave phase-coded signal generation,” Opt. Lett. 42, 2742–2745 (2017).
[Crossref]

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, and A. J. Lowery, “Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.

Lucyszyn, S.

S. Pranonsatit, A. S. Holmes, I. D. Robertson, and S. Lucyszyn, “Single-pole eight-throw RF MEMS rotary switch,” J. Microelectromech. Syst. 15, 1735–1744 (2006).
[Crossref]

Luo, B.

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5, 6600606 (2013).
[Crossref]

Madsen, C. K.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Mora, J.

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Muldavin, J. B.

G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microw. 2, 59–71 (2001).
[Crossref]

Nguyen, H.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Pan, W.

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5, 6600606 (2013).
[Crossref]

Paniccia, M.

Peters, J. D.

Pranonsatit, S.

S. Pranonsatit, A. S. Holmes, I. D. Robertson, and S. Lucyszyn, “Single-pole eight-throw RF MEMS rotary switch,” J. Microelectromech. Syst. 15, 1735–1744 (2006).
[Crossref]

Rebeiz, G. M.

G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microw. 2, 59–71 (2001).
[Crossref]

Robertson, I. D.

S. Pranonsatit, A. S. Holmes, I. D. Robertson, and S. Lucyszyn, “Single-pole eight-throw RF MEMS rotary switch,” J. Microelectromech. Syst. 15, 1735–1744 (2006).
[Crossref]

Roeloffzen, C.

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

L. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21, 3114–3124 (2013).
[Crossref]

Roeloffzen, C. G.

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

Rubin, D.

Sales, S.

Sancho, J.

Sarkhosh, N.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Song, B.

Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, and A. J. Lowery, “Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.

Song, J.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Taddei, C.

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Tern, R. P.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Tsuji, K.

K. Tsuji and T. Uehara, “Photonic generation of a phase-switchable ASK signal using orthogonal polarization modes of a single optical phase modulator,” in Opto-Electronics and Communications Conference (2017), paper s1257.

Tu, X.

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Uehara, T.

K. Tsuji and T. Uehara, “Photonic generation of a phase-switchable ASK signal using orthogonal polarization modes of a single optical phase modulator,” in Opto-Electronics and Communications Conference (2017), paper s1257.

van Dijk, P.

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Wang, Q.

Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, and A. J. Lowery, “Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.

Xiao, X.

Xie, Y.

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

Y. Xie, L. Zhuang, and A. J. Lowery, “Silicon microring modulator-based RF mixer for millimeter-wave phase-coded signal generation,” Opt. Lett. 42, 2742–2745 (2017).
[Crossref]

Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, and A. J. Lowery, “Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.

Xu, H.

Yan, L.

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5, 6600606 (2013).
[Crossref]

Yao, J.

Yu, J.

Yu, Y.

Zhang, C.

Zhang, S.

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Zheng, D.

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5, 6600606 (2013).
[Crossref]

Zhuang, L.

Y. Xie, L. Zhuang, and A. J. Lowery, “Silicon microring modulator-based RF mixer for millimeter-wave phase-coded signal generation,” Opt. Lett. 42, 2742–2745 (2017).
[Crossref]

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

L. Zhuang, W. Beeker, A. Leinse, R. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express 21, 3114–3124 (2013).
[Crossref]

Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, and A. J. Lowery, “Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.

Zou, X.

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5, 6600606 (2013).
[Crossref]

Front. Phys. (1)

C. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

IEEE Microw. (1)

G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microw. 2, 59–71 (2001).
[Crossref]

IEEE Photon. J. (1)

X. Liu, W. Pan, X. Zou, D. Zheng, L. Yan, and B. Luo, “Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering,” IEEE Photon. J. 5, 6600606 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Microelectromech. Syst. (1)

S. Pranonsatit, A. S. Holmes, I. D. Robertson, and S. Lucyszyn, “Single-pole eight-throw RF MEMS rotary switch,” J. Microelectromech. Syst. 15, 1735–1744 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Sel. Top. Quantum Electron. (2)

A. E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Laser Photon. Rev. (1)

L. Zhuang, M. Hoekman, W. Beeker, A. Leinse, R. Heideman, P. Dijk, and C. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photon. Rev. 7, 994–1002 (2013).
[Crossref]

Microwave J. (2)

P. Hindle, “The state of RF/microwave switches,” Microwave J. 53, 20–36 (2010).

P. Bacon, D. Fischer, and R. Lourens, “Overview of RF switch technology and applications,” Microwave J. 57, 76–88 (2014).

Nanophotonics (1)

Y. Xie, Z. Geng, L. Zhuang, M. Burla, C. Taddei, M. Hoekman, A. Leinse, C. G. Roeloffzen, K. J. Boller, and A. J. Lowery, “Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity,” Nanophotonics 7, 421–454 (2017).
[Crossref]

Nat. Photonics (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Sci. Rep. (1)

J. Ge and M. P. Fok, “Ultra high-speed radio frequency switch based on photonics,” Sci. Rep. 5, 17263 (2015).
[Crossref]

Other (5)

K. Tsuji and T. Uehara, “Photonic generation of a phase-switchable ASK signal using orthogonal polarization modes of a single optical phase modulator,” in Opto-Electronics and Communications Conference (2017), paper s1257.

Agilent, Understanding RF/Microwave Solid State Switches and Their Applications, Application Note (Agilent Technologies, 2010).

C. H. Cox, Analog Optical Links (Cambridge University, 2004).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Y. Xie, L. Zhuang, R. Broeke, Q. Wang, B. Song, Z. Geng, and A. J. Lowery, “Compact 4 × 5  Gb/s silicon-on-insulator OFDM transmitter,” in Optical Fiber Communication (OFC) Conference (2017), paper W2A.9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of the frequency-switch generation system using the proposed photonic method. (b) A frequency-domain illustration of the system working principle. (c) A time-domain illustration of the signal waveforms.
Fig. 2.
Fig. 2. (a) The schematic and (b) photomicrograph of the silicon modulator. (S, signal; G, ground.)
Fig. 3.
Fig. 3. (a) Electro-optical bandwidth measurements of the TW-Si-mod (with a bias of 0 V). (b) Measured power transmissions of the TW-Si-mod for different bias voltages.
Fig. 4.
Fig. 4. Experimental setup of the proposed millimeter (mm)-wave frequency-switch system. (ECL, external cavity laser; PC, polarization controller; PPG, pulse pattern generator; EDFA, erbium-doped fiber amplifier; WSS, waveshaper; PD, photodiode.)
Fig. 5.
Fig. 5. Power transmissions before TW-Si-mod, after TW-Si-mod with control signal on and off, (a)–(c) when both external MZMs are biased at quadrature transmission point, (d)–(f) when both external MZMs are biased at minimum transmission point. (RF seed frequencies are 20 GHz and 15 GHz.)
Fig. 6.
Fig. 6. Waveform measurements of generated RF signals without chip: (a) and (b) with DSB-FC modulation; (c) and (d) with DSB-SC modulation. (RF seed frequencies are 20 GHz and 15 GHz.)
Fig. 7.
Fig. 7. Waveform measurements of generated RF signals modulated by a square wave signal: (a)–(c) with DSB-FC modulation; (d)–(f) with DSB-SC modulation. (RF seed frequencies are 20 GHz and 15 GHz.)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E MZM ( t ) = δ MZM { J 0 ( m MZM ) exp ( j 2 π ν t ) + J 1 ( m MZM ) exp [ j 2 π ( ν + f in ) t ] J 1 ( m MZM ) exp [ j 2 π ( ν f in ) t } ,
E MZM ( t ) = δ MZM { J 1 ( m MZM ) exp [ j 2 π ( ν + f in ) t ] J 1 ( m MZM ) exp [ j 2 π ( ν f in ) t } .
[ Y 1 Y 2 ] = [ H 11 H 12 H 21 H 22 ] [ X 1 X 2 ] ,
[ H 11 H 12 H 21 H 22 ] = α [ e j Δ φ e j 2 π f Δ t 1 j ( e j Δ φ e j 2 π f Δ t 1 ) j ( e j Δ φ e j 2 π f Δ t + 1 ) e j Δ φ e j 2 π f Δ t + 1 ] ,
i ( t ) = γ R PD [ E out ( t ) · E out ( t ) * ] 2 ,
E out ( t ) = δ MZM { J 0 ( m MZM ) exp ( j 2 π ν t ) H 11 ( ν ) + J 1 ( m MZM ) exp [ j 2 π ( ν + f x ) t ] H 11 ( ν + f x ) J 1 ( m MZM ) exp [ j 2 π ( ν f x ) t ] H 11 ( ν f x ) } , x = 1 , 2 ,