Abstract

Laser cooling of mechanical degrees of freedom is one of the most significant achievements in the field of optomechanics. Here, we report, for the first time to the best of our knowledge, efficient passive optomechanical cooling of the motion of a freestanding waveguide coupled to a whispering-gallery-mode (WGM) resonator. The waveguide is an 8 mm long glass-fiber nanospike, which has a fundamental flexural resonance at Ω/2π=2.5  kHz and a Q-factor of 1.2×105. Upon launching 250  μW laser power at an optical frequency close to the WGM resonant frequency, we observed cooling of the nanospike resonance from room temperature down to 1.8 K. Simultaneous cooling of the first higher-order mechanical mode is also observed. The strong suppression of the overall Brownian motion of the nanospike, observed as an 11.6 dB reduction in its mean square displacement, indicates strong optomechanical stabilization of linear coupling between the nanospike and the cavity mode. The cooling is caused predominantly by a combination of photothermal effects and optical forces between nanospike and WGM resonator. The results are of direct relevance in the many applications of WGM resonators, including atom physics, optomechanics, and sensing.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Aspelmeyer, T. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  2. G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photon. 9, 828–890 (2017).
    [Crossref]
  3. C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
    [Crossref]
  4. K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
    [Crossref]
  5. M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer, “Cooling-by-measurement and mechanical state tomography via pulsed optomechanics,” Nat. Commun. 4, 2295 (2013).
    [Crossref]
  6. F. Elste, S. M. Girvin, and A. A. Clerk, “quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 103, 149902 (2009).
    [Crossref]
  7. A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer, and R. Schnabel, “Observation of generalized optomechanical coupling and cooling on cavity resonance,” Phys. Rev. Lett. 114, 043601 (2015).
    [Crossref]
  8. T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
    [Crossref]
  9. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
    [Crossref]
  10. J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
    [Crossref]
  11. D. Hümmer, P. Schneeweiss, A. Rauschenbeutel, and O. Romero-Isart, “Heating in nanophotonic traps for cold atoms,” Phys. Rev. X 9, 041034 (2019).
    [Crossref]
  12. N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,” Nature 566, 359–362 (2019).
    [Crossref]
  13. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref]
  14. T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletić, and M. D. Lukin, “Efficient fiber-optical interface for nanophotonic devices,” Optica 2, 70–75 (2015).
    [Crossref]
  15. M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum optical circulator controlled by a single chirally coupled atom,” Science 354, 1577–1580 (2016).
    [Crossref]
  16. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
    [Crossref]
  17. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photon. 7, 168–240 (2015).
    [Crossref]
  18. Y. L. Li, J. Millen, and P. Barker, “Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances,” Opt. Express 24, 1392–1401 (2016).
    [Crossref]
  19. S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
    [Crossref]
  20. M. Li, W. H. P. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
    [Crossref]
  21. J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
    [Crossref]
  22. R. Pennetta, S. Xie, and P. St.J. Russell, “Tapered glass-fiber microspike: high-Q flexural wave resonator and optically driven Knudsen pump,” Phys. Rev. Lett. 117, 273901 (2016).
    [Crossref]
  23. S. Xie, R. Pennetta, and P. St.J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3, 277–282 (2016).
    [Crossref]
  24. R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. St.J. Russell, “Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell,” Phys. Rev. Appl. 8, 014014 (2017).
    [Crossref]
  25. M. Pöllinger, D. O’shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
    [Crossref]
  26. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St.J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Opt. Lett. 26, 1137–1139 (2001).
    [Crossref]
  27. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref]
  28. A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
    [Crossref]
  29. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
    [Crossref]
  30. P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 83, 3174–3177 (1999).
    [Crossref]
  31. M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
    [Crossref]

2019 (2)

D. Hümmer, P. Schneeweiss, A. Rauschenbeutel, and O. Romero-Isart, “Heating in nanophotonic traps for cold atoms,” Phys. Rev. X 9, 041034 (2019).
[Crossref]

N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,” Nature 566, 359–362 (2019).
[Crossref]

2018 (2)

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

2017 (2)

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. St.J. Russell, “Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell,” Phys. Rev. Appl. 8, 014014 (2017).
[Crossref]

G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photon. 9, 828–890 (2017).
[Crossref]

2016 (5)

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum optical circulator controlled by a single chirally coupled atom,” Science 354, 1577–1580 (2016).
[Crossref]

R. Pennetta, S. Xie, and P. St.J. Russell, “Tapered glass-fiber microspike: high-Q flexural wave resonator and optically driven Knudsen pump,” Phys. Rev. Lett. 117, 273901 (2016).
[Crossref]

S. Xie, R. Pennetta, and P. St.J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3, 277–282 (2016).
[Crossref]

Y. L. Li, J. Millen, and P. Barker, “Simultaneous cooling of coupled mechanical oscillators using whispering gallery mode resonances,” Opt. Express 24, 1392–1401 (2016).
[Crossref]

2015 (3)

2014 (3)

T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
[Crossref]

M. Aspelmeyer, T. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

2013 (1)

M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer, “Cooling-by-measurement and mechanical state tomography via pulsed optomechanics,” Nat. Commun. 4, 2295 (2013).
[Crossref]

2012 (2)

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

2009 (3)

M. Li, W. H. P. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

F. Elste, S. M. Girvin, and A. A. Clerk, “quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 103, 149902 (2009).
[Crossref]

M. Pöllinger, D. O’shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

2008 (1)

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

2007 (2)

A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
[Crossref]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

2004 (2)

2001 (1)

1999 (1)

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 83, 3174–3177 (1999).
[Crossref]

1997 (1)

Arain, M. A.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer, “Cooling-by-measurement and mechanical state tomography via pulsed optomechanics,” Nat. Commun. 4, 2295 (2013).
[Crossref]

Barclay, P. E.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Barker, P.

Bayer, B. C.

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Birks, T. A.

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Børkje, K.

T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
[Crossref]

Cai, H.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Carmon, T.

Chandra, A.

N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,” Nature 566, 359–362 (2019).
[Crossref]

Chembo, Y. K.

Chen, T. N.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Cheung, G.

Chin, L. K.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Ciani, G.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Clerk, A. A.

F. Elste, S. M. Girvin, and A. A. Clerk, “quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 103, 149902 (2009).
[Crossref]

Cohadon, P. F.

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 83, 3174–3177 (1999).
[Crossref]

Coillet, A.

Cole, G. D.

M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer, “Cooling-by-measurement and mechanical state tomography via pulsed optomechanics,” Nat. Commun. 4, 2295 (2013).
[Crossref]

Corzo, N. V.

N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,” Nature 566, 359–362 (2019).
[Crossref]

Davis, J. P.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

de Leon, N. P.

DeRosa, R. T.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Deutsch, B.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Deutsch, C.

A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
[Crossref]

Dimmick, T. E.

Effler, A.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Eichenfield, M.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Elste, F.

F. Elste, S. M. Girvin, and A. A. Clerk, “quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 103, 149902 (2009).
[Crossref]

Feldbaum, D.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Flowers-Jacobs, N. E.

A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
[Crossref]

Foreman, M. R.

Freeman, M. R.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Frolov, V. V.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Fulda, P.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Gieseler, J.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Girvin, S. M.

F. Elste, S. M. Girvin, and A. A. Clerk, “quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 103, 149902 (2009).
[Crossref]

Gleason, J.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Gouraud, B.

N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,” Nature 566, 359–362 (2019).
[Crossref]

Gu, Y. D.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Gupta, S.

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Hammerer, K.

A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer, and R. Schnabel, “Observation of generalized optomechanical coupling and cooling on cavity resonance,” Phys. Rev. Lett. 114, 043601 (2015).
[Crossref]

Hao, Y. L.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Harris, J. G. E.

A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
[Crossref]

Healey, C.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Heidmann, A.

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 83, 3174–3177 (1999).
[Crossref]

Heintze, M.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Hilico, A.

M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum optical circulator controlled by a single chirally coupled atom,” Science 354, 1577–1580 (2016).
[Crossref]

Hoch, S. W.

A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
[Crossref]

Hofer, J.

M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer, “Cooling-by-measurement and mechanical state tomography via pulsed optomechanics,” Nat. Commun. 4, 2295 (2013).
[Crossref]

Hryciw, A. C.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Huang, J. G.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Hümmer, D.

D. Hümmer, P. Schneeweiss, A. Rauschenbeutel, and O. Romero-Isart, “Heating in nanophotonic traps for cold atoms,” Phys. Rev. X 9, 041034 (2019).
[Crossref]

Jacques, F.

Jayakumar, H.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Kakarantzas, G.

Karim, M. F.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Karrai, K.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[Crossref]

Kashkanova, A. D.

A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
[Crossref]

Kaufer, H.

A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer, and R. Schnabel, “Observation of generalized optomechanical coupling and cooling on cavity resonance,” Phys. Rev. Lett. 114, 043601 (2015).
[Crossref]

Kawabe, K.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Khalili, F. Y.

A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer, and R. Schnabel, “Observation of generalized optomechanical coupling and cooling on cavity resonance,” Phys. Rev. Lett. 114, 043601 (2015).
[Crossref]

King, E. J.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Kippenberg, T.

M. Aspelmeyer, T. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Knight, J. C.

Kokeyama, K.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Korth, W. Z.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Lake, D. P.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Laurat, J.

N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,” Nature 566, 359–362 (2019).
[Crossref]

Le Roux, R.

Lenahan, F.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. St.J. Russell, “Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell,” Phys. Rev. Appl. 8, 014014 (2017).
[Crossref]

Li, M.

M. Li, W. H. P. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

Li, Y.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Li, Y. L.

Lin, G.

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Liu, A. Q.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Lukin, M. D.

Marquardt, F.

M. Aspelmeyer, T. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Martin, R. M.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Metzger, C. H.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[Crossref]

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Millen, J.

Moore, K. L.

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Mridha, M.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. St.J. Russell, “Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell,” Phys. Rev. Appl. 8, 014014 (2017).
[Crossref]

Mueller, C. L.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Mueller, G.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Mullavey, A.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Murch, K. W.

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Nayak, K. P.

Nia, R. M.

A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer, and R. Schnabel, “Observation of generalized optomechanical coupling and cooling on cavity resonance,” Phys. Rev. Lett. 114, 043601 (2015).
[Crossref]

Novoa, D.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. St.J. Russell, “Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell,” Phys. Rev. Appl. 8, 014014 (2017).
[Crossref]

Novotny, L.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

O’shea, D.

M. Pöllinger, D. O’shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

Ojanen, T.

T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
[Crossref]

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Papencordt, D.

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Pennetta, R.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. St.J. Russell, “Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell,” Phys. Rev. Appl. 8, 014014 (2017).
[Crossref]

R. Pennetta, S. Xie, and P. St.J. Russell, “Tapered glass-fiber microspike: high-Q flexural wave resonator and optically driven Knudsen pump,” Phys. Rev. Lett. 117, 273901 (2016).
[Crossref]

S. Xie, R. Pennetta, and P. St.J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3, 277–282 (2016).
[Crossref]

Peold, J.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Perahia, R.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

Peyronel, T.

Pinard, M.

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 83, 3174–3177 (1999).
[Crossref]

Pöllinger, M.

M. Pöllinger, D. O’shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

Qiu, C. W.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Quetschke, V.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Quidant, R.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Raskop, J.

N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,” Nature 566, 359–362 (2019).
[Crossref]

Rauschenbeutel, A.

D. Hümmer, P. Schneeweiss, A. Rauschenbeutel, and O. Romero-Isart, “Heating in nanophotonic traps for cold atoms,” Phys. Rev. X 9, 041034 (2019).
[Crossref]

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum optical circulator controlled by a single chirally coupled atom,” Science 354, 1577–1580 (2016).
[Crossref]

M. Pöllinger, D. O’shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

Reichel, J.

A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
[Crossref]

Reitze, D. H.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Romero-Isart, O.

D. Hümmer, P. Schneeweiss, A. Rauschenbeutel, and O. Romero-Isart, “Heating in nanophotonic traps for cold atoms,” Phys. Rev. X 9, 041034 (2019).
[Crossref]

Russell, P. St.J.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. St.J. Russell, “Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell,” Phys. Rev. Appl. 8, 014014 (2017).
[Crossref]

S. Xie, R. Pennetta, and P. St.J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3, 277–282 (2016).
[Crossref]

R. Pennetta, S. Xie, and P. St.J. Russell, “Tapered glass-fiber microspike: high-Q flexural wave resonator and optically driven Knudsen pump,” Phys. Rev. Lett. 117, 273901 (2016).
[Crossref]

G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St.J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Opt. Lett. 26, 1137–1139 (2001).
[Crossref]

Sawadsky, A.

A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer, and R. Schnabel, “Observation of generalized optomechanical coupling and cooling on cavity resonance,” Phys. Rev. Lett. 114, 043601 (2015).
[Crossref]

Schauffert, H.

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Scheucher, M.

M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum optical circulator controlled by a single chirally coupled atom,” Science 354, 1577–1580 (2016).
[Crossref]

Schnabel, R.

A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer, and R. Schnabel, “Observation of generalized optomechanical coupling and cooling on cavity resonance,” Phys. Rev. Lett. 114, 043601 (2015).
[Crossref]

Schneeweiss, P.

D. Hümmer, P. Schneeweiss, A. Rauschenbeutel, and O. Romero-Isart, “Heating in nanophotonic traps for cold atoms,” Phys. Rev. X 9, 041034 (2019).
[Crossref]

Sheremet, A. S.

N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,” Nature 566, 359–362 (2019).
[Crossref]

Shkarin, A. B.

A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
[Crossref]

Skoff, S. M.

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Stamper-Kurn, D. M.

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Swaim, J. D.

Tang, H.

M. Li, W. H. P. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

Tanner, D. B.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Tarabrin, S. P.

A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer, and R. Schnabel, “Observation of generalized optomechanical coupling and cooling on cavity resonance,” Phys. Rev. Lett. 114, 043601 (2015).
[Crossref]

Thompson, J. D.

Tiecke, T. G.

Vahala, K. J.

Vanner, M. R.

M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer, “Cooling-by-measurement and mechanical state tomography via pulsed optomechanics,” Nat. Commun. 4, 2295 (2013).
[Crossref]

Vollmer, F.

Volz, J.

M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum optical circulator controlled by a single chirally coupled atom,” Science 354, 1577–1580 (2016).
[Crossref]

Vorvick, C.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Vuletic, V.

Warken, F.

M. Pöllinger, D. O’shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

Will, E.

M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum optical circulator controlled by a single chirally coupled atom,” Science 354, 1577–1580 (2016).
[Crossref]

Williams, L. F.

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Wu, J. H.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Wu, M.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Xie, S.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. St.J. Russell, “Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell,” Phys. Rev. Appl. 8, 014014 (2017).
[Crossref]

S. Xie, R. Pennetta, and P. St.J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3, 277–282 (2016).
[Crossref]

R. Pennetta, S. Xie, and P. St.J. Russell, “Tapered glass-fiber microspike: high-Q flexural wave resonator and optically driven Knudsen pump,” Phys. Rev. Lett. 117, 273901 (2016).
[Crossref]

Yang, L.

Yang, Z. C.

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Adv. Opt. Photon. (2)

Appl. Phys. Lett. (1)

J. G. Huang, Y. Li, L. K. Chin, H. Cai, Y. D. Gu, M. F. Karim, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, C. W. Qiu, and A. Q. Liu, “A dissipative self-sustained optomechanical resonator on a silicon chip,” Appl. Phys. Lett. 112, 021052 (2018).
[Crossref]

Nat. Commun. (1)

M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer, “Cooling-by-measurement and mechanical state tomography via pulsed optomechanics,” Nat. Commun. 4, 2295 (2013).
[Crossref]

Nat. Photonics (2)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Nat. Phys. (1)

K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Nature (2)

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[Crossref]

N. V. Corzo, J. Raskop, A. Chandra, A. S. Sheremet, B. Gouraud, and J. Laurat, “Waveguide-coupled single collective excitation of atomic arrays,” Nature 566, 359–362 (2019).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (2)

Phys. Rev. A (2)

T. Ojanen and K. Børkje, “Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency,” Phys. Rev. A 90, 013824 (2014).
[Crossref]

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Phys. Rev. Appl. (1)

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. St.J. Russell, “Fresnel-reflection-free self-aligning nanospike interface between a step-index fiber and a hollow-core photonic-crystal-fiber gas cell,” Phys. Rev. Appl. 8, 014014 (2017).
[Crossref]

Phys. Rev. Lett. (8)

M. Pöllinger, D. O’shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[Crossref]

A. B. Shkarin, N. E. Flowers-Jacobs, S. W. Hoch, A. D. Kashkanova, C. Deutsch, J. Reichel, and J. G. E. Harris, “Optically mediated hybridization between two mechanical modes,” Phys. Rev. Lett. 112, 013602 (2007).
[Crossref]

M. Li, W. H. P. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

R. Pennetta, S. Xie, and P. St.J. Russell, “Tapered glass-fiber microspike: high-Q flexural wave resonator and optically driven Knudsen pump,” Phys. Rev. Lett. 117, 273901 (2016).
[Crossref]

P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 83, 3174–3177 (1999).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

F. Elste, S. M. Girvin, and A. A. Clerk, “quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 103, 149902 (2009).
[Crossref]

A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Y. Khalili, K. Hammerer, and R. Schnabel, “Observation of generalized optomechanical coupling and cooling on cavity resonance,” Phys. Rev. Lett. 114, 043601 (2015).
[Crossref]

Phys. Rev. X (2)

D. Hümmer, P. Schneeweiss, A. Rauschenbeutel, and O. Romero-Isart, “Heating in nanophotonic traps for cold atoms,” Phys. Rev. X 9, 041034 (2019).
[Crossref]

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

C. L. Mueller, M. A. Arain, G. Ciani, R. T. DeRosa, A. Effler, D. Feldbaum, V. V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E. J. King, K. Kokeyama, W. Z. Korth, R. M. Martin, A. Mullavey, J. Peold, V. Quetschke, D. H. Reitze, D. B. Tanner, C. Vorvick, L. F. Williams, and G. Mueller, “The advanced LIGO input optics,” Rev. Sci. Instrum. 87, 014502 (2016).
[Crossref]

Science (1)

M. Scheucher, A. Hilico, E. Will, J. Volz, and A. Rauschenbeutel, “Quantum optical circulator controlled by a single chirally coupled atom,” Science 354, 1577–1580 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Nanospike coupled to a WGM bottle resonator. (a) Sketch of the experimental setup. NS, nanospike; BR, bottle resonator; QPD, quadrant photodiode; PD, photodiode. (b) Optical micrograph of the nanospike coupled to a WGM resonator from the side. (c) Micrograph of a bottle resonator when the laser light is locked into resonance, light being launched from the right. The weak signal radiated by the bottle resonator on resonance could be used to image the near-field of the optical mode using a microscope objective and a sensitive NIR camera. (d) Zoom-in of one of the measured optical mode profiles compared with the result of finite element simulations.
Fig. 2.
Fig. 2. Optomechanical cooling of nanospike motion. (a) Measured mechanical power spectrum in the vicinity of the fundamental (flexural) nanospike mode for five different pump powers. Inset: measured power spectrum for vibrations parallel to the surface (see text) for 0 and 250 μW pump power. The solid lines are Lorentzian fits. (b) Mechanical linewidth (left axis) and inferred effective temperature Teff (right axis) as a function of pump power. The dashed lines are guides for the eye. Inset: same measurement as in (b) but for vibrations parallel to the surface. (c) Measured mechanical power spectra in the vicinity of the first high order (flexural) nanospike mode for increasing values of pump power. The solid lines are Lorentzian fits. Inset: linewidth (left axis) and effective temperature Teff (right axis) of the same mechanical mode as a function of the pump power.
Fig. 3.
Fig. 3. (a) Temporal motion of the nanospike for different launching pump powers (sampling rate 20 kHz). (b) Histogram plots of the nanospike displacements. (c) Mean-squared displacements of the nanospike as a function of pump power. (d) and (e) 50 consecutive measurements of a cavity resonance observed with the second probe laser (1550 nm) when Teff equals (d) 300 K and (e) 6.7 K. (f) Minimum transmission recorded in (d) and (e) as a function of the measurement number; the blue dots correspond to Teff=300  K and the orange dots to Teff=6.7  K. The fluctuations in the experimental data are artifacts of the short total acquisition time (1 s), which was much less than the lifetime of the fundamental mechanical mode (30  s). (g) Nanospike deflection collected over 1.5 ms for Teff=300  K (blue line) and Teff=6.7  K (orange line).
Fig. 4.
Fig. 4. (a) Measured frequency shift of the fundamental flexural mode of the nanospike coupled to a WGM resonator with a diameter of 350 μm, plotted against laser detuning for a launched power of 70 μW (blue dots). The solid line is a fit to the model for generalized optomechanical coupling. Inset: nanospike deflection as a function of time when the pump power was raised just above the threshold for self-oscillation for a laser detuning of 1.6 MHz. (b) Measured mechanical frequency as a function of laser detuning for mechanical oscillation of the nanospike parallel (Ω) and orthogonal (Ω) to the WGM surface (see Appendix E for detailed information).
Fig. 5.
Fig. 5. (a) Measured frequency shift (left axis) and linewidth (right axis) for the excited WGM plotted against nanospike position. The solid lines are fits to the data using exponential functions. (b) Coupling parameters θ1 (dispersive coupling, right axis) and γ1 (dissipative coupling, right axis) plotted as a function of nanospike position.
Fig. 6.
Fig. 6. (a) Dissipative coupling parameter γ1 measured at critical coupling. (b) Corresponding ratio between the dissipative and dispersive coupling parameters (i.e., γ1/θ1). (c) Intrinsic Q-factor for bottle resonators with different diameters. Each cross corresponds to a different optical mode.
Fig. 7.
Fig. 7. Measured resonant frequency shift over time for bottle-resonators with diameters (a) 350 μm and (b) 40 μm. Fitting the data to exponential functions (solid lines) yields thermal time constants (a) τ350μm=8.3  s and (b) τ40μm=0.28  s.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

θ(x)=(ωLωC)+θ1x,
γext(x)=γext(x0)+γ1x,
Teff=TΓΓ+δΓopt,
FI.
Fx(x,y)kxxxkxyy,Fy(x,y)kyxxkyyy,
x¨+Ωx2x=kxxmeffxkxymeffy,y¨+Ωy2y=kxymeffxkyymeffy,
x(t)=χ(t)eiΩ¯t,y(t)=η(t)eiΩ¯t,
χ˙iδΩ2χ=i(κxxχ+κxyη),η˙+iδΩ2η=i(κxyχ+κyyη),
Ω±Ω¯=κxx+κyy2±(δΩ2κxx+κyy2)2+κxy2.