Abstract

Asymmetric transmission, defined as the difference between the forward and backward transmission, enables a plethora of applications for on-chip integration and telecommunications. However, the traditional method for asymmetric transmission is to control the propagation direction of the waves, hindering further applications. Metasurfaces, a kind of two-dimensional metamaterials, have shown an unprecedented ability to manipulate the propagation direction, phase, and polarization of electromagnetic waves. Here we propose and experimentally demonstrate a metasurface-based directional device consisting of a geometric metasurface with spatially rotated microrods and metallic gratings, which can simultaneously control the phase, polarization, and propagation direction of waves, resulting in asymmetric focusing in the terahertz region. These dual-layered metasurfaces for asymmetric focusing can work in a wide bandwidth ranging from 0.6 to 1.1 THz. The flexible and robust approach for designing broadband asymmetric focusing may open a new avenue for compact devices with potential applications in encryption, information processing, and communication.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
    [Crossref]
  2. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590–2592 (2011).
    [Crossref]
  3. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating,” Opt. Express 20, 26636–26648 (2012).
    [Crossref]
  4. D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25, 11329–11339 (2017).
    [Crossref]
  5. A. Cicek, M. B. Yucel, O. A. Kaya, and B. Ulug, “Refraction-based photonic crystal diode,” Opt. Lett. 37, 2937–2939 (2012).
    [Crossref]
  6. D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98, 021911 (2011).
    [Crossref]
  7. A. Shaltout, A. Kildishev, and V. Shalaev, “Time-varying metasurfaces and Lorentz non-reciprocity,” Opt. Mater. Express 5, 2459–2467 (2015).
    [Crossref]
  8. D. L. Sounas and A. Alu, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
    [Crossref]
  9. A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
    [Crossref]
  10. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
    [Crossref]
  11. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85, 195131 (2012).
    [Crossref]
  12. Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1, 482–488 (2013).
    [Crossref]
  13. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
    [Crossref]
  14. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
    [Crossref]
  15. M. Stolarek, D. Yavorskiy, R. Kotynski, C. J. Z. Rodriguez, J. Lusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38, 839–841 (2013).
    [Crossref]
  16. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108, 213905 (2012).
    [Crossref]
  17. H. Kurt, D. Yilmaz, A. E. Akosman, and E. Ozbay, “Asymmetric light propagation in chirped photonic crystal waveguides,” Opt. Express 20, 20635–20646 (2012).
    [Crossref]
  18. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref]
  19. X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
    [Crossref]
  20. Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
    [Crossref]
  21. X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
    [Crossref]
  22. A. Arbabi, Y. Horie, A. J. Ball, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref]
  23. S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
    [Crossref]
  24. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
    [Crossref]
  25. N. Davidson, A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
    [Crossref]
  26. X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
    [Crossref]
  27. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
    [Crossref]
  28. B. Yang, W. M. Ye, X. D. Yuan, Z. H. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett. 38, 679–681 (2013).
    [Crossref]
  29. R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
    [Crossref]
  30. S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
    [Crossref]
  31. E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
    [Crossref]
  32. F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
    [Crossref]
  33. X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
    [Crossref]
  34. D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
    [Crossref]
  35. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  36. B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
    [Crossref]
  37. X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
    [Crossref]
  38. L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
    [Crossref]
  39. Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
    [Crossref]
  40. D. Frese, Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonicmetasurfaces,” Nano. Lett. 19, 3976–3980 (2019).
    [Crossref]
  41. K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
    [Crossref]
  42. Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
    [Crossref]
  43. X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
    [Crossref]
  44. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
    [Crossref]
  45. R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
    [Crossref]
  46. W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
    [Crossref]
  47. F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
    [Crossref]

2020 (1)

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

2019 (6)

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

D. Frese, Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonicmetasurfaces,” Nano. Lett. 19, 3976–3980 (2019).
[Crossref]

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

2018 (8)

F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
[Crossref]

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

2017 (3)

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
[Crossref]

D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25, 11329–11339 (2017).
[Crossref]

D. L. Sounas and A. Alu, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

2016 (2)

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

2015 (8)

A. Arbabi, Y. Horie, A. J. Ball, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
[Crossref]

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

A. Shaltout, A. Kildishev, and V. Shalaev, “Time-varying metasurfaces and Lorentz non-reciprocity,” Opt. Mater. Express 5, 2459–2467 (2015).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

2014 (2)

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

2013 (3)

2012 (7)

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108, 213905 (2012).
[Crossref]

H. Kurt, D. Yilmaz, A. E. Akosman, and E. Ozbay, “Asymmetric light propagation in chirped photonic crystal waveguides,” Opt. Express 20, 20635–20646 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85, 195131 (2012).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating,” Opt. Express 20, 26636–26648 (2012).
[Crossref]

A. Cicek, M. B. Yucel, O. A. Kaya, and B. Ulug, “Refraction-based photonic crystal diode,” Opt. Lett. 37, 2937–2939 (2012).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

2011 (3)

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98, 021911 (2011).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590–2592 (2011).
[Crossref]

2010 (1)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

2007 (1)

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

2006 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

1991 (1)

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Akosman, A. E.

H. Kurt, D. Yilmaz, A. E. Akosman, and E. Ozbay, “Asymmetric light propagation in chirped photonic crystal waveguides,” Opt. Express 20, 20635–20646 (2012).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108, 213905 (2012).
[Crossref]

Alu, A.

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

D. L. Sounas and A. Alu, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Arbabi, E.

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Balakin, A. V.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Bharwani, Z.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

Bowers, J. E.

Boyd, R. W.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Buller, G. S.

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

Caglayan, H.

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating,” Opt. Express 20, 26636–26648 (2012).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

Cakmakyapan, S.

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating,” Opt. Express 20, 26636–26648 (2012).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

Caloz, C.

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98, 021911 (2011).
[Crossref]

Capasso, F.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Chan, K.

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Cheah, K. W.

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, B.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Chen, J.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Chen, J.-W.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Chen, K.

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

Chen, L.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

Chen, M.

Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
[Crossref]

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, M. K.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Chen, P.

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

Chen, S.

Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
[Crossref]

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Chen, W. T.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
[Crossref]

Chen, X.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
[Crossref]

Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
[Crossref]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Chen, Y.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Chen, Y. H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Cheng, Q.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

Chu, C. H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Chu, W.

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Chung, T. L.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Cicek, A.

Dai, D.

Davidson, N.

Davoyan, A. R.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

Ding, G.

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

Ding, H.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

Dong, F.

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Dong, J. F.

Dong, Z.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Engheta, N.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

Fan, R.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Feng, Y.

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85, 195131 (2012).
[Crossref]

Frese, D.

D. Frese, Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonicmetasurfaces,” Nano. Lett. 19, 3976–3980 (2019).
[Crossref]

Friesem, A.

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Gerardot, B. D.

F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
[Crossref]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
[Crossref]

Gokkavas, M.

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1, 482–488 (2013).
[Crossref]

Gong, Q.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Gu, M.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

Guo, X.

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

Guo, Y.

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

Hasman, E.

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Hu, G.

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

Hu, Q.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

Hu, Y.

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

Huang, C.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85, 195131 (2012).
[Crossref]

Huang, L.

D. Frese, Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonicmetasurfaces,” Nano. Lett. 19, 3976–3980 (2019).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Huang, T.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Huang, X.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Huang, Y.

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

Huang, Y. W.

Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
[Crossref]

Huang, Y.-T.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Intaravanne, Y.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

Jiang, S.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

Jiang, T.

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85, 195131 (2012).
[Crossref]

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Jin, L.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Jin, Z.

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

Kamali, S. M.

Karimi, E.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Kaya, O. A.

Ke, Q.

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Khardikov, V. V.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Khorasaninejad, M.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
[Crossref]

Kildishev, A.

Kivshar, Y. S.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Kotynski, R.

Kuan, C.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Kuo, H.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Kuo, H. Y.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Kurt, H.

Kuznetsov, A. I.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Lai, Y.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
[Crossref]

Leon, I. D.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Li, K. F.

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Li, M. H.

Li, Q. T.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Li, T.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Li, X.

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Li, Y.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Li, Z.

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1, 482–488 (2013).
[Crossref]

Lin, R.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Lin, R. J.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Luo, X.

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

Lusakowski, J.

Ma, G.

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

Ma, X.

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

Mahmoud, A. M.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

Mao, C.

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

Mehmood, M. Q.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Mei, S.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Miao, C.

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Mutlu, M.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108, 213905 (2012).
[Crossref]

Ozbay, E.

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1, 482–488 (2013).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating,” Opt. Express 20, 26636–26648 (2012).
[Crossref]

H. Kurt, D. Yilmaz, A. E. Akosman, and E. Ozbay, “Asymmetric light propagation in chirped photonic crystal waveguides,” Opt. Express 20, 20635–20646 (2012).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108, 213905 (2012).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

Pan, W. K.

Pan, Z.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Peng, R.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

Peng, Y.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Pu, M.

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

Pun, E. Y. B.

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Qassim, H.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Qiu, C.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Qiu, C. W.

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Ren, X.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Rezaei, S.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Rodriguez, C. J. Z.

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
[Crossref]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Schwanecke, A. S.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Serebryannikov, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108, 213905 (2012).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating,” Opt. Express 20, 26636–26648 (2012).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

Shalaev, V.

Shaltout, A.

Shi, Z. J.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
[Crossref]

Shkurinov, A. P.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

Sisler, J.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

Song, Z.

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Sounas, D. L.

D. L. Sounas and A. Alu, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98, 021911 (2011).
[Crossref]

Stolarek, M.

Su, V.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Su, V.-C.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Sun, C.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

Sun, G.

Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
[Crossref]

Sun, Q.

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

Szoplik, T.

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Tang, D. F.

Tsai, D.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Tsai, D. P.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
[Crossref]

Tsai, W.

Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
[Crossref]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

Ulug, B.

Upham, J.

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

Wang, B.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Wang, C.

D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25, 11329–11339 (2017).
[Crossref]

Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
[Crossref]

Wang, J.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wang, J.-H.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Wang, M.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

Wang, S.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wang, W.

Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
[Crossref]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
[Crossref]

Wang, Y.

D. Frese, Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonicmetasurfaces,” Nano. Lett. 19, 3976–3980 (2019).
[Crossref]

Wang, Z.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85, 195131 (2012).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590–2592 (2011).
[Crossref]

Wei, D.

F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
[Crossref]

Wei, Q.

D. Frese, Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonicmetasurfaces,” Nano. Lett. 19, 3976–3980 (2019).
[Crossref]

Wei, Z.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Wen, D.

Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
[Crossref]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wong, P. W. H.

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Wu, P.

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
[Crossref]

Wu, P. C.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Xiao, Y. F.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Xie, J.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

Xiong, X.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

Xu, D.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Xu, L.

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Xu, W.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

Yang, B.

Yang, D.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

Yang, H.

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

Yang, J. K. W.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Yao, B.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

Yavorskiy, D.

Ye, W. M.

Yilmaz, D.

You, G.

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

Yu, Y.

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

Yuan, X. D.

Yucel, M. B.

Yue, D. F.

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Yue, F.

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
[Crossref]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

Zang, X.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

Zeng, C.

Zentgraf, T.

D. Frese, Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonicmetasurfaces,” Nano. Lett. 19, 3976–3980 (2019).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Zhang, C.

Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
[Crossref]

F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
[Crossref]

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
[Crossref]

Zhang, S.

F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
[Crossref]

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Zhang, Z.

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
[Crossref]

Zhao, J.

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85, 195131 (2012).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Zheng, G.

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhou, Y.

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Zhu, A. Y.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
[Crossref]

Zhu, S.

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Zhu, Y.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

Zhu, Z. H.

Zhuang, S.

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

ACS Photon. (2)

Z. Zhang, D. Wen, C. Zhang, M. Chen, W. Wang, S. Chen, and X. Chen, “Multifunctional light sword metasurface lens,” ACS Photon. 5, 1794–1799 (2018).
[Crossref]

Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, X. Li, and X. Luo, “Asymmetric transmission and wavefrontmanipulation toward dual-frequency meta-holograms,” ACS Photon. 6, 1541–1546 (2019).
[Crossref]

Adv. Mater. (4)

X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, “Polarization encoded color image embedded in a dielectric metasurface,” Adv. Mater. 30, 1707499 (2018).
[Crossref]

K. Chen, G. Ding, G. Hu, Z. Jin, J. Zhao, Y. Feng, T. Jiang, A. Alu, and C. W. Qiu, “Directional Janus metasurface,” Adv. Mater. 32, 1906352 (2019).
[Crossref]

F. Yue, D. Wen, C. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Chen, “Multichannel polarization-controllable superpositions of orbital angular momentum states,” Adv. Mater. 29, 1603838 (2017).
[Crossref]

R. Fan, Y. Zhou, X. Ren, R. Peng, S. Jiang, D. Xu, X. Xiong, X. Huang, and M. Wang, “Freely tunable broadband polarization rotator for terahertz waves,” Adv. Mater. 27, 1201–1206 (2015).
[Crossref]

Adv. Opt. Mater. (4)

X. Zang, Y. Zhu, C. Mao, W. Xu, H. Ding, J. Xie, Q. Cheng, L. Chen, Y. Peng, Q. Hu, M. Gu, and S. Zhuang, “Manipulating terahertz plasmonic vortex based on geometric and dynamic phase,” Adv. Opt. Mater. 7, 1801328 (2018).
[Crossref]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal multifocimetalens for circularly polarized light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[Crossref]

X. Zang, W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Xie, A. V. Balakin, A. P. Shkurinov, Y. Zhu, and S. Zhuang, “Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging,” Adv. Opt. Mater. 8, 1901342 (2020).
[Crossref]

Z. Li, M. Gokkavas, and E. Ozbay, “Manipulation of asymmetric transmission in planar chiral nanostructures by anisotropic loss,” Adv. Opt. Mater. 1, 482–488 (2013).
[Crossref]

Appl. Phys. Lett. (3)

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98, 051103 (2011).
[Crossref]

D. L. Sounas and C. Caloz, “Electromagnetic nonreciprocity and gyrotropy of graphene,” Appl. Phys. Lett. 98, 021911 (2011).
[Crossref]

X. Zang, C. Miao, X. Guo, G. You, H. Yang, L. Chen, Y. Zhu, and S. Zhuang, “Polarization-controlled terahertz superfocusing,” Appl. Phys. Lett. 113, 071102 (2018).
[Crossref]

Laser Photon. Rev. (1)

X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A multi-foci metalens with polarization-rotated focal points,” Laser Photon. Rev. 13, 1900182 (2019).
[Crossref]

Light Sci. Appl. (2)

E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3, e167 (2014).
[Crossref]

F. Yue, C. Zhang, X. Zang, D. Wei, B. D. Gerardot, S. Zhang, and X. Chen, “High-resolution grayscale image hidden in a laser beam,” Light Sci. Appl. 7, 17129 (2018).
[Crossref]

Nano Lett. (4)

L. Jin, Z. Dong, S. Mei, Y. Yu, Z. Wei, Z. Pan, S. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, “Noninterleaved metasurface for (26−1) spin- and wavelength-encoded holograms,” Nano Lett. 18, 8016–8024 (2018).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16, 5235–5240 (2016).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12, 6328–6333 (2012).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7, 1996–1999 (2007).
[Crossref]

Nano. Lett. (2)

Y. W. Huang, W. T. Chen, W. Tsai, P. Wu, C. Wang, G. Sun, and D. P. Tsai, “Aluminum plasmonic multicolor meta-hologram,” Nano. Lett. 15, 3122–3127 (2015).
[Crossref]

D. Frese, Q. Wei, Y. Wang, L. Huang, and T. Zentgraf, “Nonreciprocal asymmetric polarization encryption by layered plasmonicmetasurfaces,” Nano. Lett. 19, 3976–3980 (2019).
[Crossref]

Nat. Commun. (5)

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 355 (2019).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6, 8359 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

D. Wen, D. F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6, 8241 (2015).
[Crossref]

Nat. Nanotechnol. (4)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

S. Wang, P. Wu, V. Su, Y. Lai, M. Chen, H. Kuo, B. Chen, Y. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, and D. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2019).
[Crossref]

R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2018).
[Crossref]

Nat. Photonics (1)

D. L. Sounas and A. Alu, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11, 774–783 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (1)

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85, 195131 (2012).
[Crossref]

Phys. Rev. Lett. (3)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108, 213905 (2012).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref]

Phys. Rev. X. (1)

S. Jiang, X. Xiong, Y. Hu, Y. Hu, G. Ma, R. Peng, C. Sun, and M. Wang, “Controlling the polarization state of light with a dispersion-free metastructure,” Phys. Rev. X. 4, 021026 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Schematic of asymmetric focusing. Under the illumination of x-polarized THz waves in the forward direction, a y-polarized focal spot is observed, while the focal spot is not generated for backward x-polarized incidence.
Fig. 2.
Fig. 2. Design of dual-layered metasurfaces: (a1) and (a2) schematic and the corresponding geometric phase of the microrod; (b1) and (b2) schematic and the corresponding transmission spectra of the metallic gratings; (c1) and (c2) schematic and the corresponding transmission spectra of the metasurface combined with metallic gratings; (d1) and (d2) optical images of the metasurface and metallic gratings.
Fig. 3.
Fig. 3. (a1)–(f1) Numerical simulation of electric field distributions in the xz plane under the illumination of x-polarized THz waves in the forward/backward direction at 0.6, 0.85, and 1.1 THz; (a2)–(f2) the corresponding electric field distributions in the xy plane.
Fig. 4.
Fig. 4. (a1)–(f1) The measured electric field distributions in the xz plane under the illumination of x-polarized THz waves in the forward/backward direction at 0.6, 0.85, 1.1 THz; (a2)–(f2) the corresponding electric field distributions in the xy plane.
Fig. 5.
Fig. 5. Numerical simulation of asymmetric transmission with (a) and (b) longitudinal and (c) and (d) transversal multiple focal spots.
Fig. 6.
Fig. 6. (a1)–(c1) Schematics of a microrod, metallic gratings, and a unit cell of the directional device. The intersection angle between the long axis of the microrod and the x axis is 45°, while the long axis of gratings is along the x axis. (a2)–(a4) The co-polarized/cross-polarized/total transmission and reflection of the microrod under the illumination of linearly polarized THz waves. (b2)–(b4) The co-polarized/cross-polarized/total transmission and reflection of the metallic gratings under the illumination of linearly polarized THz waves. (c2)–(c4) The co-polarized/cross-polarized/total transmission and reflection of the unit cell of the directional device under the illumination of linearly polarized THz waves. Tij(Rij) is the transmission (reflection) of the i-polarized THz waves under the illumination of j-polarized THz waves (i,j=x,y). Ti(Ri,i=x,y) is the total transmission (total reflection) under the illumination of i-polarized THz waves.
Fig. 7.
Fig. 7. (a1)–(f1) Numerical simulation of electric field distributions in the xz plane under the illumination of y-polarized THz waves in the forward direction at 0.6, 0.85, and 1.1 THz; (a2)–(f2) the calculated electric field distributions for backward incidence.
Fig. 8.
Fig. 8. The calculated and measured electric field distributions in the xz plane under the illumination of the x-polarized THz waves from the (a1)–(f1) forward and (a2)–(f2) backward directions at 0.6, 0.85, and 1.1 THz.
Fig. 9.
Fig. 9. The calculated electric field distributions in the xz plane under the illumination of the x-polarized THz waves in the (a1), (b1) forward and (a2), (b2) backward directions at 0.85 THz.
Fig. 10.
Fig. 10. Calculated efficiency of the directional device under the illumination of x-polarized THz waves in the forward direction.
Fig. 11.
Fig. 11. Schematic of multiple transmissions from the dual-layered metasurfaces.
Fig. 12.
Fig. 12. Comparison of the numerical (blue curves) and experimental (red curves) focusing properties: (a)–(c) the corresponding electric field distributions at x=0 in the focal plane.
Fig. 13.
Fig. 13. Schematics for the extinction ratio defined as (a) TEy/TEx and (b) TEy1/TEy2.
Fig. 14.
Fig. 14. (a1)–(c1) Calculated electric field (|Ey|2) distributions in the xz plane under the illumination of x-polarized THz waves (with different incident angles) in the forward directions at 0.85 THz; (a2)–(c2) the calculated electric field distributions for backward incidence. Insets show the schematics for the incident THz waves with a tilted wavefront.

Tables (5)

Tables Icon

Table 1. Size of the Focal Point

Tables Icon

Table 2. Comparison Between the Diffraction Limit in Theory and the FWHM of the Focal Spots

Tables Icon

Table 3. Extinction Ratio Between |Ey|2 and |Ex|2

Tables Icon

Table 4. Extinction Ratio Between the Forward and Backward Directions

Tables Icon

Table 5. Extinction Ratio for the Directional Device with Two Focal Spots

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

{φLCP(x,y)=2πλ(x2+y2+f2f)φRCP(x,y)=2πλ(x2+y2+f2f),
Φ(x,y)=arg{exp[i(α+φLCP(x,y))]+exp[i(α+φRCP(x,y))]},
{ΦL(x,y)=arg{exp[i(α+φLCP1(x,y))]+exp[i(α+φRCP1(x,y))]+exp[i(α+φLCP2(x,y))]+exp[i(α+φRCP2(x,y))]},ΦT(x,y)=arg{exp[i(α+φLCP3(x,y))]+exp[i(α+φRCP3(x,y))]+exp[i(α+φLCP4(x,y))]+exp[i(α+φRCP4(x,y))]},
[10]=12(12[1i]+12[1i]).
ELCP/RCP=η(λ)eiα[1±i],
Econ=η(λ)eiα[1i]+η(λ)eiα[1i]=η(λ)[cosαsinα].
η(λ)2{12[1i]exp(iα)exp(iφL(x,y))+12[1i]exp(iα)exp(iφL(x,y))}+η(λ)2{12[1i]exp(iα)exp(iφR(x,y))+12[1i]exp(iα)exp(iφR(x,y))}.
η(λ)exp(iφL)[cosαsinα]+η(λ)exp(iφR)[cosαsinα].
Φ(x,y)=arg{exp[i(α+φL(x,y))]+exp[i(α+φR(x,y))]}.
Eout=Eout1+Eout2+Eout3+
t={1(x_Pol)0(y_Pol),
t=nd1+nd2i2k0αga2,
r=nd12+i2k0αga21+nd2i2,
r={1(y_Pol)0(x_Pol),
Eout=Eout1+Eout2+Eout3+=Extt+Exttrre2ind+Extt(rr)2e4ind+=Extt[1+rre2ind+(rr)2e4ind+]=Extt1rre2ind.