Abstract

Fringe projection profilometry has been increasingly sought and applied in dynamic three-dimensional (3D) shape measurement. In this work, a robust, high-efficiency 3D measurement based on Gray-coded light is proposed. Unlike the traditional method, a tripartite phase unwrapping method is proposed to avoid the jump errors on the boundary of code words, which are mainly caused by the defocusing of the projector and the motion of the tested object. Subsequently, the time-overlapping coding strategy is presented to greatly increase the coding efficiency, decreasing the projected number in each group from seven (i.e., 3+4) to four (i.e., 3+1) for one restored 3D frame. The combination of two proposed techniques allows the reconstruction of a pixel-wise and unambiguous 3D geometry of dynamic scenes with strong noise using every four projected patterns. To the best of our knowledge, the presented techniques for the first time preserve the high anti-noise ability of a method based on the Gray code while overcoming the drawbacks of jump errors and low coding efficiency. Experiments have demonstrated that the proposed method can achieve robust, high-efficiency 3D shape measurement of high-speed dynamic scenes even polluted by strong noise.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ford, G. Myer, and T. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sport. Exer. 39, 2021–2028 (2007).
    [Crossref]
  2. E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vision Comput. 21, 171–188 (2003).
    [Crossref]
  3. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
    [Crossref]
  4. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 48, 149–158 (2010).
    [Crossref]
  5. S. Van der Jeught and J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
    [Crossref]
  6. S. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Laser Eng. 106, 119–131 (2018).
    [Crossref]
  7. Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).
  8. L. Gao, J. Liang, C. Li, and L. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–79 (2014).
    [Crossref]
  9. K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
    [Crossref]
  10. S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
    [Crossref]
  11. J. Pagès, J. Salvi, C. Collewet, and J. Forest, “Optimised De Bruijn patterns for one-shot shape acquisition,” Image Vision Comput. 23, 707–720 (2005).
    [Crossref]
  12. H. Morita, K. Yajima, and S. Sakata, “Reconstruction of surfaces of 3-D objects by M-array pattern projection method,” in Second International Conference on Computer Vision (1988), pp. 468–473.
  13. F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114, 201104 (2019).
    [Crossref]
  14. P. Zhou, J. Zhu, and H. Jing, “Optical 3-D surface reconstruction with color binary speckle pattern encoding,” Opt. Express 26, 3452–3465 (2018).
    [Crossref]
  15. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72, 156–160 (1982).
    [Crossref]
  16. M. Takeda, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
    [Crossref]
  17. X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Laser Eng. 35, 263–284 (2001).
    [Crossref]
  18. K. Qian, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).
    [Crossref]
  19. K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Laser Eng. 45, 304–317 (2007).
    [Crossref]
  20. P. Sandoz, “Wavelet transform as a processing tool in white-light interferometry,” Opt. Lett. 22, 1065–1067 (1997).
    [Crossref]
  21. J. Zhong and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: Wavelet transform profilometry,” Appl. Opt. 43, 4993–4998 (2004).
    [Crossref]
  22. J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
    [Crossref]
  23. V. Srinivasan, H. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
    [Crossref]
  24. M. Halioua and H. Liu, “Optical three-dimensional sensing by phase measuring profilometry,” Opt. Laser Eng. 11, 185–215 (1989).
    [Crossref]
  25. H. Zhang, Q. Zhang, Y. Li, and Y. Liu, “High speed 3D shape measurement with temporal Fourier transform profilometry,” Appl. Sci. 9, 4123 (2019).
    [Crossref]
  26. S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
    [Crossref]
  27. Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34, 107–113 (2002).
    [Crossref]
  28. Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601 (2005).
    [Crossref]
  29. Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13, 3110–3116 (2005).
    [Crossref]
  30. C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2017).
    [Crossref]
  31. C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
    [Crossref]
  32. J. Huntley and H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993).
    [Crossref]
  33. J. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Opt. Lett. 36, 2770–2775 (1997).
  34. Y. Cheng and J. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23, 4539–4543 (1984).
    [Crossref]
  35. Y. Cheng and J. Wyant, “Multiple-wavelength phase-shifting interferometry,” Appl. Opt. 24, 804–807 (1985).
    [Crossref]
  36. G. Sansoni, S. Corini, S. Lazzari, R. Rodella, and F. Docchio, “Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications,” Appl. Opt. 36, 4463–4472 (1997).
    [Crossref]
  37. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of Gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38, 6565–6573 (1999).
    [Crossref]
  38. V. Gushov and Y. Solodkin, “Automatic processing of fringe patterns in integer interferometers,” Opt. Laser Eng. 14, 311–324 (1991).
    [Crossref]
  39. J. Zhong and M. Wang, “Phase unwrapping by a lookup table method: application to phase maps with singular points,” Opt. Eng. 38, 2075–2080 (1999).
    [Crossref]
  40. Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19, 5149–5155 (2011).
    [Crossref]
  41. Y. Wang, J. Laughner, I. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21, 5822–5832 (2013).
    [Crossref]
  42. C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
    [Crossref]
  43. C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
    [Crossref]
  44. W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
    [Crossref]
  45. Y. Wang, S. Zhang, and J. Oliver, “3D shape measurement technique for multiple rapidly moving objects,” Opt. Express 19, 8539–8545 (2011).
    [Crossref]
  46. J. Laughner, S. Zhang, H. Li, C. Shao, and I. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol-Heart. C 303, H712–H720 (2012).
    [Crossref]
  47. D. Zheng, F. Da, and H. Huang, “Phase unwrapping for fringe projection three-dimensional measurement with projector defocusing,” Opt. Eng. 55, 034107 (2016).
    [Crossref]
  48. D. Zheng, F. Da, K. Qian, and H. Seah, “Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter,” Opt. Express 25, 4700–4713 (2017).
    [Crossref]
  49. Z. Wu, C. Zuo, W. Guo, T. Tao, and Q. Zhang, “High-speed three-dimensional shape measurement based on cyclic complementary Gray-code light,” Opt. Express 27, 1283–1297 (2019).
    [Crossref]
  50. Z. Wu, W. Guo, and Q. Zhang, “High-speed three-dimensional shape measurement based on shifting Gray-code light,” Opt. Express 27, 22631–22644 (2019).
    [Crossref]
  51. D. Zheng, K. Qian, F. Da, and H. Seah, “Ternary Gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing,” Appl. Opt. 56, 3660–3665 (2017).
    [Crossref]
  52. X. He, D. Zheng, K. Qian, and G. Christopoulos, “Quaternary Gray-code phase unwrapping for binary fringe projection profilometry,” Opt. Laser Eng. 121, 358–368 (2019).
    [Crossref]
  53. S. Inokuchi, “Range imaging system for 3-D object recognition,” ICPR 1984, 806–808 (1984).
  54. J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
    [Crossref]
  55. Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51, 6631–6636 (2012).
    [Crossref]
  56. S. Zhang, “Flexible 3D shape measurement using projector defocusing: extended measurement range,” Opt. Lett. 35, 934–936 (2010).
    [Crossref]
  57. J. Deng, J. Li, H. Feng, and Z. Zeng, “Flexible depth segmentation method using phase-shifted wrapped phase sequences,” Opt. Laser Eng. 122, 284–293 (2019).
    [Crossref]
  58. W. Li, X. Su, and Z. Liu, “Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method,” Appl. Opt. 40, 3326–3333 (2001).
    [Crossref]
  59. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. 22, 1330–1334 (2000).
    [Crossref]

2019 (7)

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114, 201104 (2019).
[Crossref]

H. Zhang, Q. Zhang, Y. Li, and Y. Liu, “High speed 3D shape measurement with temporal Fourier transform profilometry,” Appl. Sci. 9, 4123 (2019).
[Crossref]

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

Z. Wu, C. Zuo, W. Guo, T. Tao, and Q. Zhang, “High-speed three-dimensional shape measurement based on cyclic complementary Gray-code light,” Opt. Express 27, 1283–1297 (2019).
[Crossref]

Z. Wu, W. Guo, and Q. Zhang, “High-speed three-dimensional shape measurement based on shifting Gray-code light,” Opt. Express 27, 22631–22644 (2019).
[Crossref]

X. He, D. Zheng, K. Qian, and G. Christopoulos, “Quaternary Gray-code phase unwrapping for binary fringe projection profilometry,” Opt. Laser Eng. 121, 358–368 (2019).
[Crossref]

J. Deng, J. Li, H. Feng, and Z. Zeng, “Flexible depth segmentation method using phase-shifted wrapped phase sequences,” Opt. Laser Eng. 122, 284–293 (2019).
[Crossref]

2018 (3)

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

P. Zhou, J. Zhu, and H. Jing, “Optical 3-D surface reconstruction with color binary speckle pattern encoding,” Opt. Express 26, 3452–3465 (2018).
[Crossref]

S. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Laser Eng. 106, 119–131 (2018).
[Crossref]

2017 (3)

2016 (4)

D. Zheng, F. Da, and H. Huang, “Phase unwrapping for fringe projection three-dimensional measurement with projector defocusing,” Opt. Eng. 55, 034107 (2016).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

S. Van der Jeught and J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
[Crossref]

2014 (2)

L. Gao, J. Liang, C. Li, and L. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–79 (2014).
[Crossref]

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

2013 (2)

Y. Wang, J. Laughner, I. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21, 5822–5832 (2013).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
[Crossref]

2012 (3)

J. Laughner, S. Zhang, H. Li, C. Shao, and I. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol-Heart. C 303, H712–H720 (2012).
[Crossref]

Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51, 6631–6636 (2012).
[Crossref]

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

2011 (2)

2010 (2)

S. Zhang, “Flexible 3D shape measurement using projector defocusing: extended measurement range,” Opt. Lett. 35, 934–936 (2010).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 48, 149–158 (2010).
[Crossref]

2009 (1)

2007 (2)

K. Ford, G. Myer, and T. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sport. Exer. 39, 2021–2028 (2007).
[Crossref]

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Laser Eng. 45, 304–317 (2007).
[Crossref]

2005 (3)

J. Pagès, J. Salvi, C. Collewet, and J. Forest, “Optimised De Bruijn patterns for one-shot shape acquisition,” Image Vision Comput. 23, 707–720 (2005).
[Crossref]

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601 (2005).
[Crossref]

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13, 3110–3116 (2005).
[Crossref]

2004 (3)

2003 (1)

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vision Comput. 21, 171–188 (2003).
[Crossref]

2002 (1)

Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34, 107–113 (2002).
[Crossref]

2001 (2)

2000 (2)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. 22, 1330–1334 (2000).
[Crossref]

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[Crossref]

1999 (2)

1997 (3)

1993 (1)

1991 (1)

V. Gushov and Y. Solodkin, “Automatic processing of fringe patterns in integer interferometers,” Opt. Laser Eng. 14, 311–324 (1991).
[Crossref]

1989 (1)

M. Halioua and H. Liu, “Optical three-dimensional sensing by phase measuring profilometry,” Opt. Laser Eng. 11, 185–215 (1989).
[Crossref]

1985 (1)

1984 (3)

1983 (1)

1982 (2)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72, 156–160 (1982).
[Crossref]

J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
[Crossref]

Altschuler, M.

J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
[Crossref]

Asundi, A.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2017).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

Batlle, J.

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[Crossref]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[Crossref]

Cao, Y.

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601 (2005).
[Crossref]

Carocci, M.

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[Crossref]

Chen, Q.

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2017).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
[Crossref]

Chen, W.

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601 (2005).
[Crossref]

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Laser Eng. 35, 263–284 (2001).
[Crossref]

Cheng, Y.

Christopoulos, G.

X. He, D. Zheng, K. Qian, and G. Christopoulos, “Quaternary Gray-code phase unwrapping for binary fringe projection profilometry,” Opt. Laser Eng. 121, 358–368 (2019).
[Crossref]

Collewet, C.

J. Pagès, J. Salvi, C. Collewet, and J. Forest, “Optimised De Bruijn patterns for one-shot shape acquisition,” Image Vision Comput. 23, 707–720 (2005).
[Crossref]

Corini, S.

Da, F.

Daigen, T.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Deng, J.

J. Deng, J. Li, H. Feng, and Z. Zeng, “Flexible depth segmentation method using phase-shifted wrapped phase sequences,” Opt. Laser Eng. 122, 284–293 (2019).
[Crossref]

Dietrich, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Dirckx, J.

S. Van der Jeught and J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
[Crossref]

Docchio, F.

Efimov, I.

Y. Wang, J. Laughner, I. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21, 5822–5832 (2013).
[Crossref]

J. Laughner, S. Zhang, H. Li, C. Shao, and I. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol-Heart. C 303, H712–H720 (2012).
[Crossref]

Feng, F.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
[Crossref]

Feng, H.

J. Deng, J. Li, H. Feng, and Z. Zeng, “Flexible depth segmentation method using phase-shifted wrapped phase sequences,” Opt. Laser Eng. 122, 284–293 (2019).
[Crossref]

Feng, S.

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2017).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
[Crossref]

Ford, K.

K. Ford, G. Myer, and T. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sport. Exer. 39, 2021–2028 (2007).
[Crossref]

Forest, J.

J. Pagès, J. Salvi, C. Collewet, and J. Forest, “Optimised De Bruijn patterns for one-shot shape acquisition,” Image Vision Comput. 23, 707–720 (2005).
[Crossref]

Gao, L.

L. Gao, J. Liang, C. Li, and L. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–79 (2014).
[Crossref]

Goda, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Gu, G.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
[Crossref]

Guo, W.

Gushov, V.

V. Gushov and Y. Solodkin, “Automatic processing of fringe patterns in integer interferometers,” Opt. Laser Eng. 14, 311–324 (1991).
[Crossref]

Halioua, M.

M. Halioua and H. Liu, “Optical three-dimensional sensing by phase measuring profilometry,” Opt. Laser Eng. 11, 185–215 (1989).
[Crossref]

V. Srinivasan, H. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
[Crossref]

He, X.

X. He, D. Zheng, K. Qian, and G. Christopoulos, “Quaternary Gray-code phase unwrapping for binary fringe projection profilometry,” Opt. Laser Eng. 121, 358–368 (2019).
[Crossref]

Heist, S.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Hewett, T.

K. Ford, G. Myer, and T. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sport. Exer. 39, 2021–2028 (2007).
[Crossref]

Hirosawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Hirose, R.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Horisaki, R.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Hu, Y.

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

Huang, H.

D. Zheng, F. Da, and H. Huang, “Phase unwrapping for fringe projection three-dimensional measurement with projector defocusing,” Opt. Eng. 55, 034107 (2016).
[Crossref]

Huang, L.

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2017).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

Huntley, J.

Ina, H.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72, 156–160 (1982).
[Crossref]

Inokuchi, S.

S. Inokuchi, “Range imaging system for 3-D object recognition,” ICPR 1984, 806–808 (1984).

Iwasaki, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Jing, H.

Kannari, F.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Kawaguchi, Y.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Kobayashi, S.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72, 156–160 (1982).
[Crossref]

Kondo, Y.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Kühmstedt, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Kumar, R.

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114, 201104 (2019).
[Crossref]

Laughner, J.

Y. Wang, J. Laughner, I. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21, 5822–5832 (2013).
[Crossref]

J. Laughner, S. Zhang, H. Li, C. Shao, and I. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol-Heart. C 303, H712–H720 (2012).
[Crossref]

Lazzari, S.

Legat, J.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vision Comput. 21, 171–188 (2003).
[Crossref]

Lei, S.

Li, C.

L. Gao, J. Liang, C. Li, and L. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–79 (2014).
[Crossref]

Li, H.

J. Laughner, S. Zhang, H. Li, C. Shao, and I. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol-Heart. C 303, H712–H720 (2012).
[Crossref]

Li, J.

J. Deng, J. Li, H. Feng, and Z. Zeng, “Flexible depth segmentation method using phase-shifted wrapped phase sequences,” Opt. Laser Eng. 122, 284–293 (2019).
[Crossref]

Li, R.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
[Crossref]

Li, W.

Li, Y.

H. Zhang, Q. Zhang, Y. Li, and Y. Liu, “High speed 3D shape measurement with temporal Fourier transform profilometry,” Appl. Sci. 9, 4123 (2019).
[Crossref]

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601 (2005).
[Crossref]

Liang, J.

L. Gao, J. Liang, C. Li, and L. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–79 (2014).
[Crossref]

Liao, H.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Liu, H.

M. Halioua and H. Liu, “Optical three-dimensional sensing by phase measuring profilometry,” Opt. Laser Eng. 11, 185–215 (1989).
[Crossref]

V. Srinivasan, H. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
[Crossref]

Liu, Y.

H. Zhang, Q. Zhang, Y. Li, and Y. Liu, “High speed 3D shape measurement with temporal Fourier transform profilometry,” Appl. Sci. 9, 4123 (2019).
[Crossref]

Liu, Z.

Lutzke, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Ma, J.

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

Malamas, E.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vision Comput. 21, 171–188 (2003).
[Crossref]

Morita, H.

H. Morita, K. Yajima, and S. Sakata, “Reconstruction of surfaces of 3-D objects by M-array pattern projection method,” in Second International Conference on Computer Vision (1988), pp. 468–473.

Myer, G.

K. Ford, G. Myer, and T. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sport. Exer. 39, 2021–2028 (2007).
[Crossref]

Nakagawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Nakamura, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Nakaya, S.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Notni, G.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Oishi, Y.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Oliver, J.

Ozaki, A.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Pagès, J.

J. Pagès, J. Salvi, C. Collewet, and J. Forest, “Optimised De Bruijn patterns for one-shot shape acquisition,” Image Vision Comput. 23, 707–720 (2005).
[Crossref]

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[Crossref]

Petit, L.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vision Comput. 21, 171–188 (2003).
[Crossref]

Petrakis, E.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vision Comput. 21, 171–188 (2003).
[Crossref]

Posdamer, J.

J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
[Crossref]

Qian, K.

Quan, C.

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114, 201104 (2019).
[Crossref]

Rodella, R.

Sakata, S.

H. Morita, K. Yajima, and S. Sakata, “Reconstruction of surfaces of 3-D objects by M-array pattern projection method,” in Second International Conference on Computer Vision (1988), pp. 468–473.

Sakuma, I.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Saldner, H.

Salvi, J.

J. Pagès, J. Salvi, C. Collewet, and J. Forest, “Optimised De Bruijn patterns for one-shot shape acquisition,” Image Vision Comput. 23, 707–720 (2005).
[Crossref]

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[Crossref]

Sandoz, P.

Sansoni, G.

Schmidt, I.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Seah, H.

Shao, C.

J. Laughner, S. Zhang, H. Li, C. Shao, and I. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol-Heart. C 303, H712–H720 (2012).
[Crossref]

Shen, G.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
[Crossref]

Solodkin, Y.

V. Gushov and Y. Solodkin, “Automatic processing of fringe patterns in integer interferometers,” Opt. Laser Eng. 14, 311–324 (1991).
[Crossref]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[Crossref]

Srinivasan, V.

Su, X.

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13, 3110–3116 (2005).
[Crossref]

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601 (2005).
[Crossref]

Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34, 107–113 (2002).
[Crossref]

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Laser Eng. 35, 263–284 (2001).
[Crossref]

W. Li, X. Su, and Z. Liu, “Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method,” Appl. Opt. 40, 3326–3333 (2001).
[Crossref]

Takaie, Y.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Takeda, M.

M. Takeda, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
[Crossref]

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72, 156–160 (1982).
[Crossref]

Takubo, K.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Tao, T.

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

Z. Wu, C. Zuo, W. Guo, T. Tao, and Q. Zhang, “High-speed three-dimensional shape measurement based on cyclic complementary Gray-code light,” Opt. Express 27, 1283–1297 (2019).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2017).
[Crossref]

Tokuoka, N.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Tominaga, H.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Tsukamoto, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Tünnermann, A.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Ushida, T.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Van der Jeught, S.

S. Van der Jeught and J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
[Crossref]

Wang, L.

L. Gao, J. Liang, C. Li, and L. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–79 (2014).
[Crossref]

Wang, M.

J. Zhong and M. Wang, “Phase unwrapping by a lookup table method: application to phase maps with singular points,” Opt. Eng. 38, 2075–2080 (1999).
[Crossref]

Wang, Y.

Weng, J.

Wu, Z.

Wyant, J.

Xiang, L.

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601 (2005).
[Crossref]

Yajima, K.

H. Morita, K. Yajima, and S. Sakata, “Reconstruction of surfaces of 3-D objects by M-array pattern projection method,” in Second International Conference on Computer Vision (1988), pp. 468–473.

Yano, F.

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Yin, W.

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Zeng, Z.

J. Deng, J. Li, H. Feng, and Z. Zeng, “Flexible depth segmentation method using phase-shifted wrapped phase sequences,” Opt. Laser Eng. 122, 284–293 (2019).
[Crossref]

Zervakis, M.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vision Comput. 21, 171–188 (2003).
[Crossref]

Zhang, H.

H. Zhang, Q. Zhang, Y. Li, and Y. Liu, “High speed 3D shape measurement with temporal Fourier transform profilometry,” Appl. Sci. 9, 4123 (2019).
[Crossref]

Zhang, M.

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

Zhang, Q.

H. Zhang, Q. Zhang, Y. Li, and Y. Liu, “High speed 3D shape measurement with temporal Fourier transform profilometry,” Appl. Sci. 9, 4123 (2019).
[Crossref]

Z. Wu, C. Zuo, W. Guo, T. Tao, and Q. Zhang, “High-speed three-dimensional shape measurement based on cyclic complementary Gray-code light,” Opt. Express 27, 1283–1297 (2019).
[Crossref]

Z. Wu, W. Guo, and Q. Zhang, “High-speed three-dimensional shape measurement based on shifting Gray-code light,” Opt. Express 27, 22631–22644 (2019).
[Crossref]

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601 (2005).
[Crossref]

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13, 3110–3116 (2005).
[Crossref]

Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34, 107–113 (2002).
[Crossref]

Zhang, S.

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. 22, 1330–1334 (2000).
[Crossref]

Zheng, D.

X. He, D. Zheng, K. Qian, and G. Christopoulos, “Quaternary Gray-code phase unwrapping for binary fringe projection profilometry,” Opt. Laser Eng. 121, 358–368 (2019).
[Crossref]

D. Zheng, K. Qian, F. Da, and H. Seah, “Ternary Gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing,” Appl. Opt. 56, 3660–3665 (2017).
[Crossref]

D. Zheng, F. Da, K. Qian, and H. Seah, “Phase-shifting profilometry combined with Gray-code patterns projection: unwrapping error removal by an adaptive median filter,” Opt. Express 25, 4700–4713 (2017).
[Crossref]

D. Zheng, F. Da, and H. Huang, “Phase unwrapping for fringe projection three-dimensional measurement with projector defocusing,” Opt. Eng. 55, 034107 (2016).
[Crossref]

Zhong, F.

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114, 201104 (2019).
[Crossref]

Zhong, J.

J. Zhong and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: Wavelet transform profilometry,” Appl. Opt. 43, 4993–4998 (2004).
[Crossref]

J. Zhong and M. Wang, “Phase unwrapping by a lookup table method: application to phase maps with singular points,” Opt. Eng. 38, 2075–2080 (1999).
[Crossref]

Zhou, P.

Zhu, J.

Zuo, C.

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

Z. Wu, C. Zuo, W. Guo, T. Tao, and Q. Zhang, “High-speed three-dimensional shape measurement based on cyclic complementary Gray-code light,” Opt. Express 27, 1283–1297 (2019).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2017).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
[Crossref]

Am. J. Physiol-Heart. C (1)

J. Laughner, S. Zhang, H. Li, C. Shao, and I. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol-Heart. C 303, H712–H720 (2012).
[Crossref]

Appl. Opt. (12)

D. Zheng, K. Qian, F. Da, and H. Seah, “Ternary Gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing,” Appl. Opt. 56, 3660–3665 (2017).
[Crossref]

Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51, 6631–6636 (2012).
[Crossref]

W. Li, X. Su, and Z. Liu, “Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method,” Appl. Opt. 40, 3326–3333 (2001).
[Crossref]

M. Takeda, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
[Crossref]

K. Qian, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).
[Crossref]

J. Zhong and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: Wavelet transform profilometry,” Appl. Opt. 43, 4993–4998 (2004).
[Crossref]

V. Srinivasan, H. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
[Crossref]

J. Huntley and H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993).
[Crossref]

Y. Cheng and J. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23, 4539–4543 (1984).
[Crossref]

Y. Cheng and J. Wyant, “Multiple-wavelength phase-shifting interferometry,” Appl. Opt. 24, 804–807 (1985).
[Crossref]

G. Sansoni, S. Corini, S. Lazzari, R. Rodella, and F. Docchio, “Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications,” Appl. Opt. 36, 4463–4472 (1997).
[Crossref]

G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of Gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38, 6565–6573 (1999).
[Crossref]

Appl. Phys. Lett. (1)

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114, 201104 (2019).
[Crossref]

Appl. Sci. (1)

H. Zhang, Q. Zhang, Y. Li, and Y. Liu, “High speed 3D shape measurement with temporal Fourier transform profilometry,” Appl. Sci. 9, 4123 (2019).
[Crossref]

Comput. Graph. Image Process. (1)

J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Graph. Image Process. 18, 1–17 (1982).
[Crossref]

ICPR (1)

S. Inokuchi, “Range imaging system for 3-D object recognition,” ICPR 1984, 806–808 (1984).

IEEE Trans. Pattern Anal. (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. 22, 1330–1334 (2000).
[Crossref]

Image Vision Comput. (2)

J. Pagès, J. Salvi, C. Collewet, and J. Forest, “Optimised De Bruijn patterns for one-shot shape acquisition,” Image Vision Comput. 23, 707–720 (2005).
[Crossref]

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vision Comput. 21, 171–188 (2003).
[Crossref]

Med. Sci. Sport. Exer. (1)

K. Ford, G. Myer, and T. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sport. Exer. 39, 2021–2028 (2007).
[Crossref]

Nat. Photonics (1)

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8, 695–700 (2014).
[Crossref]

Nature (1)

L. Gao, J. Liang, C. Li, and L. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74–79 (2014).
[Crossref]

Opt. Eng. (4)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[Crossref]

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44, 113601 (2005).
[Crossref]

D. Zheng, F. Da, and H. Huang, “Phase unwrapping for fringe projection three-dimensional measurement with projector defocusing,” Opt. Eng. 55, 034107 (2016).
[Crossref]

J. Zhong and M. Wang, “Phase unwrapping by a lookup table method: application to phase maps with singular points,” Opt. Eng. 38, 2075–2080 (1999).
[Crossref]

Opt. Express (8)

Opt. Laser Eng. (15)

K. Qian, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Laser Eng. 45, 304–317 (2007).
[Crossref]

X. Su and W. Chen, “Fourier transform profilometry: a review,” Opt. Laser Eng. 35, 263–284 (2001).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Laser Eng. 48, 149–158 (2010).
[Crossref]

S. Van der Jeught and J. Dirckx, “Real-time structured light profilometry: a review,” Opt. Laser Eng. 87, 18–31 (2016).
[Crossref]

S. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Laser Eng. 106, 119–131 (2018).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Laser Eng. 102, 70–91 (2017).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

M. Halioua and H. Liu, “Optical three-dimensional sensing by phase measuring profilometry,” Opt. Laser Eng. 11, 185–215 (1989).
[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

V. Gushov and Y. Solodkin, “Automatic processing of fringe patterns in integer interferometers,” Opt. Laser Eng. 14, 311–324 (1991).
[Crossref]

J. Deng, J. Li, H. Feng, and Z. Zeng, “Flexible depth segmentation method using phase-shifted wrapped phase sequences,” Opt. Laser Eng. 122, 284–293 (2019).
[Crossref]

X. He, D. Zheng, K. Qian, and G. Christopoulos, “Quaternary Gray-code phase unwrapping for binary fringe projection profilometry,” Opt. Laser Eng. 121, 358–368 (2019).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Laser Eng. 51, 953–960 (2013).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

W. Yin, C. Zuo, S. Feng, T. Tao, Y. Hu, L. Huang, J. Ma, and Q. Chen, “High-speed three-dimensional shape measurement using geometry-constraint-based number-theoretical phase unwrapping,” Opt. Laser Eng. 115, 21–31 (2019).
[Crossref]

Opt. Laser Technol. (1)

Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34, 107–113 (2002).
[Crossref]

Opt. Lett. (4)

Pattern Recogn. (1)

J. Salvi, J. Pagès, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72, 156–160 (1982).
[Crossref]

Shimadzu Rev. (1)

Y. Kondo, K. Takubo, H. Tominaga, R. Hirose, N. Tokuoka, Y. Kawaguchi, Y. Takaie, A. Ozaki, S. Nakaya, F. Yano, and T. Daigen, “Development of ‘HyperVision HPV-X’ high-speed video camera,” Shimadzu Rev. 69, 285–291 (2012).

Other (1)

H. Morita, K. Yajima, and S. Sakata, “Reconstruction of surfaces of 3-D objects by M-array pattern projection method,” in Second International Conference on Computer Vision (1988), pp. 468–473.

Supplementary Material (2)

NameDescription
» Visualization 1       Measurement on the dynamic scene of collapsing building blocks.
» Visualization 2       Measurement on the dynamic scene of rotating fan blades.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic diagram of the high-speed measurement system.
Fig. 2.
Fig. 2. Cause of the jump errors of the Gray-code-based method in dynamic measurement. (a) Projected binary patterns. (b) Acquired gray-scale patterns after defocus and motion. (c) Mismatch between the wrapped phase and the phase order.
Fig. 3.
Fig. 3. Schematic diagram of the tripartite phase-unwrapping method. (a) Wrapped phase ϕ1 calculated from [I2,I3,I1]. (b) Wrapped phase ϕ2 calculated from [I1,I2,I3]. (c) Wrapped phase ϕ3 calculated from [I3,I1,I2]. (d) Phase compensation for ϕ1 and ϕ3. (e) Unwrapped phase.
Fig. 4.
Fig. 4. Schematic diagram of the regional division using reference wrapped phase.
Fig. 5.
Fig. 5. Time-overlapping Gray-code coding strategy.
Fig. 6.
Fig. 6. Framework of the proposed method. (a) Procedure of the proposed method. (b) Line profiles (located in red dotted line in the texture map) of the key data in (a).
Fig. 7.
Fig. 7. Accuracy analysis of the proposed method. (a) Design drawing of the measured standard pieces. (b) Captured deformed fringe pattern. (c) Divided tripartite regions. (d) Reconstructed result. (e) Flatness error distribution. (f) Height difference of the steps. (g) Measured result and fitting sphere of the standard ball. (h) Error distribution of the standard ball.
Fig. 8.
Fig. 8. Comparative experiments on the anti-noise ability. (a)–(c) Captured deformed fringe images with different frequencies (fh=16, fl=1, and fm=15) and the intensity in line 480 of the corresponding images. (d) Captured deformed Gray-coded image and the intensity in line 480. (e) Texture map of the blocks. (f)–(h) Reconstructed results using the two-frequency, two-wavelength, and proposed methods, respectively.
Fig. 9.
Fig. 9. Measurement on the dynamic scene of collapsing building blocks. (a) Captured pattern sequences. (b) Representative collapsing scenes. (c) Corresponding 3D frames (Visualization 1).
Fig. 10.
Fig. 10. Measurement on the dynamic scene of rotating fan blades. (a) Reconstructed result at the time T=274.7  ms. (b) Captured image with low SNR. (c) Intensity distribution of the red dashed line in (b). (d) Five line profiles of the white dashed line in (a) at the time intervals of 31.3 ms. (e)–(h) Four results with the interval of a quarter turn (Visualization 2).
Fig. 11.
Fig. 11. Schematic diagram of the correction algorithm. (a) Schematic diagram of the errors occurring in the edge or shade regions. (b) Flowchart of the whole regional division algorithm.
Fig. 12.
Fig. 12. Measurement results (a) before and (b) after correction.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

In(x,y)=A(x,y)+B(x,y)cos[ϕ(x,y)+2π(n1)/3+ϕ0],n=1,2,3,
ϕ(x,y)=arctan3[I1(x,y)I3(x,y)]2I2(x,y)I1(x,y)I3(x,y).
V(x,y)=i=1NGCi(x,y)·2Ni,
k(x,y)=i[V(x,y)],
Φ(x,y)={ϕ1(x,y)+2πkl(x,y)2π/3,kklϕ2(x,y)+2πkm(x,y),kkmϕ3(x,y)+2πkh(x,y)+2π/3,kkh.
km(x,y)=k(x,y),where  |ϕ2(x,y)|<π/3.
ϕref(x,y)=Φref(x,y)2πk(x,y),
ϕth(x)=ϕref(x,y),(x,y)C(i).
kl(x,y)=k(x,y),where  ϕref(x,y)<ϕth(x),(x,y)A(i),and(x,y)km,
kh(x,y)=k(x,y),where  ϕref(x,y)>ϕth(x),(x,y)A(i),and(x,y)km.
1h(x,y,n)=u(x,y)+v(x,y)ΔΦ(x,y,n)+w(x,y)ΔΦ2(x,y,n),