Abstract

Strain regulation as an effective way to enhance the photoelectric properties of two-dimensional (2D) transition metal dichalcogenides has been widely employed to improve the performance of photovoltaic devices. In this work, tensile strain was introduced in multilayer MoS2 grown on GaN by depositing 3 nm of Al2O3 on the surface. The temperature-dependent Raman spectrum shows that the thermal stability of MoS2 is improved by Al2O3. Theoretical simulations confirmed the existence of tensile strain on MoS2 covered with Al2O3, and the bandgap and electron effective mass of six layers of MoS2 decreased due to tensile strain, which resulted in an increase of electron mobility. Due to the tensile strain effect, the photodetector with the Al2O3 stress liner achieved better performance under the illumination of 365 nm wavelength, including a higher responsivity of 24.6 A/W, photoconductive gain of 520, and external quantum efficiency of 8381%, which are more than twice the corresponding values of photodetectors without Al2O3. Our work provides an effective technical way for improving the performance of 2D material photodetectors.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Xiao, M. Zhou, J. Liu, J. Xu, and L. Fu, “Phase engineering of two-dimensional transition metal dichalcogenides,” Sci. China Mater. 62, 759–775 (2019).
    [Crossref]
  2. M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
    [Crossref]
  3. Q. Zhang and L. Fu, “Novel insights and perspectives into weakly coupled ReS2 toward emerging applications,” Chem 5, 505–525 (2019).
    [Crossref]
  4. Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
    [Crossref]
  5. Z. Li, J. Wu, C. Wang, H. Zhang, W. Yu, Y. Lu, and X. Liu, “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).
    [Crossref]
  6. A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
    [Crossref]
  7. X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
    [Crossref]
  8. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
    [Crossref]
  9. S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
    [Crossref]
  10. T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, and M. Li, “Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors,” Anal. Chem. 86, 12064–12069 (2014).
    [Crossref]
  11. Z. P. Ling, R. Yang, J. W. Chai, S. J. Wang, W. S. Leong, Y. Tong, D. Lei, Q. Zhou, X. Gong, D. Z. Chi, and K. W. Ang, “Large-scale two-dimensional MoS2 photodetectors by magnetron sputtering,” Opt. Express 23, 13580–13586 (2015).
    [Crossref]
  12. F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit,” IEEE Electron Device Lett. 36, 1091–1093 (2015).
    [Crossref]
  13. R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
    [Crossref]
  14. J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
    [Crossref]
  15. Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, and Y. H. Lee, “Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors,” 2D Mater. 5, 031001 (2018).
    [Crossref]
  16. M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, “Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control,” Chem. Rev. 118, 6236–6296 (2018).
    [Crossref]
  17. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2, 17033 (2017).
    [Crossref]
  18. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett. 13, 3626–3630 (2013).
    [Crossref]
  19. J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
    [Crossref]
  20. I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
    [Crossref]
  21. X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, “Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure,” ACS Nano 10, 1619–1624 (2016).
    [Crossref]
  22. S. Deng, A. V. Sumant, and V. Berry, “Strain engineering in two-dimensional nanomaterials beyond graphene,” Nano Today 22, 14–35 (2018).
    [Crossref]
  23. R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter. 27, 313201 (2015).
    [Crossref]
  24. J. Feng, X. Qian, C.-W. Huang, and J. Li, “Strain-engineered artificial atom as a broad-spectrum solar energy funnel,” Nat. Photonics 6, 866–872 (2012).
    [Crossref]
  25. S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
    [Crossref]
  26. S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
    [Crossref]
  27. A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
    [Crossref]
  28. G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
    [Crossref]
  29. S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
    [Crossref]
  30. D. Kufer and G. Konstantatos, “Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed,” Nano Lett. 15, 7307–7313 (2015).
    [Crossref]
  31. S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett. 13, 100–105 (2013).
    [Crossref]
  32. S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
    [Crossref]
  33. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
    [Crossref]
  34. M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150, 255–262 (1999).
    [Crossref]
  35. J. Kong, K. T. Park, A. C. Miller, and K. Klier, “Molybdenum disulfide single crystal (0002) plane XPS spectra,” Surf. Sci. Spectra 7, 69–74 (2000).
    [Crossref]
  36. D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
    [Crossref]
  37. Raman and Absorbance of multilayer MoS2, Dataset 1, https://doi.org/10.6084/m9.figshare.11980941 .
  38. I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of the Raman spectra of graphene and graphene multilayers,” Nano Lett. 7, 2645–2649 (2007).
    [Crossref]
  39. L. Su, Y. Zhang, Y. Yu, and L. Cao, “Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering,” Nanoscale 6, 4920–4927 (2014).
    [Crossref]
  40. S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
    [Crossref]
  41. D. J. Late, “Temperature dependent phonon shifts in few-layer black phosphorus,” ACS Appl. Mater. Interfaces 7, 5857–5862 (2015).
    [Crossref]
  42. A. S. Pawbake, M. S. Pawar, S. R. Jadkar, and D. J. Late, “Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies,” Nanoscale 8, 3008–3018 (2016).
    [Crossref]
  43. S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
    [Crossref]
  44. X. Feng, V. V. Kulish, P. Wu, X. Liu, and K.-W. Ang, “Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study,” Nano Res. 9, 2687–2695 (2016).
    [Crossref]
  45. Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, “Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering,” J. Phys. Chem. C 119, 16358–16365 (2015).
    [Crossref]
  46. S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
    [Crossref]
  47. A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
    [Crossref]
  48. H. S. Lee, M. S. Kim, H. Kim, and Y. H. Lee, “Identifying multiexcitons in MoS2 monolayers at room temperature,” Phys. Rev. B 93, 140409 (2016).
    [Crossref]
  49. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
    [Crossref]
  50. F. González-Posada, R. Songmuang, M. Den Hertog, and E. Monroy, “Room-temperature photodetection dynamics of single GaN nanowires,” Nano Lett. 12, 172–176 (2012).
    [Crossref]
  51. W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456–3461 (2013).
    [Crossref]
  52. A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, and A. K. M. Newaz, “Large array fabrication of high performance monolayer MoS2 photodetectors,” Appl. Phys. Lett. 111, 043110 (2017).
    [Crossref]
  53. A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
    [Crossref]
  54. L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, and K.-W. Ang, “Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
    [Crossref]

2019 (3)

Y. Xiao, M. Zhou, J. Liu, J. Xu, and L. Fu, “Phase engineering of two-dimensional transition metal dichalcogenides,” Sci. China Mater. 62, 759–775 (2019).
[Crossref]

Q. Zhang and L. Fu, “Novel insights and perspectives into weakly coupled ReS2 toward emerging applications,” Chem 5, 505–525 (2019).
[Crossref]

X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
[Crossref]

2018 (6)

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, and Y. H. Lee, “Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors,” 2D Mater. 5, 031001 (2018).
[Crossref]

M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, “Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control,” Chem. Rev. 118, 6236–6296 (2018).
[Crossref]

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

S. Deng, A. V. Sumant, and V. Berry, “Strain engineering in two-dimensional nanomaterials beyond graphene,” Nano Today 22, 14–35 (2018).
[Crossref]

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

2017 (8)

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2, 17033 (2017).
[Crossref]

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, and A. K. M. Newaz, “Large array fabrication of high performance monolayer MoS2 photodetectors,” Appl. Phys. Lett. 111, 043110 (2017).
[Crossref]

L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, and K.-W. Ang, “Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
[Crossref]

2016 (7)

H. S. Lee, M. S. Kim, H. Kim, and Y. H. Lee, “Identifying multiexcitons in MoS2 monolayers at room temperature,” Phys. Rev. B 93, 140409 (2016).
[Crossref]

A. S. Pawbake, M. S. Pawar, S. R. Jadkar, and D. J. Late, “Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies,” Nanoscale 8, 3008–3018 (2016).
[Crossref]

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

X. Feng, V. V. Kulish, P. Wu, X. Liu, and K.-W. Ang, “Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study,” Nano Res. 9, 2687–2695 (2016).
[Crossref]

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, “Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure,” ACS Nano 10, 1619–1624 (2016).
[Crossref]

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

2015 (8)

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter. 27, 313201 (2015).
[Crossref]

D. Kufer and G. Konstantatos, “Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed,” Nano Lett. 15, 7307–7313 (2015).
[Crossref]

Z. P. Ling, R. Yang, J. W. Chai, S. J. Wang, W. S. Leong, Y. Tong, D. Lei, Q. Zhou, X. Gong, D. Z. Chi, and K. W. Ang, “Large-scale two-dimensional MoS2 photodetectors by magnetron sputtering,” Opt. Express 23, 13580–13586 (2015).
[Crossref]

F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit,” IEEE Electron Device Lett. 36, 1091–1093 (2015).
[Crossref]

Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, “Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering,” J. Phys. Chem. C 119, 16358–16365 (2015).
[Crossref]

D. J. Late, “Temperature dependent phonon shifts in few-layer black phosphorus,” ACS Appl. Mater. Interfaces 7, 5857–5862 (2015).
[Crossref]

2014 (6)

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

L. Su, Y. Zhang, Y. Yu, and L. Cao, “Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering,” Nanoscale 6, 4920–4927 (2014).
[Crossref]

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
[Crossref]

T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, and M. Li, “Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors,” Anal. Chem. 86, 12064–12069 (2014).
[Crossref]

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

2013 (3)

S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett. 13, 100–105 (2013).
[Crossref]

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett. 13, 3626–3630 (2013).
[Crossref]

W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456–3461 (2013).
[Crossref]

2012 (3)

F. González-Posada, R. Songmuang, M. Den Hertog, and E. Monroy, “Room-temperature photodetection dynamics of single GaN nanowires,” Nano Lett. 12, 172–176 (2012).
[Crossref]

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

J. Feng, X. Qian, C.-W. Huang, and J. Li, “Strain-engineered artificial atom as a broad-spectrum solar energy funnel,” Nat. Photonics 6, 866–872 (2012).
[Crossref]

2011 (2)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[Crossref]

2008 (1)

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

2007 (2)

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of the Raman spectra of graphene and graphene multilayers,” Nano Lett. 7, 2645–2649 (2007).
[Crossref]

2002 (1)

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
[Crossref]

2000 (1)

J. Kong, K. T. Park, A. C. Miller, and K. Klier, “Molybdenum disulfide single crystal (0002) plane XPS spectra,” Surf. Sci. Spectra 7, 69–74 (2000).
[Crossref]

1999 (1)

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150, 255–262 (1999).
[Crossref]

Ager, J. W.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Ahn, G. H.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Ahn, S.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Ajayan, P. M.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Akinwande, D.

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Allain, A.

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

Amani, M.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Ang, K. W.

Ang, K.-W.

X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
[Crossref]

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, and K.-W. Ang, “Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
[Crossref]

X. Feng, V. V. Kulish, P. Wu, X. Liu, and K.-W. Ang, “Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study,” Nano Res. 9, 2687–2695 (2016).
[Crossref]

Ao, J.-P.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Aplin, D. P. R.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Appenzeller, J.

S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett. 13, 100–105 (2013).
[Crossref]

Ataca, C.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Baker, M. A.

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150, 255–262 (1999).
[Crossref]

Balandin, A. A.

I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of the Raman spectra of graphene and graphene multilayers,” Nano Lett. 7, 2645–2649 (2007).
[Crossref]

Bao, W.

I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of the Raman spectra of graphene and graphene multilayers,” Nano Lett. 7, 2645–2649 (2007).
[Crossref]

Bao, X. Y.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Berghäuser, G.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Berry, V.

S. Deng, A. V. Sumant, and V. Berry, “Strain engineering in two-dimensional nanomaterials beyond graphene,” Nano Today 22, 14–35 (2018).
[Crossref]

Bertolazzi, S.

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[Crossref]

Bhattacharyya, S.

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Bhimanapati, G. R.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Birdwell, A. G.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Bolotin, K. I.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett. 13, 3626–3630 (2013).
[Crossref]

Botcha, V. D.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Braasch, L.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Branch, B.

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
[Crossref]

Bratschitsch, R.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[Crossref]

Burger, A.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Burke, R. A.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Cai, H.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Calizo, I.

I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of the Raman spectra of graphene and graphene multilayers,” Nano Lett. 7, 2645–2649 (2007).
[Crossref]

Cao, L.

L. Su, Y. Zhang, Y. Yu, and L. Cao, “Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering,” Nanoscale 6, 4920–4927 (2014).
[Crossref]

Cappelluti, E.

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter. 27, 313201 (2015).
[Crossref]

Castellanos-Gomez, A.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter. 27, 313201 (2015).
[Crossref]

Caudel, D.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Cha, S.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Chai, J. W.

Chang, Y.-H.

W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456–3461 (2013).
[Crossref]

Chen, C.-D.

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

Chen, C.-H.

W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456–3461 (2013).
[Crossref]

Chen, H.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Chen, H.-Y.

S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett. 13, 100–105 (2013).
[Crossref]

Chen, J.-H.

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

Chen, L.

X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
[Crossref]

Chen, S.

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

Cheng, Y.-J.

W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456–3461 (2013).
[Crossref]

Chhowalla, M.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
[Crossref]

Chi, D. Z.

Cho, Y.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Choi, J.-Y.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Choi, W.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Christiansen, D.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Chrzan, D. C.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Chuang, F.-C.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Chueh, Y.-L.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Clark, S. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
[Crossref]

Conley, H. J.

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett. 13, 3626–3630 (2013).
[Crossref]

Crowne, F. J.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Das, S.

S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett. 13, 100–105 (2013).
[Crossref]

Davydov, A. V.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Dayeh, S. A.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Den Hertog, M.

F. González-Posada, R. Songmuang, M. Den Hertog, and E. Monroy, “Room-temperature photodetection dynamics of single GaN nanowires,” Nano Lett. 12, 172–176 (2012).
[Crossref]

Deng, S.

S. Deng, A. V. Sumant, and V. Berry, “Strain engineering in two-dimensional nanomaterials beyond graphene,” Nano Today 22, 14–35 (2018).
[Crossref]

Ding, K.

X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, “Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure,” ACS Nano 10, 1619–1624 (2016).
[Crossref]

Ding, Z.

Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, “Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering,” J. Phys. Chem. C 119, 16358–16365 (2015).
[Crossref]

Dong, B.

L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, and K.-W. Ang, “Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
[Crossref]

Dou, X.

X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, “Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure,” ACS Nano 10, 1619–1624 (2016).
[Crossref]

Drüppel, M.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Dubey, M.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Eichfeld, S. M.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Eshun, K.

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Fan, S.

Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, and Y. H. Lee, “Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors,” 2D Mater. 5, 031001 (2018).
[Crossref]

Fan, X.

X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, “Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure,” ACS Nano 10, 1619–1624 (2016).
[Crossref]

Feng, J.

J. Feng, X. Qian, C.-W. Huang, and J. Li, “Strain-engineered artificial atom as a broad-spectrum solar energy funnel,” Nat. Photonics 6, 866–872 (2012).
[Crossref]

Feng, X.

X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
[Crossref]

X. Feng, V. V. Kulish, P. Wu, X. Liu, and K.-W. Ang, “Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study,” Nano Res. 9, 2687–2695 (2016).
[Crossref]

Fu, L.

Y. Xiao, M. Zhou, J. Liu, J. Xu, and L. Fu, “Phase engineering of two-dimensional transition metal dichalcogenides,” Sci. China Mater. 62, 759–775 (2019).
[Crossref]

Q. Zhang and L. Fu, “Novel insights and perspectives into weakly coupled ReS2 toward emerging applications,” Chem 5, 505–525 (2019).
[Crossref]

M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, “Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control,” Chem. Rev. 118, 6236–6296 (2018).
[Crossref]

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

Ge, L.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

George, A.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Ghadimi, A.

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

Ghimire, N. J.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Gilmore, R.

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150, 255–262 (1999).
[Crossref]

Gissler, W.

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150, 255–262 (1999).
[Crossref]

Gong, X.

González-Posada, F.

F. González-Posada, R. Songmuang, M. Den Hertog, and E. Monroy, “Room-temperature photodetection dynamics of single GaN nanowires,” Nano Lett. 12, 172–176 (2012).
[Crossref]

Grossman, J. C.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Gu, K.

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Guinea, F.

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter. 27, 313201 (2015).
[Crossref]

Guo, H.

F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit,” IEEE Electron Device Lett. 36, 1091–1093 (2015).
[Crossref]

Gupta, G.

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
[Crossref]

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Haglund, R. F.

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett. 13, 3626–3630 (2013).
[Crossref]

Hasnip, P. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
[Crossref]

Hong, J.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Hong, K.-B.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Hu, C.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Huang, C.-W.

J. Feng, X. Qian, C.-W. Huang, and J. Li, “Strain-engineered artificial atom as a broad-spectrum solar energy funnel,” Nat. Photonics 6, 866–872 (2012).
[Crossref]

Huang, J.-K.

W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456–3461 (2013).
[Crossref]

Huang, L.

X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
[Crossref]

L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, and K.-W. Ang, “Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
[Crossref]

Huang, X.

X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
[Crossref]

Huang, Z.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Huang, Z.-Q.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Hwang, W.-S.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Im, H.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Ivanov, B. L.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Ivanov, T. G.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Jadkar, S. R.

A. S. Pawbake, M. S. Pawar, S. R. Jadkar, and D. J. Late, “Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies,” Nanoscale 8, 3008–3018 (2016).
[Crossref]

Jang, A. R.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Javey, A.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Jena, D.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Jeong, H. Y.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Jha, S.

A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, and A. K. M. Newaz, “Large array fabrication of high performance monolayer MoS2 photodetectors,” Appl. Phys. Lett. 111, 043110 (2017).
[Crossref]

Jiang, C. B.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Jiang, D.

X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, “Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure,” ACS Nano 10, 1619–1624 (2016).
[Crossref]

Jiang, J.-W.

Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, “Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering,” J. Phys. Chem. C 119, 16358–16365 (2015).
[Crossref]

Jiang, K.

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Jin, C.

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Jin, Y. W.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Joo, M.-K.

Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, and Y. H. Lee, “Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors,” 2D Mater. 5, 031001 (2018).
[Crossref]

Ju, M.

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

Jung, C.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Kalanyan, B.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Kappera, R.

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
[Crossref]

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Kim, H.

H. S. Lee, M. S. Kim, H. Kim, and Y. H. Lee, “Identifying multiexcitons in MoS2 monolayers at room temperature,” Phys. Rev. B 93, 140409 (2016).
[Crossref]

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Kim, J. M.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Kim, K.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Kim, M. S.

H. S. Lee, M. S. Kim, H. Kim, and Y. H. Lee, “Identifying multiexcitons in MoS2 monolayers at room temperature,” Phys. Rev. B 93, 140409 (2016).
[Crossref]

Kim, S.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Kim, S. J.

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

Kim, Y.

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

Kis, A.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2, 17033 (2017).
[Crossref]

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[Crossref]

Klier, K.

J. Kong, K. T. Park, A. C. Miller, and K. Klier, “Molybdenum disulfide single crystal (0002) plane XPS spectra,” Surf. Sci. Spectra 7, 69–74 (2000).
[Crossref]

Klots, A. R.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Knorr, A.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Koch, R.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Konar, A.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Kong, J.

J. Kong, K. T. Park, A. C. Miller, and K. Klier, “Molybdenum disulfide single crystal (0002) plane XPS spectra,” Surf. Sci. Spectra 7, 69–74 (2000).
[Crossref]

Konstantatos, G.

D. Kufer and G. Konstantatos, “Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed,” Nano Lett. 15, 7307–7313 (2015).
[Crossref]

Krzyzanowska, H.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Kufer, D.

D. Kufer and G. Konstantatos, “Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed,” Nano Lett. 15, 7307–7313 (2015).
[Crossref]

Kuhn, T.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Kulish, V. V.

X. Feng, V. V. Kulish, P. Wu, X. Liu, and K.-W. Ang, “Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study,” Nano Res. 9, 2687–2695 (2016).
[Crossref]

Kuo, H.-C.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Lan, Y.-W.

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

Late, D. J.

A. S. Pawbake, M. S. Pawar, S. R. Jadkar, and D. J. Late, “Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies,” Nanoscale 8, 3008–3018 (2016).
[Crossref]

D. J. Late, “Temperature dependent phonon shifts in few-layer black phosphorus,” ACS Appl. Mater. Interfaces 7, 5857–5862 (2015).
[Crossref]

Lau, C. N.

I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of the Raman spectra of graphene and graphene multilayers,” Nano Lett. 7, 2645–2649 (2007).
[Crossref]

Lee, C.

L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, and K.-W. Ang, “Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
[Crossref]

Lee, H. S.

H. S. Lee, M. S. Kim, H. Kim, and Y. H. Lee, “Identifying multiexcitons in MoS2 monolayers at room temperature,” Phys. Rev. B 93, 140409 (2016).
[Crossref]

Lee, J.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Lee, J. H.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Lee, P.-T.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Lee, S.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Lee, S. H.

Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, and Y. H. Lee, “Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors,” 2D Mater. 5, 031001 (2018).
[Crossref]

Lee, S. Y.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Lee, Y. H.

Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, and Y. H. Lee, “Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors,” 2D Mater. 5, 031001 (2018).
[Crossref]

H. S. Lee, M. S. Kim, H. Kim, and Y. H. Lee, “Identifying multiexcitons in MoS2 monolayers at room temperature,” Phys. Rev. B 93, 140409 (2016).
[Crossref]

Lee, Y.-W.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Lee, Z.

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

Lei, D.

Lei, S.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Lenardi, C.

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150, 255–262 (1999).
[Crossref]

Leong, W. S.

Li, J.

J. Feng, X. Qian, C.-W. Huang, and J. Li, “Strain-engineered artificial atom as a broad-spectrum solar energy funnel,” Nat. Photonics 6, 866–872 (2012).
[Crossref]

Li, L.-J.

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456–3461 (2013).
[Crossref]

Li, M.

T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, and M. Li, “Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors,” Anal. Chem. 86, 12064–12069 (2014).
[Crossref]

Li, Q.

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Li, Y.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Li, Z.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Z. Li, J. Wu, C. Wang, H. Zhang, W. Yu, Y. Lu, and X. Liu, “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).
[Crossref]

Liang, X.

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

Lien, D.-H.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Lim, J. H.

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

Lin, J.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Lin, J.-F.

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Lindan, P. J. D.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
[Crossref]

Ling, Z. P.

Liu, F.

F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit,” IEEE Electron Device Lett. 36, 1091–1093 (2015).
[Crossref]

Liu, J.

Y. Xiao, M. Zhou, J. Liu, J. Xu, and L. Fu, “Phase engineering of two-dimensional transition metal dichalcogenides,” Sci. China Mater. 62, 759–775 (2019).
[Crossref]

M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, “Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control,” Chem. Rev. 118, 6236–6296 (2018).
[Crossref]

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Liu, Q.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Liu, X.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

X. Feng, V. V. Kulish, P. Wu, X. Liu, and K.-W. Ang, “Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study,” Nano Res. 9, 2687–2695 (2016).
[Crossref]

F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit,” IEEE Electron Device Lett. 36, 1091–1093 (2015).
[Crossref]

Z. Li, J. Wu, C. Wang, H. Zhang, W. Yu, Y. Lu, and X. Liu, “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).
[Crossref]

Liu, Y.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Liu, Z.

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

Lo, Y. H.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Lo, Y.-H.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Lou, J.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Lu, Y.

Z. Li, J. Wu, C. Wang, H. Zhang, W. Yu, Y. Lu, and X. Liu, “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).
[Crossref]

Ma, K. Y.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Malic, E.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Mandrus, D. G.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Manikandan, A.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Manzeli, S.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2, 17033 (2017).
[Crossref]

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

Marauhn, P.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Mastandrea, J. P.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Medina, H.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Mendes, R. G.

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

Miao, F.

I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of the Raman spectra of graphene and graphene multilayers,” Nano Lett. 7, 2645–2649 (2007).
[Crossref]

Michaelis de Vasconcellos, S.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Miller, A. C.

J. Kong, K. T. Park, A. C. Miller, and K. Klier, “Molybdenum disulfide single crystal (0002) plane XPS spectra,” Surf. Sci. Spectra 7, 69–74 (2000).
[Crossref]

Minor, A. M.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Mohite, A. D.

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
[Crossref]

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Monroy, E.

F. González-Posada, R. Songmuang, M. Den Hertog, and E. Monroy, “Room-temperature photodetection dynamics of single GaN nanowires,” Nano Lett. 12, 172–176 (2012).
[Crossref]

Morris, S. M.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Najmaei, S.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Nayak, A. P.

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Newaz, A. K. M.

A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, and A. K. M. Newaz, “Large array fabrication of high performance monolayer MoS2 photodetectors,” Appl. Phys. Lett. 111, 043110 (2017).
[Crossref]

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Niehues, I.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

O’Regan, T. P.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Oh, I.-K.

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

Ovchinnikov, D.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2, 17033 (2017).
[Crossref]

Pak, S.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Pandey, T.

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Pantelides, S. T.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett. 13, 3626–3630 (2013).
[Crossref]

Park, J.

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Park, K. T.

J. Kong, K. T. Park, A. C. Miller, and K. Klier, “Molybdenum disulfide single crystal (0002) plane XPS spectra,” Surf. Sci. Spectra 7, 69–74 (2000).
[Crossref]

Pasquier, D.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2, 17033 (2017).
[Crossref]

Pawar, M. S.

A. S. Pawbake, M. S. Pawar, S. R. Jadkar, and D. J. Late, “Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies,” Nanoscale 8, 3008–3018 (2016).
[Crossref]

Pawbake, A. S.

A. S. Pawbake, M. S. Pawar, S. R. Jadkar, and D. J. Late, “Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies,” Nanoscale 8, 3008–3018 (2016).
[Crossref]

Payne, M. C.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
[Crossref]

Pei, Q.-X.

Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, “Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering,” J. Phys. Chem. C 119, 16358–16365 (2015).
[Crossref]

Peng, L.

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

Peng, Y.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Penumatcha, A. V.

S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett. 13, 100–105 (2013).
[Crossref]

Pickard, C. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
[Crossref]

Pop, E.

A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, and A. K. M. Newaz, “Large array fabrication of high performance monolayer MoS2 photodetectors,” Appl. Phys. Lett. 111, 043110 (2017).
[Crossref]

Prasai, D.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Probert, M. J.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
[Crossref]

Qi, J.

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

Qian, X.

J. Feng, X. Qian, C.-W. Huang, and J. Li, “Strain-engineered artificial atom as a broad-spectrum solar energy funnel,” Nat. Photonics 6, 866–872 (2012).
[Crossref]

Qu, Y.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Ran, S.

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Rasool, H.

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

Ray, K.

A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, and A. K. M. Newaz, “Large array fabrication of high performance monolayer MoS2 photodetectors,” Appl. Phys. Lett. 111, 043110 (2017).
[Crossref]

Robinson, J. A.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Rohlfing, M.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Roldán, R.

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter. 27, 313201 (2015).
[Crossref]

Rümmeli, M. H.

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

Ruzmetov, D.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Ryu, G. H.

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

Schmidt, R.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Schneider, R.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Segall, M. D.

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
[Crossref]

Selig, M.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Seo, F. J.

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Shah, P. B.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Shao, Y.

T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, and M. Li, “Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors,” Anal. Chem. 86, 12064–12069 (2014).
[Crossref]

Shi, C.

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Shin, H. S.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Singh, A. K.

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Smithe, K. K. H.

A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, and A. K. M. Newaz, “Large array fabrication of high performance monolayer MoS2 photodetectors,” Appl. Phys. Lett. 111, 043110 (2017).
[Crossref]

Soci, C.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Sohn, J. I.

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

Song, J.-G.

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

Songmuang, R.

F. González-Posada, R. Songmuang, M. Den Hertog, and E. Monroy, “Room-temperature photodetection dynamics of single GaN nanowires,” Nano Lett. 12, 172–176 (2012).
[Crossref]

Sourav, A.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Stan, G.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Stieg, A. Z.

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

Su, L.

L. Su, Y. Zhang, Y. Yu, and L. Cao, “Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering,” Nanoscale 6, 4920–4927 (2014).
[Crossref]

Su, T.-Y.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Sumant, A. V.

S. Deng, A. V. Sumant, and V. Berry, “Strain engineering in two-dimensional nanomaterials beyond graphene,” Nano Today 22, 14–35 (2018).
[Crossref]

Sun, B.

X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, “Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure,” ACS Nano 10, 1619–1624 (2016).
[Crossref]

Suslu, A.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Tan, W. C.

X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
[Crossref]

L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, and K.-W. Ang, “Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
[Crossref]

Tolk, N. H.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Tong, Y.

Tongay, S.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Vajtai, R.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Velizhanin, K. A.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Voiry, D.

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
[Crossref]

Vu, Q. A.

Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, and Y. H. Lee, “Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors,” 2D Mater. 5, 031001 (2018).
[Crossref]

Wang, B.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett. 13, 3626–3630 (2013).
[Crossref]

Wang, C.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Z. Li, J. Wu, C. Wang, H. Zhang, W. Yu, Y. Lu, and X. Liu, “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).
[Crossref]

Wang, D.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Wang, J.

F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit,” IEEE Electron Device Lett. 36, 1091–1093 (2015).
[Crossref]

Wang, K. L.

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

Wang, L.

X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
[Crossref]

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, and K.-W. Ang, “Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
[Crossref]

Wang, S. J.

Wang, S.-W.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Wang, T.

T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, and M. Li, “Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors,” Anal. Chem. 86, 12064–12069 (2014).
[Crossref]

Wang, Y.

F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit,” IEEE Electron Device Lett. 36, 1091–1093 (2015).
[Crossref]

Wang, Z.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Weng, Z.

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

Wigger, D.

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

Woo, W. J.

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

Wu, C.-C.

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

Wu, J.

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Z. Li, J. Wu, C. Wang, H. Zhang, W. Yu, Y. Lu, and X. Liu, “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).
[Crossref]

Wu, P.

X. Feng, V. V. Kulish, P. Wu, X. Liu, and K.-W. Ang, “Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study,” Nano Res. 9, 2687–2695 (2016).
[Crossref]

Wu, X.

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Xiang, B.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Xiao, Y.

Y. Xiao, M. Zhou, J. Liu, J. Xu, and L. Fu, “Phase engineering of two-dimensional transition metal dichalcogenides,” Sci. China Mater. 62, 759–775 (2019).
[Crossref]

M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, “Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control,” Chem. Rev. 118, 6236–6296 (2018).
[Crossref]

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

Xu, J.

Y. Xiao, M. Zhou, J. Liu, J. Xu, and L. Fu, “Phase engineering of two-dimensional transition metal dichalcogenides,” Sci. China Mater. 62, 759–775 (2019).
[Crossref]

Yalcin, S. E.

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
[Crossref]

Yamaguchi, H.

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

Yan, J.

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Yang, J.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Yang, K.

M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, “Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control,” Chem. Rev. 118, 6236–6296 (2018).
[Crossref]

Yang, R.

Yang, S. X.

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

Yazyev, O. V.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2, 17033 (2017).
[Crossref]

Yoo, J.-B.

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Yore, A. E.

A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, and A. K. M. Newaz, “Large array fabrication of high performance monolayer MoS2 photodetectors,” Appl. Phys. Lett. 111, 043110 (2017).
[Crossref]

You, S.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Yu, S.

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Yu, W.

Z. Li, J. Wu, C. Wang, H. Zhang, W. Yu, Y. Lu, and X. Liu, “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).
[Crossref]

Yu, W. J.

Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, and Y. H. Lee, “Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors,” 2D Mater. 5, 031001 (2018).
[Crossref]

Yu, Y.

L. Su, Y. Zhang, Y. Yu, and L. Cao, “Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering,” Nanoscale 6, 4920–4927 (2014).
[Crossref]

Yue, S.

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

Zeng, M.

M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, “Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control,” Chem. Rev. 118, 6236–6296 (2018).
[Crossref]

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

Zhang, A.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

Zhang, H.

Z. Li, J. Wu, C. Wang, H. Zhang, W. Yu, Y. Lu, and X. Liu, “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).
[Crossref]

Zhang, K.

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Zhang, Q.

Q. Zhang and L. Fu, “Novel insights and perspectives into weakly coupled ReS2 toward emerging applications,” Chem 5, 505–525 (2019).
[Crossref]

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

Zhang, T.

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

Zhang, W.

W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456–3461 (2013).
[Crossref]

Zhang, Y.

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

L. Su, Y. Zhang, Y. Yu, and L. Cao, “Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering,” Nanoscale 6, 4920–4927 (2014).
[Crossref]

Zhang, Y.-W.

Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, “Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering,” J. Phys. Chem. C 119, 16358–16365 (2015).
[Crossref]

Zhong, Y.-L.

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

Zhou, L.

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

Zhou, M.

Y. Xiao, M. Zhou, J. Liu, J. Xu, and L. Fu, “Phase engineering of two-dimensional transition metal dichalcogenides,” Sci. China Mater. 62, 759–775 (2019).
[Crossref]

Zhou, Q.

Zhu, H.

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Zhu, J.

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

Zhu, R.

T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, and M. Li, “Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors,” Anal. Chem. 86, 12064–12069 (2014).
[Crossref]

Zhu, Z.

T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, and M. Li, “Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors,” Anal. Chem. 86, 12064–12069 (2014).
[Crossref]

Zhuo, J.

T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, and M. Li, “Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors,” Anal. Chem. 86, 12064–12069 (2014).
[Crossref]

Ziegler, J. I.

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett. 13, 3626–3630 (2013).
[Crossref]

2D Mater. (1)

Q. A. Vu, S. Fan, S. H. Lee, M.-K. Joo, W. J. Yu, and Y. H. Lee, “Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors,” 2D Mater. 5, 031001 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (4)

J.-G. Song, S. J. Kim, W. J. Woo, Y. Kim, I.-K. Oh, G. H. Ryu, Z. Lee, J. H. Lim, J. Park, and H. Kim, “Effect of Al2O3 deposition on performance of top-gated monolayer MoS2-based field effect transistor,” ACS Appl. Mater. Interfaces 8, 28130–28135 (2016).
[Crossref]

D. J. Late, “Temperature dependent phonon shifts in few-layer black phosphorus,” ACS Appl. Mater. Interfaces 7, 5857–5862 (2015).
[Crossref]

S. X. Yang, C. Wang, C. Ataca, Y. Li, H. Chen, H. Cai, A. Suslu, J. C. Grossman, C. B. Jiang, Q. Liu, and S. Tongay, “Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p–n vdW heterostructure,” ACS Appl. Mater. Interfaces 8, 2533–2539 (2016).
[Crossref]

L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, and K.-W. Ang, “Infrared black phosphorus phototransistor with tunable responsivity and low noise equivalent power,” ACS Appl. Mater. Interfaces 9, 36130–36136 (2017).
[Crossref]

ACS Nano (5)

S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe,” ACS Nano 8, 1263–1272 (2014).
[Crossref]

S. Bertolazzi, J. Brivio, and A. Kis, “Stretching and breaking of ultrathin MoS2,” ACS Nano 5, 9703–9709 (2011).
[Crossref]

X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, “Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure,” ACS Nano 10, 1619–1624 (2016).
[Crossref]

S.-W. Wang, H. Medina, K.-B. Hong, C.-C. Wu, Y. Qu, A. Manikandan, T.-Y. Su, P.-T. Lee, Z.-Q. Huang, Z. Wang, F.-C. Chuang, H.-C. Kuo, and Y.-L. Chueh, “Thermally strained band gap engineering of transition-metal dichalcogenide bilayers with enhanced light-matter interaction toward excellent photodetectors,” ACS Nano 11, 8768–8776 (2017).
[Crossref]

D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, “Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride,” ACS Nano 10, 3580–3588 (2016).
[Crossref]

Adv. Mater. (1)

W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, “High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater. 25, 3456–3461 (2013).
[Crossref]

Adv. Opt. Mater. (1)

A. Sourav, Z. Li, Z. Huang, V. D. Botcha, C. Hu, J.-P. Ao, Y. Peng, H.-C. Kuo, J. Wu, X. Liu, and K.-W. Ang, “Large-scale transparent molybdenum disulfide plasmonic photodetector using split bull eye structure,” Adv. Opt. Mater. 6, 1800461 (2018).
[Crossref]

Anal. Chem. (1)

T. Wang, R. Zhu, J. Zhuo, Z. Zhu, Y. Shao, and M. Li, “Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors,” Anal. Chem. 86, 12064–12069 (2014).
[Crossref]

Appl. Phys. Lett. (2)

A. E. Yore, K. K. H. Smithe, S. Jha, K. Ray, E. Pop, and A. K. M. Newaz, “Large array fabrication of high performance monolayer MoS2 photodetectors,” Appl. Phys. Lett. 111, 043110 (2017).
[Crossref]

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Appl. Surf. Sci. (2)

M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, “XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions,” Appl. Surf. Sci. 150, 255–262 (1999).
[Crossref]

S. Yu, S. Ran, H. Zhu, K. Eshun, C. Shi, K. Jiang, K. Gu, F. J. Seo, and Q. Li, “Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations,” Appl. Surf. Sci. 428, 593–597 (2018).
[Crossref]

Chem (1)

Q. Zhang and L. Fu, “Novel insights and perspectives into weakly coupled ReS2 toward emerging applications,” Chem 5, 505–525 (2019).
[Crossref]

Chem. Mater. (2)

Q. Zhang, Y. Xiao, T. Zhang, Z. Weng, M. Zeng, S. Yue, R. G. Mendes, L. Wang, S. Chen, M. H. Rümmeli, L. Peng, and L. Fu, “Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides,” Chem. Mater. 29, 4641–4644 (2017).
[Crossref]

M. Ju, X. Liang, J. Liu, L. Zhou, Z. Liu, R. G. Mendes, M. H. Rümmeli, and L. Fu, “Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals,” Chem. Mater. 29, 6095–6103 (2017).
[Crossref]

Chem. Rev. (1)

M. Zeng, Y. Xiao, J. Liu, K. Yang, and L. Fu, “Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control,” Chem. Rev. 118, 6236–6296 (2018).
[Crossref]

IEEE Electron Device Lett. (1)

F. Liu, Y. Wang, X. Liu, J. Wang, and H. Guo, “A theoretical investigation of orientation-dependent transport in monolayer MoS2 transistors at the ballistic limit,” IEEE Electron Device Lett. 36, 1091–1093 (2015).
[Crossref]

J. Phys. Chem. C (1)

Z. Ding, Q.-X. Pei, J.-W. Jiang, and Y.-W. Zhang, “Manipulating the thermal conductivity of monolayer MoS2 via lattice defect and strain engineering,” J. Phys. Chem. C 119, 16358–16365 (2015).
[Crossref]

J. Phys. Condens. Matter (1)

M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter 14, 2717–2744 (2002).
[Crossref]

J. Phys. Condens. Matter. (1)

R. Roldán, A. Castellanos-Gomez, E. Cappelluti, and F. Guinea, “Strain engineering in semiconducting two-dimensional crystals,” J. Phys. Condens. Matter. 27, 313201 (2015).
[Crossref]

Nano Energy (1)

X. Huang, X. Feng, L. Chen, L. Wang, W. C. Tan, L. Huang, and K.-W. Ang, “Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure,” Nano Energy 62, 667–673 (2019).
[Crossref]

Nano Lett. (9)

H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, “Bandgap engineering of strained monolayer and bilayer MoS2,” Nano Lett. 13, 3626–3630 (2013).
[Crossref]

S. Pak, J. Lee, Y.-W. Lee, A. R. Jang, S. Ahn, K. Y. Ma, Y. Cho, J. Hong, S. Lee, H. Y. Jeong, H. Im, H. S. Shin, S. M. Morris, S. Cha, J. I. Sohn, and J. M. Kim, “Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer,” Nano Lett. 17, 5634–5640 (2017).
[Crossref]

S. Manzeli, A. Allain, A. Ghadimi, and A. Kis, “Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2,” Nano Lett. 15, 5330–5335 (2015).
[Crossref]

D. Kufer and G. Konstantatos, “Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed,” Nano Lett. 15, 7307–7313 (2015).
[Crossref]

S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett. 13, 100–105 (2013).
[Crossref]

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7, 1003–1009 (2007).
[Crossref]

F. González-Posada, R. Songmuang, M. Den Hertog, and E. Monroy, “Room-temperature photodetection dynamics of single GaN nanowires,” Nano Lett. 12, 172–176 (2012).
[Crossref]

I. Niehues, R. Schmidt, M. Drüppel, P. Marauhn, D. Christiansen, M. Selig, G. Berghäuser, D. Wigger, R. Schneider, L. Braasch, R. Koch, A. Castellanos-Gomez, T. Kuhn, A. Knorr, E. Malic, M. Rohlfing, S. Michaelis de Vasconcellos, and R. Bratschitsch, “Strain control of exciton-phonon coupling in atomically thin semiconductors,” Nano Lett. 18, 1751–1757 (2018).
[Crossref]

I. Calizo, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Temperature dependence of the Raman spectra of graphene and graphene multilayers,” Nano Lett. 7, 2645–2649 (2007).
[Crossref]

Nano Res. (1)

X. Feng, V. V. Kulish, P. Wu, X. Liu, and K.-W. Ang, “Anomalously enhanced thermal stability of phosphorene via metal adatom doping: an experimental and first-principles study,” Nano Res. 9, 2687–2695 (2016).
[Crossref]

Nano Today (1)

S. Deng, A. V. Sumant, and V. Berry, “Strain engineering in two-dimensional nanomaterials beyond graphene,” Nano Today 22, 14–35 (2018).
[Crossref]

Nanoscale (2)

A. S. Pawbake, M. S. Pawar, S. R. Jadkar, and D. J. Late, “Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies,” Nanoscale 8, 3008–3018 (2016).
[Crossref]

L. Su, Y. Zhang, Y. Yu, and L. Cao, “Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering,” Nanoscale 6, 4920–4927 (2014).
[Crossref]

Nat. Commun. (4)

A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J.-F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun. 5, 3731 (2014).
[Crossref]

G. H. Ahn, M. Amani, H. Rasool, D.-H. Lien, J. P. Mastandrea, J. W. Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, “Strain-engineered growth of two-dimensional materials,” Nat. Commun. 8, 608 (2017).
[Crossref]

J. Qi, Y.-W. Lan, A. Z. Stieg, J.-H. Chen, Y.-L. Zhong, L.-J. Li, C.-D. Chen, Y. Zhang, and K. L. Wang, “Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics,” Nat. Commun. 6, 7430 (2015).
[Crossref]

S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun. 3, 1011 (2012).
[Crossref]

Nat. Mater. (1)

R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater. 13, 1128–1134 (2014).
[Crossref]

Nat. Nanotechnol. (1)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Nat. Photonics (1)

J. Feng, X. Qian, C.-W. Huang, and J. Li, “Strain-engineered artificial atom as a broad-spectrum solar energy funnel,” Nat. Photonics 6, 866–872 (2012).
[Crossref]

Nat. Rev. Mater. (1)

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2, 17033 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

H. S. Lee, M. S. Kim, H. Kim, and Y. H. Lee, “Identifying multiexcitons in MoS2 monolayers at room temperature,” Phys. Rev. B 93, 140409 (2016).
[Crossref]

Sci. China Mater. (1)

Y. Xiao, M. Zhou, J. Liu, J. Xu, and L. Fu, “Phase engineering of two-dimensional transition metal dichalcogenides,” Sci. China Mater. 62, 759–775 (2019).
[Crossref]

Sci. Rep. (1)

A. R. Klots, A. K. M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N. J. Ghimire, J. Yan, B. L. Ivanov, K. A. Velizhanin, A. Burger, D. G. Mandrus, N. H. Tolk, S. T. Pantelides, and K. I. Bolotin, “Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy,” Sci. Rep. 4, 6608 (2014).
[Crossref]

Surf. Sci. Spectra (1)

J. Kong, K. T. Park, A. C. Miller, and K. Klier, “Molybdenum disulfide single crystal (0002) plane XPS spectra,” Surf. Sci. Spectra 7, 69–74 (2000).
[Crossref]

Other (2)

Raman and Absorbance of multilayer MoS2, Dataset 1, https://doi.org/10.6084/m9.figshare.11980941 .

Z. Li, J. Wu, C. Wang, H. Zhang, W. Yu, Y. Lu, and X. Liu, “High-performance monolayer MoS2 photodetector enabled by oxide stress liner using scalable chemical vapor growth method,” Nanophotonics (2020).
[Crossref]

Supplementary Material (1)

NameDescription
» Dataset 1       Raman and Absorbance of multilayer MoS2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Material characterization of multilayer MoS 2 with and without Al 2 O 3 stress liner. (a) Raman spectra of multilayer MoS 2 sample grown on FS GaN substrate; the distance between E 2 g 1 and A 1 g is 21.33    cm 2 ; (b) core level XPS spectrum of Mo 3d and S 2s of the control multilayer MoS 2 / GaN sample; (c) cross-sectional TEM image of the multilayer MoS 2 / GaN with 3 nm Al 2 O 3 ; (d) Al, S, Mo, and Ca element fraction as a function of depth position. The position of Raman mode peaks for (e)  E 2 g 1 and (f)  A 1 g of control and stress liner samples as a function of temperature including a linear fit.
Fig. 2.
Fig. 2. Simulation of multilayer MoS 2 with tensile strain. (a) 2D stress mapping within the multilayer MoS 2 (4 nm) photodetector with Al 2 O 3 stress liner; (b) horizontal stress distribution within the multilayer MoS 2 layer. Results of first-principles calculations: the variation of (c) the bottom of the conduction band and the top of the valence band, (d) bandgap, and (e) electron effective mass under different tensile strain on six-layer MoS 2 .
Fig. 3.
Fig. 3. Schematic and measurement of MoS 2 photodetector with and without Al 2 O 3 stress liner. (a) 3D schematic structure view of multilayer MoS 2 photodetectors with the Al 2 O 3 stress liner; (b) dark current and light current as a function of voltage under different power of the 365 nm incident light for control and stress liner photodetector; (c) extracted photocurrent of two photodetectors at 20 V with varying incident power. The straight lines were fitted by the power law ( I Ph P α ). (d) Calculated responsitivity of two photodetectors as a function of incident power.
Fig. 4.
Fig. 4. Performance of control and stress liner photodetectors. (a) Gain and EQE as a function of incident power; significant increases in both values for stress liner photodetector; (b) NEP and detectivity as a function of incident power; reduced performance of both for stress liner photodetector due to the increase in dark current.
Fig. 5.
Fig. 5. Time curve of photocurrent with a switch on/off light. (a) Photocurrent-time curve of control and stress liner photodetectors illuminated by 365 nm light source with the incident power of 5.647 μW at 20 V, respectively. The corresponding rise time (from 10% to 90% of maximum photocurrent) and the fall time (from 90% to 10% of maximum photocurrent) of (b) control and (c) stress liner photodetector, respectively.