Abstract

We present an experimental setup capable of time-resolved photoluminescence spectroscopy for photon energies in the range of 0.51 to 0.56 eV with an instrument time response of 75 ps. The detection system is based on optical parametric three-wave mixing, operates at room temperature, has spectral resolving power, and is shown to be well suited for investigating dynamical processes in germanium-tin alloys. In particular, the carrier lifetime of a direct-bandgap Ge1xSnx film with concentration x=12.5% and biaxial strain 0.55% is determined to be 217±15  ps at a temperature of 20 K. A room-temperature investigation indicates that the variation in this lifetime with temperature is very modest. The characteristics of the photoluminescence as a function of pump fluence are discussed.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Geiger, T. Zabel, and H. Sigg, “Group IV direct band gap photonics: methods, challenges, and opportunities,” Front. Mater. 2, 52 (2015).
    [Crossref]
  2. R. Soref, D. Buca, and S.-Q. Yu, “Group IV photonics: driving integrated optoelectronics,” Opt. Photon. News 27, 32–39 (2016).
    [Crossref]
  3. K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
    [Crossref]
  4. D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
    [Crossref]
  5. N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
    [Crossref]
  6. S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, and O. Moutanabbir, “Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μm room-temperature optical emission,” Appl. Phys. Lett. 112, 251903 (2018).
    [Crossref]
  7. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
    [Crossref]
  8. J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
    [Crossref]
  9. V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
    [Crossref]
  10. J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
    [Crossref]
  11. S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
    [Crossref]
  12. W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
    [Crossref]
  13. D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
    [Crossref]
  14. D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
    [Crossref]
  15. G. W. ’t Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys. 60, 1065–1070 (1986).
    [Crossref]
  16. U. Strauss, W. W. Rühle, and K. Köhler, “Auger recombination in intrinsic GaAs,” Appl. Phys. Lett. 62, 55–57 (1993).
    [Crossref]
  17. S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
    [Crossref]
  18. L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
    [Crossref]
  19. S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
    [Crossref]
  20. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
    [Crossref]
  21. S. Roesgaard, L. Meng, P. Tidemand-Lichtenberg, J. S. Dam, P. J. Rodrigo, C. Pedersen, and B. Julsgaard, “Time-resolved infrared photoluminescence spectroscopy using parametric three-wave mixing with angle-tuned phase matching,” Opt. Lett. 43, 3001–3004 (2018).
    [Crossref]
  22. A. Barh, M. Tawfieq, B. Sumpf, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion spectral response tailoring using fanout QPM structures,” Opt. Lett. 44, 2847–2850 (2019).
    [Crossref]
  23. J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, “Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si,” Semicond. Sci. Tech. 24, 055002 (2009).
    [Crossref]
  24. F. Pezzoli, A. Giorgioni, D. Patchett, and M. Myronov, “Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers,” ACS Photon. 3, 2004–2009 (2016).
    [Crossref]
  25. D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
    [Crossref]
  26. E. F. Schubert, E. O. Göbel, Y. Horikoshi, K. Ploog, and H. J. Queisser, “Alloy broadening in photoluminescence spectra of AlxGa1-xAs,” Phys. Rev. B 30, 813–820 (1984).
    [Crossref]
  27. A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).
    [Crossref]
  28. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
    [Crossref]
  29. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  30. X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
    [Crossref]
  31. P. W. Milonni and J. H. Eberly, Lasers (Wiley-Interscience, 1988).
  32. M. A. Gilleo, P. T. Bailey, and D. E. Hill, “Free-carrier and exciton recombination radiation in GaAs,” Phys. Rev. 174, 898–905 (1968).
    [Crossref]
  33. G. Neuer, “Spectral and total emissivity measurements of highly emitting materials,” Int. J. Thermophys. 16, 257–265 (1995).
    [Crossref]
  34. T. B. Bahder, “Eight-band k·p model of strained zinc-blende crystals,” Phys. Rev. B 41, 11992–12001 (1990).
    [Crossref]
  35. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [Crossref]
  36. U. Piesbergen, “Die durchschnittlichen atomwärmen der AIIIBV-halbieiter AlSb, GaAs, GaSb, InP, InAs, InSb und die atomwärme des elements germanium zwischen 12 und 273°K,” Z. Naturforschg. 18A, 141–147 (1963).
  37. R. C. Smith, “High-temperature specific heat of germanium,” J. Appl. Phys. 37, 4860–4865 (1966).
    [Crossref]
  38. C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
    [Crossref]
  39. J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M. Ziman, “The thermal conductivity of germanium and silicon between 2 and 300°K,” Proc. R. Soc. Lon. Ser. A 238, 502–514 (1957).

2019 (6)

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

A. Barh, M. Tawfieq, B. Sumpf, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion spectral response tailoring using fanout QPM structures,” Opt. Lett. 44, 2847–2850 (2019).
[Crossref]

X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
[Crossref]

2018 (5)

S. Roesgaard, L. Meng, P. Tidemand-Lichtenberg, J. S. Dam, P. J. Rodrigo, C. Pedersen, and B. Julsgaard, “Time-resolved infrared photoluminescence spectroscopy using parametric three-wave mixing with angle-tuned phase matching,” Opt. Lett. 43, 3001–3004 (2018).
[Crossref]

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, and O. Moutanabbir, “Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μm room-temperature optical emission,” Appl. Phys. Lett. 112, 251903 (2018).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

2017 (2)

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

2016 (3)

F. Pezzoli, A. Giorgioni, D. Patchett, and M. Myronov, “Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers,” ACS Photon. 3, 2004–2009 (2016).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV photonics: driving integrated optoelectronics,” Opt. Photon. News 27, 32–39 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

2015 (4)

R. Geiger, T. Zabel, and H. Sigg, “Group IV direct band gap photonics: methods, challenges, and opportunities,” Front. Mater. 2, 52 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

2012 (2)

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

2009 (1)

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, “Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si,” Semicond. Sci. Tech. 24, 055002 (2009).
[Crossref]

2006 (1)

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

2002 (1)

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).
[Crossref]

1995 (1)

G. Neuer, “Spectral and total emissivity measurements of highly emitting materials,” Int. J. Thermophys. 16, 257–265 (1995).
[Crossref]

1993 (1)

U. Strauss, W. W. Rühle, and K. Köhler, “Auger recombination in intrinsic GaAs,” Appl. Phys. Lett. 62, 55–57 (1993).
[Crossref]

1990 (1)

T. B. Bahder, “Eight-band k·p model of strained zinc-blende crystals,” Phys. Rev. B 41, 11992–12001 (1990).
[Crossref]

1986 (1)

G. W. ’t Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys. 60, 1065–1070 (1986).
[Crossref]

1984 (1)

E. F. Schubert, E. O. Göbel, Y. Horikoshi, K. Ploog, and H. J. Queisser, “Alloy broadening in photoluminescence spectra of AlxGa1-xAs,” Phys. Rev. B 30, 813–820 (1984).
[Crossref]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

1968 (1)

M. A. Gilleo, P. T. Bailey, and D. E. Hill, “Free-carrier and exciton recombination radiation in GaAs,” Phys. Rev. 174, 898–905 (1968).
[Crossref]

1967 (1)

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

1966 (1)

R. C. Smith, “High-temperature specific heat of germanium,” J. Appl. Phys. 37, 4860–4865 (1966).
[Crossref]

1964 (1)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
[Crossref]

1963 (1)

U. Piesbergen, “Die durchschnittlichen atomwärmen der AIIIBV-halbieiter AlSb, GaAs, GaSb, InP, InAs, InSb und die atomwärme des elements germanium zwischen 12 und 273°K,” Z. Naturforschg. 18A, 141–147 (1963).

1957 (1)

J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M. Ziman, “The thermal conductivity of germanium and silicon between 2 and 300°K,” Proc. R. Soc. Lon. Ser. A 238, 502–514 (1957).

’t Hooft, G. W.

G. W. ’t Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys. 60, 1065–1070 (1986).
[Crossref]

Abbadie, A.

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, “Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si,” Semicond. Sci. Tech. 24, 055002 (2009).
[Crossref]

Al-Kabi, S.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

Amand, T.

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Assali, S.

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, and O. Moutanabbir, “Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μm room-temperature optical emission,” Appl. Phys. Lett. 112, 251903 (2018).
[Crossref]

Aubin, J.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Bahder, T. B.

T. B. Bahder, “Eight-band k·p model of strained zinc-blende crystals,” Phys. Rev. B 41, 11992–12001 (1990).
[Crossref]

Bailey, P. T.

M. A. Gilleo, P. T. Bailey, and D. E. Hill, “Free-carrier and exciton recombination radiation in GaAs,” Phys. Rev. 174, 898–905 (1968).
[Crossref]

Balocchi, A.

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

Barh, A.

Benamara, M.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

Bernier, N.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

Bertrand, M.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Boucaud, P.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

Buca, D.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV photonics: driving integrated optoelectronics,” Opt. Photon. News 27, 32–39 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

Butterling, M.

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

Calvo, V.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Carruthers, J. A.

J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M. Ziman, “The thermal conductivity of germanium and silicon between 2 and 300°K,” Proc. R. Soc. Lon. Ser. A 238, 502–514 (1957).

Casiez, L.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

Chelnokov, A.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Chen, L.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Cherkashin, N.

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, “Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si,” Semicond. Sci. Tech. 24, 055002 (2009).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Chrétien, J.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

Clavelier, L.

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, “Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si,” Semicond. Sci. Tech. 24, 055002 (2009).
[Crossref]

Covian, A. C.

X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
[Crossref]

Dam, J. S.

Dansas, H.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

De Cesari, S.

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

Delamadeleine, E.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

Dijkstra, A.

S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, and O. Moutanabbir, “Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μm room-temperature optical emission,” Appl. Phys. Lett. 112, 251903 (2018).
[Crossref]

Dou, W.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

Du, W.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Lasers (Wiley-Interscience, 1988).

Elbaz, A.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

Elsayed, M.

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

Faist, J.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Fan, W.

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Fan, W. H.

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

Fox, A. M.

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

Fu, S.

X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
[Crossref]

Gassenq, A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Geballe, T. H.

J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M. Ziman, “The thermal conductivity of germanium and silicon between 2 and 300°K,” Proc. R. Soc. Lon. Ser. A 238, 502–514 (1957).

Geiger, R.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

R. Geiger, T. Zabel, and H. Sigg, “Group IV direct band gap photonics: methods, challenges, and opportunities,” Front. Mater. 2, 52 (2015).
[Crossref]

Gergaud, P.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

Ghetmiri, S.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

Gilleo, M. A.

M. A. Gilleo, P. T. Bailey, and D. E. Hill, “Free-carrier and exciton recombination radiation in GaAs,” Phys. Rev. 174, 898–905 (1968).
[Crossref]

Giorgioni, A.

F. Pezzoli, A. Giorgioni, D. Patchett, and M. Myronov, “Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers,” ACS Photon. 3, 2004–2009 (2016).
[Crossref]

Glassbrenner, C. J.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
[Crossref]

Göbel, E. O.

E. F. Schubert, E. O. Göbel, Y. Horikoshi, K. Ploog, and H. J. Queisser, “Alloy broadening in photoluminescence spectra of AlxGa1-xAs,” Phys. Rev. B 30, 813–820 (1984).
[Crossref]

Grampeix, H.

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, “Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si,” Semicond. Sci. Tech. 24, 055002 (2009).
[Crossref]

Grant, P.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

Grilli, E.

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

Grützmacher, D.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

Guilloy, K.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Han, G.

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Hartmann, J. M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, “Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si,” Semicond. Sci. Tech. 24, 055002 (2009).
[Crossref]

Hartmann, J.-M.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Hashemizadeh, S. A.

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

Herth, E.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

Hill, D. E.

M. A. Gilleo, P. T. Bailey, and D. E. Hill, “Free-carrier and exciton recombination radiation in GaAs,” Phys. Rev. 174, 898–905 (1968).
[Crossref]

Holländer, B.

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

Horikoshi, Y.

E. F. Schubert, E. O. Göbel, Y. Horikoshi, K. Ploog, and H. J. Queisser, “Alloy broadening in photoluminescence spectra of AlxGa1-xAs,” Phys. Rev. B 30, 813–820 (1984).
[Crossref]

Ikonic, Z.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

Jahandar, P.

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

Je, L.

X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
[Crossref]

Julsgaard, B.

Khazaka, R.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

Köhler, K.

U. Strauss, W. W. Rühle, and K. Köhler, “Auger recombination in intrinsic GaAs,” Appl. Phys. Lett. 62, 55–57 (1993).
[Crossref]

Krause-Rehberg, R.

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

Kurdi, M. E.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

Li, B.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

Li, H.

X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
[Crossref]

Liedke, M. O.

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

Liu, J.

X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

Low, K. L.

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

Mantl, S.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

Margetis, J.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

Marie, X.

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

Marsili, F.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Marzban, B.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Meng, L.

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Lasers (Wiley-Interscience, 1988).

Milord, L.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Mirin, R. P.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Mortazavi, M.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

Mosleh, A.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

Moutanabbir, O.

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, and O. Moutanabbir, “Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μm room-temperature optical emission,” Appl. Phys. Lett. 112, 251903 (2018).
[Crossref]

Mowbray, D. J.

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

Mukherjee, S.

S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, and O. Moutanabbir, “Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μm room-temperature optical emission,” Appl. Phys. Lett. 112, 251903 (2018).
[Crossref]

Mussler, G.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

Myronov, M.

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

F. Pezzoli, A. Giorgioni, D. Patchett, and M. Myronov, “Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers,” ACS Photon. 3, 2004–2009 (2016).
[Crossref]

Nam, S. W.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Neuer, G.

G. Neuer, “Spectral and total emissivity measurements of highly emitting materials,” Int. J. Thermophys. 16, 257–265 (1995).
[Crossref]

Nicolas, J.

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, and O. Moutanabbir, “Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μm room-temperature optical emission,” Appl. Phys. Lett. 112, 251903 (2018).
[Crossref]

Olaizola, S. M.

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

Parbrook, P. J.

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

Patchett, D.

F. Pezzoli, A. Giorgioni, D. Patchett, and M. Myronov, “Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers,” ACS Photon. 3, 2004–2009 (2016).
[Crossref]

Pauc, N.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Pedersen, C.

Pezzoli, F.

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

F. Pezzoli, A. Giorgioni, D. Patchett, and M. Myronov, “Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers,” ACS Photon. 3, 2004–2009 (2016).
[Crossref]

Pham, T.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

Piao, J.

X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
[Crossref]

Piesbergen, U.

U. Piesbergen, “Die durchschnittlichen atomwärmen der AIIIBV-halbieiter AlSb, GaAs, GaSb, InP, InAs, InSb und die atomwärme des elements germanium zwischen 12 und 273°K,” Z. Naturforschg. 18A, 141–147 (1963).

Pilon, F. A.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Ploog, K.

E. F. Schubert, E. O. Göbel, Y. Horikoshi, K. Ploog, and H. J. Queisser, “Alloy broadening in photoluminescence spectra of AlxGa1-xAs,” Phys. Rev. B 30, 813–820 (1984).
[Crossref]

Queisser, H. J.

E. F. Schubert, E. O. Göbel, Y. Horikoshi, K. Ploog, and H. J. Queisser, “Alloy broadening in photoluminescence spectra of AlxGa1-xAs,” Phys. Rev. B 30, 813–820 (1984).
[Crossref]

Rainko, D.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
[Crossref]

Reboud, V.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Riffe, D. M.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).
[Crossref]

Rodrigo, P. J.

Roesgaard, S.

Rosenberg, H. M.

J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M. Ziman, “The thermal conductivity of germanium and silicon between 2 and 300°K,” Proc. R. Soc. Lon. Ser. A 238, 502–514 (1957).

Rothman, J.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Rouchon, D.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Rühle, W. W.

U. Strauss, W. W. Rühle, and K. Köhler, “Auger recombination in intrinsic GaAs,” Appl. Phys. Lett. 62, 55–57 (1993).
[Crossref]

Sabbah, A. J.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).
[Crossref]

Schubert, E. F.

E. F. Schubert, E. O. Göbel, Y. Horikoshi, K. Ploog, and H. J. Queisser, “Alloy broadening in photoluminescence spectra of AlxGa1-xAs,” Phys. Rev. B 30, 813–820 (1984).
[Crossref]

Schulte-Braucks, C.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Schwarzer, D.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Sigg, H.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

R. Geiger, T. Zabel, and H. Sigg, “Group IV direct band gap photonics: methods, challenges, and opportunities,” Front. Mater. 2, 52 (2015).
[Crossref]

Skolnick, M. S.

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

Slack, G. A.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
[Crossref]

Smith, R. C.

R. C. Smith, “High-temperature specific heat of germanium,” J. Appl. Phys. 37, 4860–4865 (1966).
[Crossref]

Soref, R.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV photonics: driving integrated optoelectronics,” Opt. Photon. News 27, 32–39 (2016).
[Crossref]

Stange, D.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

Stevens, M. J.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Stoica, T.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

Strauss, U.

U. Strauss, W. W. Rühle, and K. Köhler, “Auger recombination in intrinsic GaAs,” Appl. Phys. Lett. 62, 55–57 (1993).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

Sumpf, B.

Sun, G.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

Tawfieq, M.

Thai, Q. M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

Thai, Q.-M.

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

Tidemand-Lichtenberg, P.

Tolle, J.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

van Opdorp, C.

G. W. ’t Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys. 60, 1065–1070 (1986).
[Crossref]

Varshni, Y.

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Verma, V. B.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Vitiello, E.

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

von den Driesch, N.

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

Vukmirovic, N.

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
[Crossref]

Wagner, A.

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

Wang, X.

X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
[Crossref]

Wells, J. R.

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

Wirths, S.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

Witzens, J.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Wodtke, A. M.

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

Yang, Y.

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Yeo, Y.-C.

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

Yu, S.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

Yu, S.-Q.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV photonics: driving integrated optoelectronics,” Opt. Photon. News 27, 32–39 (2016).
[Crossref]

Zabel, T.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

R. Geiger, T. Zabel, and H. Sigg, “Group IV direct band gap photonics: methods, challenges, and opportunities,” Front. Mater. 2, 52 (2015).
[Crossref]

Zhou, Y.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

Ziman, J. M.

J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M. Ziman, “The thermal conductivity of germanium and silicon between 2 and 300°K,” Proc. R. Soc. Lon. Ser. A 238, 502–514 (1957).

Acc. Chem. Res. (1)

L. Chen, D. Schwarzer, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science,” Acc. Chem. Res. 50, 1400–1409 (2017).
[Crossref]

ACS Photon. (5)

F. Pezzoli, A. Giorgioni, D. Patchett, and M. Myronov, “Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers,” ACS Photon. 3, 2004–2009 (2016).
[Crossref]

D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca, “Optical transitions in direct-bandgap Ge1-xSnx alloys,” ACS Photon. 2, 1539–1545 (2015).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S. Yu, “Si-based GeSn lasers with wavelength coverage of 2-3 μm and operating temperatures up to 180 K,” ACS Photon. 5, 827–833 (2018).
[Crossref]

J. Chrétien, N. Pauc, F. A. Pilon, M. Bertrand, Q.-M. Thai, L. Casiez, N. Bernier, H. Dansas, P. Gergaud, E. Delamadeleine, R. Khazaka, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, J.-M. Hartmann, and V. Calvo, “GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain,” ACS Photon. 6, 2462–2469 (2019).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photon. 3, 1279–1285 (2016).
[Crossref]

Appl. Phys. Lett. (5)

S. Assali, M. Elsayed, J. Nicolas, M. O. Liedke, A. Wagner, M. Butterling, R. Krause-Rehberg, and O. Moutanabbir, “Vacancy complexes in nonequilibrium germanium-tin semiconductors,” Appl. Phys. Lett. 114, 251907 (2019).
[Crossref]

U. Strauss, W. W. Rühle, and K. Köhler, “Auger recombination in intrinsic GaAs,” Appl. Phys. Lett. 62, 55–57 (1993).
[Crossref]

S. M. Olaizola, W. H. Fan, S. A. Hashemizadeh, J. R. Wells, D. J. Mowbray, M. S. Skolnick, A. M. Fox, and P. J. Parbrook, “Time-resolved photoluminescence studies of carrier diffusion in GaN,” Appl. Phys. Lett. 89, 072107 (2006).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. A. Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K,” Appl. Phys. Lett. 111, 092101 (2017).
[Crossref]

S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, and O. Moutanabbir, “Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μm room-temperature optical emission,” Appl. Phys. Lett. 112, 251903 (2018).
[Crossref]

Chem. Mater. (1)

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27, 4693–4702 (2015).
[Crossref]

Front. Mater. (1)

R. Geiger, T. Zabel, and H. Sigg, “Group IV direct band gap photonics: methods, challenges, and opportunities,” Front. Mater. 2, 52 (2015).
[Crossref]

Front. Phys. (1)

X. Wang, A. C. Covian, L. Je, S. Fu, H. Li, J. Piao, and J. Liu, “GeSn on insulators (GeSnOI) toward mid-infrared integrated photonics,” Front. Phys. 7, 134 (2019).
[Crossref]

Int. J. Thermophys. (1)

G. Neuer, “Spectral and total emissivity measurements of highly emitting materials,” Int. J. Thermophys. 16, 257–265 (1995).
[Crossref]

J. Appl. Phys. (3)

K. L. Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, “Electronic band structure and effective mass parameters of Ge1-xSnx alloys,” J. Appl. Phys. 112, 103715 (2012).
[Crossref]

G. W. ’t Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys. 60, 1065–1070 (1986).
[Crossref]

R. C. Smith, “High-temperature specific heat of germanium,” J. Appl. Phys. 37, 4860–4865 (1966).
[Crossref]

Nat. Photonics (2)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6, 788–793 (2012).
[Crossref]

Opt. Lett. (2)

Opt. Photon. News (1)

R. Soref, D. Buca, and S.-Q. Yu, “Group IV photonics: driving integrated optoelectronics,” Opt. Photon. News 27, 32–39 (2016).
[Crossref]

Phys. Rev. (2)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
[Crossref]

M. A. Gilleo, P. T. Bailey, and D. E. Hill, “Free-carrier and exciton recombination radiation in GaAs,” Phys. Rev. 174, 898–905 (1968).
[Crossref]

Phys. Rev. B (5)

S. De Cesari, A. Balocchi, E. Vitiello, P. Jahandar, E. Grilli, T. Amand, X. Marie, M. Myronov, and F. Pezzoli, “Spin-coherent dynamics and carrier lifetime in strained Ge1-xSnx semiconductors on silicon,” Phys. Rev. B 99, 035202 (2019).
[Crossref]

E. F. Schubert, E. O. Göbel, Y. Horikoshi, K. Ploog, and H. J. Queisser, “Alloy broadening in photoluminescence spectra of AlxGa1-xAs,” Phys. Rev. B 30, 813–820 (1984).
[Crossref]

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).
[Crossref]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[Crossref]

T. B. Bahder, “Eight-band k·p model of strained zinc-blende crystals,” Phys. Rev. B 41, 11992–12001 (1990).
[Crossref]

Physica (1)

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

Proc. R. Soc. Lon. Ser. A (1)

J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M. Ziman, “The thermal conductivity of germanium and silicon between 2 and 300°K,” Proc. R. Soc. Lon. Ser. A 238, 502–514 (1957).

Sci. Rep. (3)

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. von den Driesch, D. Grützmacher, and D. Buca, “Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures,” Sci. Rep. 8, 15557 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8, 5640 (2018).
[Crossref]

D. Rainko, Z. Ikonic, A. Elbaz, N. von den Driesch, D. Stange, E. Herth, P. Boucaud, M. E. Kurdi, D. Grützmacher, and D. Buca, “Impact of tensile strain on low Sn content GeSn lasing,” Sci. Rep. 9, 259 (2019).
[Crossref]

Semicond. Sci. Tech. (1)

J. M. Hartmann, A. Abbadie, N. Cherkashin, H. Grampeix, and L. Clavelier, “Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si,” Semicond. Sci. Tech. 24, 055002 (2009).
[Crossref]

Z. Naturforschg. (1)

U. Piesbergen, “Die durchschnittlichen atomwärmen der AIIIBV-halbieiter AlSb, GaAs, GaSb, InP, InAs, InSb und die atomwärme des elements germanium zwischen 12 und 273°K,” Z. Naturforschg. 18A, 141–147 (1963).

Other (2)

P. W. Milonni and J. H. Eberly, Lasers (Wiley-Interscience, 1988).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

Supplementary Material (1)

NameDescription
» Visualization 1       Reconstructed emission spectra of a germanium-tin alloy after pulsed laser excitation. The different colors refer to the absorbed number of photons per square centimeter according to the legend.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Overview of the detection system. An incoming pulsed laser beam (blue) excites a GeSn sample, and the emitted infrared (IR) light (gray) is directed via flat and parabolic mirrors to an upconverter (UC) module, from which the upconverted light (yellow) goes through a monochromator and eventually reaches an avalanche photodiode (APD). The thermal emission of a SiC glowbar can be detected for calibration purposes. (b) Schematic diagram of the UC module. An intracavity field (green) at 1064 nm is mixed with the incoming IR light in a periodically poled lithium niobate (PPLN) crystal, generating the upconverted light (yellow). (c) Schematic representation of involved photon energy ranges, with the two gray and yellow arrows showing the smallest and largest involved energies of the IR and UC light. (d) Measured emission spectra of the glowbar for six different positions of the PPLN crystal motor stage. (e) Example of a decay curve (red) obtained from the GeSn sample at E=0.51  eV, T=20  K, and Φ=2.1×1015  photons/cm2. The black curve shows the instrument response function (IRF).
Fig. 2.
Fig. 2. Time-integrated spectra at (a) T=20  K and (b) room temperature. The color of each curve corresponds to the absorbed photon fluence Φ in units of inverse square centimeters (cm2), referring to the colorbar. In panel (a), the lowest-fluence data was not acquired for the highest emission energies due to low signal-to-noise ratio. The dotted curve represents the shape of the spectrum measured using continuous-wave pumping. The inset in panel (b) schematically shows the band diagram, consisting of the Γ and L valleys of the conduction band and the heavy-hole (hh) and light-hole (lh) valence bands. The energy separations are given in units of milli-electronvolts (meV) and calculated for x=12.5% and 0.55% biaxial strain at T=20  K.
Fig. 3.
Fig. 3. (a) Decay curves obtained at T=20  K, E=0.51  eV, and Φ varied according to the color scale (units cm2). The black curve is (in all panels) the instrument response function. (b) T=20  K and E=0.54  eV with Φ varied according to the color scale. (c) Normalized decay curves at T=20  K and Φ=3.2×1013  cm2, with colors corresponding to 0.51 eV (blue) and steps of 0.01 to 0.56 eV (red). The smooth curves through the data [in both panels (c) and (d)] represent curve fits. (d) Normalized decay curves obtained at room temperature with Φ=6.9×1014  cm2.
Fig. 4.
Fig. 4. In both panels T=20  K, and the shown spectra have been reconstructed as the model fit f evaluated at the times stated on the time axis. (a) Φ=2.0×1015  cm2 and (b) Φ=3.2×1013  cm2.
Fig. 5.
Fig. 5. In all panels, the curves are colored according to E from 0.51 eV (blue) to 0.56 eV (red) in steps of 0.01 eV. (a) Mean decay times at T=20  K. The black data points represent the intensity-weighted mean decay time. (b) Mean decay times at room temperature (RT). (c) Time-integrated intensity at T=20  K. The black data points are the sum of all colored data points. Dashed line: double-logarithmic slope=0.98. (d) Time-integrated intensity at RT. Dashed line: slope=1.6.
Fig. 6.
Fig. 6. (a) Emission spectra of the GeSn sample for different temperatures. The circles show the measured spectra, and the solid curves represent Gaussian functions fitted to a region near the maximum of the spectra. (b) The circles denote the fitted peak position, and the dotted and dashed curves show, respectively, the calculated bandgap energy for a Sn concentration of 12.0% and 12.5% plus 12kT. The biaxial strain is assumed to be 0.55% (compressive). (c) The fitted Gaussian peak area of the emission spectra.
Fig. 7.
Fig. 7. Common fitting parameters. In all panels, crosses correspond to fitting after the single-exponential Eq. (C1), whereas circles correspond to the delayed Eq. (C2). Colors represent emission energies from 0.51 eV (blue) to 0.56 eV (red) in steps of 0.01 eV. Panels (a) and (b) show the amplitude A1 at T=20  K and room temperature (RT), respectively. Panels (c) and (d) show the decay time t1 at T=20  K and RT, respectively. Panels (e) and (f) show the reduced χR2 at T=20  K and RT, respectively. Panels (g) and (h) show the time tmax of maximum for the fitting model f(t) at T=20  K and RT, respectively.
Fig. 8.
Fig. 8. Phenomenological FD fitting parameters. Symbols and color coding are identical to those in Fig. 7. Panels (a) and (b) show the FD delay time tFD at T=20  K and room temperature, respectively. Panels (c) and (d) show the FD time width tFD at T=20  K and room temperature, respectively.
Fig. 9.
Fig. 9. (a) Heat capacity of Ge. Blue circles are adopted from Table 8 in Ref. [36] and red squares are adopted from Table I in Ref. [37]. The black curve corresponds to the Debye model of Eq. (D2). (b) Thermal conductivity of Ge. Blue circles are adopted from Table I in Ref. [38] and are valid for a high-purity crystal. Red circles are read off from Fig. 1 of Ref. [39] for sample “Ge11” with a carrier concentration of 2×1018  cm3. The black curve is a compromise between the red data points and the high-temperature limit of the blue data points following Eq. (D3). (c) Thermal diffusion coefficient, based on the black curves from panels (a) and (b).
Fig. 10.
Fig. 10. All panels show solutions to Eq. (D1) at different times according to the colors specified in panel (c). The vertical dashed lines correspond to the interface between the Ge-VS and the GeSn top layer, and an absorption coefficient of α=(200  nm)1 was used. Absorbed photon fluences are (a) Φ=2×1015  cm2, (b) Φ=1014  cm2, and (c) Φ=1013  cm2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f(t)=A1exp(t/t1)
f(t)=A1exp(t/t1)1+exp[(ttFD)/τFD].
Ut=dUdTTt=ρc(T)Tt=k(T)2Tz2Tt=D(T)2Tz2,
c(T)=AT30ΘD/Tx4exdx(ex1)2,
k(T)=100  W/(m·K)3.95×103T+3.38×106T2+0.12×(T/13)3.2(T/13)3.2+1,