Abstract

Laser communication using photons should consider not only the transmission environment’s effects, but also the performance of the single-photon detector used and the photon number distribution. Photon communication based on the superconducting nanowire single-photon detector (SNSPD) is a new technology that addresses the current sensitivity limitations at the level of single photons in deep space communication. The communication’s bit error rate (BER) is limited by dark noise in the space environment and the photon number distribution with a traditional single-pixel SNSPD, which is unable to resolve the photon number distribution. In this work, an enhanced photon communication method was proposed based on the photon number resolving function of four-pixel array SNSPDs. A simulated picture transmission was carried out, and the error rate in this counting mode can be reduced by 2 orders of magnitude when compared with classical optical communication. However, in the communication mode using photon-enhanced counting, the four-pixel response amplitude for counting was found to restrain the communication rate, and this counting mode is extremely dependent on the incident light intensity through experiments, which limits the sensitivity and speed of the SNSPD array’s performance advantage. Therefore, a BER theoretical calculation model for laser communication was presented using the Bayesian estimation algorithm in order to analyze the selection of counting methods for information acquisition under different light intensities and to make better use of the SNSPD array’s high sensitivity and speed and thus to obtain a lower BER. The counting method and theoretical model proposed in this work refer to array SNSPDs in the deep space field.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19, 203–212 (2010).
  2. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tuts. 16, 2231–2258 (2014).
    [Crossref]
  3. H. Hemmati, “Interplanetary laser communications and precision ranging,” Laser Photon. Rev. 5, 697–710 (2011).
    [Crossref]
  4. B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
    [Crossref]
  5. D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, and A. Biswas, “Overview and status of the lunar laser communications demonstration,” Proc. SPIE 8246, 82460C (2012).
    [Crossref]
  6. D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185, 115–128 (2014).
    [Crossref]
  7. S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
    [Crossref]
  8. Q. Sun, W. D. Zhan, Z. Q. Hao, Y. F. Tang, and J. R. Wang, “Power budget of earth to moon deep space communication system,” in International Conference on Computer Systems, Electronics and Control (ICCSEC) (2017), pp. 578–581.
  9. M. A. Albota and B. S. Robinson, “Photon-counting 1.55 μm optical communications with pulse-position modulation and a multimode upconversion single-photon receiver,” Opt. Lett. 35, 2627–2629 (2010).
    [Crossref]
  10. D. Chitnis and S. Collins, “A spad-based photon detecting system for optical communications,” J. Lightwave Technol. 32, 2028–2034 (2014).
    [Crossref]
  11. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
    [Crossref]
  12. F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Y. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
    [Crossref]
  13. X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).
  14. B. Li, Y. T. Liu, S. F. Tong, L. Zhang, and H. F. Yao, “BER analysis of a deep space optical communication system based on SNSPD over double generalized gamma channel,” IEEE Photon. J. 10, 7907607 (2018).
    [Crossref]
  15. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
    [Crossref]
  16. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
    [Crossref]
  17. S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017–5028 (2012).
    [Crossref]
  18. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
    [Crossref]
  19. R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
    [Crossref]
  20. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
    [Crossref]
  21. S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
    [Crossref]
  22. D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
    [Crossref]
  23. S. Olivares and M. G. A. Paris, “Bayesian estimation in homodyne interferometry,” J. Phys. B-at Mol. Opt. 42, 055506 (2009).
    [Crossref]
  24. N. Wiebe and C. Granade, “Efficient Bayesian phase estimation,” Phys. Rev. Lett. 117, 010503 (2016).
    [Crossref]
  25. J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
    [Crossref]
  26. A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Andersen, “Ab initio quantum-enhanced optical phase estimation using real-time feedback control,” Nat. Photonics 9, 577–581 (2015).
    [Crossref]
  27. S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
    [Crossref]

2018 (3)

B. Li, Y. T. Liu, S. F. Tong, L. Zhang, and H. F. Yao, “BER analysis of a deep space optical communication system based on SNSPD over double generalized gamma channel,” IEEE Photon. J. 10, 7907607 (2018).
[Crossref]

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

2017 (3)

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

2016 (2)

2015 (1)

A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Andersen, “Ab initio quantum-enhanced optical phase estimation using real-time feedback control,” Nat. Photonics 9, 577–581 (2015).
[Crossref]

2014 (3)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tuts. 16, 2231–2258 (2014).
[Crossref]

D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185, 115–128 (2014).
[Crossref]

D. Chitnis and S. Collins, “A spad-based photon detecting system for optical communications,” J. Lightwave Technol. 32, 2028–2034 (2014).
[Crossref]

2013 (1)

2012 (3)

R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
[Crossref]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017–5028 (2012).
[Crossref]

D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, and A. Biswas, “Overview and status of the lunar laser communications demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

2011 (2)

H. Hemmati, “Interplanetary laser communications and precision ranging,” Laser Photon. Rev. 5, 697–710 (2011).
[Crossref]

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
[Crossref]

2010 (2)

2009 (2)

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

S. Olivares and M. G. A. Paris, “Bayesian estimation in homodyne interferometry,” J. Phys. B-at Mol. Opt. 42, 055506 (2009).
[Crossref]

2008 (1)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

2006 (2)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[Crossref]

2003 (1)

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Albota, M. A.

Alves, D. D.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
[Crossref]

Andersen, U. L.

A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Andersen, “Ab initio quantum-enhanced optical phase estimation using real-time feedback control,” Nat. Photonics 9, 577–581 (2015).
[Crossref]

Aquino, K.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
[Crossref]

Barron, R. O.

Bellei, F.

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Berggren, K. K.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Y. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Berni, A. A.

A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Andersen, “Ab initio quantum-enhanced optical phase estimation using real-time feedback control,” Nat. Photonics 9, 577–581 (2015).
[Crossref]

Biswas, A.

D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, and A. Biswas, “Overview and status of the lunar laser communications demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Bitauld, D.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Boehmer, K.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Boroson, D. M.

D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185, 115–128 (2014).
[Crossref]

D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, and A. Biswas, “Overview and status of the lunar laser communications demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Burianek, D. A.

D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, and A. Biswas, “Overview and status of the lunar laser communications demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Cai, H.

R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
[Crossref]

Caplan, D. O.

Carney, J. J.

Cartwright, A. P.

Chen, J.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Chen, W.

R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
[Crossref]

Chen, Y. J.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Cheng, R. S.

R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
[Crossref]

Chitnis, D.

Choi, H.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

Collins, S.

Constantine, S.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
[Crossref]

Czichy, R.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Dallmann, D.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Dane, A. E.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Y. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
[Crossref]

Dauler, E. A.

Divochiy, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Elgin, L. E.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
[Crossref]

Englund, D.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

Feldhaus, T.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Fiore, A.

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017–5028 (2012).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Fitch, M. J.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Franson, J. D.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Freier, A.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Gaggero, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Gehring, T.

A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Andersen, “Ab initio quantum-enhanced optical phase estimation using real-time feedback control,” Nat. Photonics 9, 577–581 (2015).
[Crossref]

Gentile, A. A.

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Granade, C.

N. Wiebe and C. Granade, “Efficient Bayesian phase estimation,” Phys. Rev. Lett. 117, 010503 (2016).
[Crossref]

Greco, J. A.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
[Crossref]

Greulich, P.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Hadfield, R. H.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Hamilton, S. A.

Handchen, V.

A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Andersen, “Ab initio quantum-enhanced optical phase estimation using real-time feedback control,” Nat. Photonics 9, 577–581 (2015).
[Crossref]

Hao, Z. Q.

Q. Sun, W. D. Zhan, Z. Q. Hao, Y. F. Tang, and J. R. Wang, “Power budget of earth to moon deep space communication system,” in International Conference on Computer Systems, Electronics and Control (ICCSEC) (2017), pp. 578–581.

Heine, F.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Hemmati, H.

H. Hemmati, “Interplanetary laser communications and precision ranging,” Laser Photon. Rev. 5, 697–710 (2011).
[Crossref]

Henniger, H.

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19, 203–212 (2010).

Hildebrand, U.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Ikuta, R.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Imoto, N.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Jacobs, B. C.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Jahanmirinejad, S.

Kaempfner, H.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Kang, L.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Kerman, A. J.

Khalighi, M. A.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tuts. 16, 2231–2258 (2014).
[Crossref]

Kirkwood, R. A.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Knauer, S.

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

Korneev, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Lagoudakis, K. G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Laing, A.

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

Lange, R.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Leoni, R.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Levy, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Li, B.

B. Li, Y. T. Liu, S. F. Tong, L. Zhang, and H. F. Yao, “BER analysis of a deep space optical communication system based on SNSPD over double generalized gamma channel,” IEEE Photon. J. 10, 7907607 (2018).
[Crossref]

Li, J. T.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Li, T. F.

R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
[Crossref]

Liu, J. S.

R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
[Crossref]

Liu, Y. T.

B. Li, Y. T. Liu, S. F. Tong, L. Zhang, and H. F. Yao, “BER analysis of a deep space optical communication system based on SNSPD over double generalized gamma channel,” IEEE Photon. J. 10, 7907607 (2018).
[Crossref]

Lu, T. J.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

Marsili, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Mattioli, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

McCaughan, A. N.

Meyer, R.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Miki, S.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Minaeva, O.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Miyajima, S.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Molnar, R. J.

Muehlnikel, G.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Mueller, J.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Murphy, D. V.

D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, and A. Biswas, “Overview and status of the lunar laser communications demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Najafi, F.

Nielsen, B. M.

A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Andersen, “Ab initio quantum-enhanced optical phase estimation using real-time feedback control,” Nat. Photonics 9, 577–581 (2015).
[Crossref]

O’Brien, J. L.

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

Olivares, S.

S. Olivares and M. G. A. Paris, “Bayesian estimation in homodyne interferometry,” J. Phys. B-at Mol. Opt. 42, 055506 (2009).
[Crossref]

Paesani, S.

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

Paris, M. G. A.

A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Andersen, “Ab initio quantum-enhanced optical phase estimation using real-time feedback control,” Nat. Photonics 9, 577–581 (2015).
[Crossref]

S. Olivares and M. G. A. Paris, “Bayesian estimation in homodyne interferometry,” J. Phys. B-at Mol. Opt. 42, 055506 (2009).
[Crossref]

Petruzzella, M.

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

Pittman, T. B.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Rarity, J. G.

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

Reinhardt, M.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Robinson, B. S.

D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185, 115–128 (2014).
[Crossref]

D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, and A. Biswas, “Overview and status of the lunar laser communications demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
[Crossref]

M. A. Albota and B. S. Robinson, “Photon-counting 1.55 μm optical communications with pulse-position modulation and a multimode upconversion single-photon receiver,” Opt. Lett. 35, 2627–2629 (2010).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[Crossref]

Rosenberg, D.

Santagati, R.

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

Seel, S.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Smutny, B.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Sterr, U.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Stevens, M. L.

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[Crossref]

Sun, Q.

Q. Sun, W. D. Zhan, Z. Q. Hao, Y. F. Tang, and J. R. Wang, “Power budget of earth to moon deep space communication system,” in International Conference on Computer Systems, Electronics and Control (ICCSEC) (2017), pp. 578–581.

Tang, Y. F.

Q. Sun, W. D. Zhan, Z. Q. Hao, Y. F. Tang, and J. R. Wang, “Power budget of earth to moon deep space communication system,” in International Conference on Computer Systems, Electronics and Control (ICCSEC) (2017), pp. 578–581.

Terai, H.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Tew, D. P.

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

Thompson, M. G.

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

Tong, S. F.

B. Li, Y. T. Liu, S. F. Tong, L. Zhang, and H. F. Yao, “BER analysis of a deep space optical communication system based on SNSPD over double generalized gamma channel,” IEEE Photon. J. 10, 7907607 (2018).
[Crossref]

Uysal, M.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tuts. 16, 2231–2258 (2014).
[Crossref]

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Wandernoth, B.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Wang, J.

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

Wang, J. R.

Q. Sun, W. D. Zhan, Z. Q. Hao, Y. F. Tang, and J. R. Wang, “Power budget of earth to moon deep space communication system,” in International Conference on Computer Systems, Electronics and Control (ICCSEC) (2017), pp. 578–581.

Wang, J. W.

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

Weichert, A.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

Wiebe, N.

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

N. Wiebe and C. Granade, “Efficient Bayesian phase estimation,” Phys. Rev. Lett. 117, 010503 (2016).
[Crossref]

Wilfert, O.

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19, 203–212 (2010).

Wu, P. H.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Xing, Q. L.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Xu, Z.

R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
[Crossref]

Yabuno, M.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Yamamoto, T.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Yamashita, T.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Yan, X. C.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Yang, J. K. W.

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31, 444–446 (2006).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

Yao, H. F.

B. Li, Y. T. Liu, S. F. Tong, L. Zhang, and H. F. Yao, “BER analysis of a deep space optical communication system based on SNSPD over double generalized gamma channel,” IEEE Photon. J. 10, 7907607 (2018).
[Crossref]

Yin, H. Y.

R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
[Crossref]

Zhan, W. D.

Q. Sun, W. D. Zhan, Z. Q. Hao, Y. F. Tang, and J. R. Wang, “Power budget of earth to moon deep space communication system,” in International Conference on Computer Systems, Electronics and Control (ICCSEC) (2017), pp. 578–581.

Zhang, L.

B. Li, Y. T. Liu, S. F. Tong, L. Zhang, and H. F. Yao, “BER analysis of a deep space optical communication system based on SNSPD over double generalized gamma channel,” IEEE Photon. J. 10, 7907607 (2018).
[Crossref]

Zhang, L. B.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Zhao, Q. Y.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

F. Bellei, A. P. Cartwright, A. N. McCaughan, A. E. Dane, F. Najafi, Q. Y. Zhao, and K. K. Berggren, “Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications,” Opt. Express 24, 3248–3257 (2016).
[Crossref]

Zhu, D.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

Zhu, H. Q.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Zhu, J.

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Acta Phys. Sin. (1)

X. C. Yan, J. Zhu, L. B. Zhang, Q. L. Xing, Y. J. Chen, H. Q. Zhu, J. T. Li, L. Kang, J. Chen, and P. H. Wu, “Model of bit error rate for laser communication based on superconducting nanowire single photon detector,” Acta Phys. Sin. 66, 198501 (2017).

Appl. Phys. Lett. (2)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[Crossref]

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. A. Kirkwood, R. H. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

IEEE Commun. Surv. Tuts. (1)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surv. Tuts. 16, 2231–2258 (2014).
[Crossref]

IEEE Photon. J. (1)

B. Li, Y. T. Liu, S. F. Tong, L. Zhang, and H. F. Yao, “BER analysis of a deep space optical communication system based on SNSPD over double generalized gamma channel,” IEEE Photon. J. 10, 7907607 (2018).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

R. S. Cheng, H. Y. Yin, J. S. Liu, T. F. Li, H. Cai, Z. Xu, and W. Chen, “Photon-number-resolving detector based on superconducting serial nanowires,” IEEE Trans. Appl. Supercond. 23, 2200309 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. B-at Mol. Opt. (1)

S. Olivares and M. G. A. Paris, “Bayesian estimation in homodyne interferometry,” J. Phys. B-at Mol. Opt. 42, 055506 (2009).
[Crossref]

Laser Photon. Rev. (1)

H. Hemmati, “Interplanetary laser communications and precision ranging,” Laser Photon. Rev. 5, 697–710 (2011).
[Crossref]

Nat. Nanotechnol. (1)

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

Nat. Photonics (2)

A. A. Berni, T. Gehring, B. M. Nielsen, V. Handchen, M. G. A. Paris, and U. L. Andersen, “Ab initio quantum-enhanced optical phase estimation using real-time feedback control,” Nat. Photonics 9, 577–581 (2015).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Levy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Nat. Phys. (1)

J. W. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, J. L. O’Brien, J. G. Rarity, A. Laing, and M. G. Thompson, “Experimental quantum Hamiltonian learning,” Nat. Phys. 13, 551–555 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Phys. Rev. Lett. (2)

N. Wiebe and C. Granade, “Efficient Bayesian phase estimation,” Phys. Rev. Lett. 117, 010503 (2016).
[Crossref]

S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P. Tew, J. L. O’Brien, and M. G. Thompson, “Experimental Bayesian quantum phase estimation on a silicon photonic chip,” Phys. Rev. Lett. 118, 100503 (2017).
[Crossref]

Proc. SPIE (3)

S. Constantine, L. E. Elgin, M. L. Stevens, J. A. Greco, K. Aquino, D. D. Alves, and B. S. Robinson, “Design of a high-speed space modem for the lunar laser communications demonstration,” Proc. SPIE 7923, 792308 (2011).
[Crossref]

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication links,” Proc. SPIE 7199, 719906 (2009).
[Crossref]

D. M. Boroson, B. S. Robinson, D. A. Burianek, D. V. Murphy, and A. Biswas, “Overview and status of the lunar laser communications demonstration,” Proc. SPIE 8246, 82460C (2012).
[Crossref]

Radioengineering (1)

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radioengineering 19, 203–212 (2010).

Space Sci. Rev. (1)

D. M. Boroson and B. S. Robinson, “The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions,” Space Sci. Rev. 185, 115–128 (2014).
[Crossref]

Other (1)

Q. Sun, W. D. Zhan, Z. Q. Hao, Y. F. Tang, and J. R. Wang, “Power budget of earth to moon deep space communication system,” in International Conference on Computer Systems, Electronics and Control (ICCSEC) (2017), pp. 578–581.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Working principle of array SNSPD multi-channel simultaneous output.
Fig. 2.
Fig. 2. Schematic diagram of simulated optical communication system.
Fig. 3.
Fig. 3. Yellow waveform is the synchronization signal input from an arbitrary waveform generator to a pulsed laser, the higher amplitude pulse on the left is the head of the transmitted data (easy to compare), the green waveform is output of the SNSPD that detects photons with data information and outputs electric pulses that rise rapidly and then decay exponentially (with a delay of about 100 ns), and the blue waveform is the TTL signal of SNSPD output waveform after the shaping module.
Fig. 4.
Fig. 4. Intensity comparison diagram of each pixel. On the left is the transmitted image intensity, and on the right is the original image intensity.
Fig. 5.
Fig. 5. Picture transmitted through the system (left) and the original picture (right).
Fig. 6.
Fig. 6. Variation of BER with light intensity at different transmission frequencies. The transmission speeds of the black, red, blue, and pink curves were 10, 20, 40, and 50 Mbps, respectively. The detector was a four-pixel array SNSPD, detection efficiency was 50% at 1550 nm band, and the recovery time of the nanowires was 50 ns.
Fig. 7.
Fig. 7. Variation curves of posterior probabilities P(1|k) and P(0|k) with the number of pixels by Bayesian estimation under four light intensities. (a)–(d) represent μ=1, 3, 10, and 30.
Fig. 8.
Fig. 8. BER variation curve with the intensity of light obtained by counting the response amplitudes of different pixels.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P(n,μ)=(μηN)nn!exp(μηN).
Pcorrect_1(k)=(Nk)[1exp(μηN)×(1DCRf)]k×[exp(μηN)×(1DCRf)]Nk,
Perror_1(k)=(Nk)(DCRf)k(1DCRf)Nk,
Pcorrect_0(k)=1Perror1(k)=1(Nk)(DCRf)k(1DCRf)Nk.
P(1|k)=P(k|1)P(1)P(k|1)P(1)+P(k|0)P(0),
P(0|k)=P(k|0)P(0)P(k|1)P(1)+P(k|0)P(0),
Perror=P(k>kt|0)×0.5+P(k<kt|1)×0.5.

Metrics