Abstract

Single-photon detectors are ubiquitous devices in quantum-photonic-based communication, computation, metrology, and sensing. In these applications, N-fold coincidence photon counting is often needed, for example, to characterize entanglement. However, N-fold coincidence photon counting typically requires N individual single-photon detectors and associated bias and readout electronics, and these resources could become prohibitive if N goes large and the detectors need to work at cryogenic temperatures. Here, to break this limit on N, we propose a device architecture based on N cascaded photosensitive superconducting nanowires and one wider nanowire that functions as a current reservoir. We show that by strategically designing the device, the network of these superconducting nanowires can work in a synergic manner as an n-photon detector, where n can be from 1 to N, depending on the bias conditions. We therefore name the devices of this type superconducting nanowire multi-photon detectors (SNMPDs). In addition to its simple one-port bias and readout circuitry, the coincidences are counted internally in the detector, eliminating the need for external multi-channel, time-correlated pulse counters. We believe that the SNMPDs proposed in this work could open avenues towards conveniently measuring high-order temporal correlations of light and characterizing multi-photon entanglement.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Active quenching of superconducting nanowire single photon detectors

Prasana Ravindran, Risheng Cheng, Hong Tang, and Joseph C. Bardin
Opt. Express 28(3) 4099-4114 (2020)

Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires

Alessandro Gaggero, Francesco Martini, Francesco Mattioli, Fabio Chiarello, Robert Cernansky, Alberto Politi, and Roberto Leoni
Optica 6(6) 823-828 (2019)

Kilopixel array of superconducting nanowire single-photon detectors

Emma E. Wollman, Varun B. Verma, Adriana E. Lita, William H. Farr, Matthew D. Shaw, Richard P. Mirin, and Sae Woo Nam
Opt. Express 27(24) 35279-35289 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
    [Crossref]
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  3. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
    [Crossref]
  4. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
    [Crossref]
  5. M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
    [Crossref]
  6. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7, 540–544 (2013).
    [Crossref]
  7. V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
    [Crossref]
  8. M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
    [Crossref]
  9. G. G. Taylor, D. Morozov, N. R. Gemmell, K. Erotokritou, and R. H. Hadfield, “2.3 μm wavelength single photon lidar with superconducting nanowire detectors,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A–93.
  10. T. Zhong, X. Hu, F. N. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, “High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength,” Opt. Lett. 35, 1392–1394 (2010).
    [Crossref]
  11. S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
    [Crossref]
  12. R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
    [Crossref]
  13. M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
    [Crossref]
  14. G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [Crossref]
  15. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  16. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40, 3428–3431 (2015).
    [Crossref]
  17. W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
    [Crossref]
  18. I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
    [Crossref]
  19. B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
    [Crossref]
  20. J. Münzberg, A. Vetter, F. Beutel, W. Hartmann, S. Ferrari, W. H. Pernice, and C. Rockstuhl, “Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity,” Optica 5, 658–665 (2018).
    [Crossref]
  21. S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, and M. Siegel, “Operation of multipixel radio-frequency superconducting nanowire single-photon detector arrays,” IEEE Trans. Appl. Supercond. 27, 2201005 (2016).
    [Crossref]
  22. S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
    [Crossref]
  23. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
    [Crossref]
  24. Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
    [Crossref]
  25. X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
    [Crossref]
  26. M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
    [Crossref]
  27. D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
    [Crossref]
  28. M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
    [Crossref]
  29. Y. Cheng, H. Liu, C. Gu, X. Zhu, and X. Hu, “Superconducting nanowire single-photon detectors integrated with current reservoirs,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JW2A–120.
  30. J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581–585 (2007).
    [Crossref]
  31. R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151–1157 (2003).
    [Crossref]
  32. D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
    [Crossref]
  33. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
    [Crossref]
  34. K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
    [Crossref]
  35. C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” Optica 4, 1534–1535 (2017).
    [Crossref]
  36. K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
    [Crossref]
  37. D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting tapered nanowire detector,” arXiv:1911.09485 (2019).
  38. A. N. McCaughan, N. S. Abebe, Q.-Y. Zhao, and K. K. Berggren, “Using geometry to sense current,” Nano Lett. 16, 7626–7631 (2016).
    [Crossref]
  39. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
    [Crossref]
  40. X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
    [Crossref]
  41. J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
    [Crossref]
  42. X. Chi, K. Zou, C. Gu, J. Zichi, Y. Cheng, N. Hu, X. Lan, S. Chen, Z. Lin, V. Zwiller, and X. Hu, “Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity,” Opt. Lett. 43, 5017–5020 (2018).
    [Crossref]
  43. Y. Meng, K. Zou, N. Hu, X. Lan, L. Xu, J. Zichi, S. Steinhauer, V. Zwiller, and X. Hu, “Fractal superconducting nanowire avalanche photodetector at 1550 nm with 60% system detection efficiency and 1.05 polarization sensitivity,” Opt. Lett. 45, 471–474 (2020).
    [Crossref]
  44. X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
    [Crossref]
  45. F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
    [Crossref]
  46. L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, X. Ma, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of ten-photon entanglement using thin crystals,” Optica 4, 77–83 (2017).
    [Crossref]

2020 (2)

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Y. Meng, K. Zou, N. Hu, X. Lan, L. Xu, J. Zichi, S. Steinhauer, V. Zwiller, and X. Hu, “Fractal superconducting nanowire avalanche photodetector at 1550 nm with 60% system detection efficiency and 1.05 polarization sensitivity,” Opt. Lett. 45, 471–474 (2020).
[Crossref]

2019 (2)

K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
[Crossref]

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

2018 (5)

J. Münzberg, A. Vetter, F. Beutel, W. Hartmann, S. Ferrari, W. H. Pernice, and C. Rockstuhl, “Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity,” Optica 5, 658–665 (2018).
[Crossref]

D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
[Crossref]

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

X. Chi, K. Zou, C. Gu, J. Zichi, Y. Cheng, N. Hu, X. Lan, S. Chen, Z. Lin, V. Zwiller, and X. Hu, “Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity,” Opt. Lett. 43, 5017–5020 (2018).
[Crossref]

2017 (6)

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, X. Ma, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of ten-photon entanglement using thin crystals,” Optica 4, 77–83 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” Optica 4, 1534–1535 (2017).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
[Crossref]

2016 (2)

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, and M. Siegel, “Operation of multipixel radio-frequency superconducting nanowire single-photon detector arrays,” IEEE Trans. Appl. Supercond. 27, 2201005 (2016).
[Crossref]

A. N. McCaughan, N. S. Abebe, Q.-Y. Zhao, and K. K. Berggren, “Using geometry to sense current,” Nano Lett. 16, 7626–7631 (2016).
[Crossref]

2015 (4)

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Ultimate low system dark-count rate for superconducting nanowire single-photon detector,” Opt. Lett. 40, 3428–3431 (2015).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

2014 (1)

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

2013 (7)

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
[Crossref]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7, 540–544 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

2011 (2)

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

2010 (4)

T. Zhong, X. Hu, F. N. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, “High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength,” Opt. Lett. 35, 1392–1394 (2010).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
[Crossref]

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

2009 (2)

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
[Crossref]

2008 (1)

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

2007 (2)

J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581–585 (2007).
[Crossref]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

2003 (2)

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151–1157 (2003).
[Crossref]

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

2001 (1)

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Aaronson, S.

M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
[Crossref]

Abebe, N.

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
[Crossref]

Abebe, N. S.

A. N. McCaughan, N. S. Abebe, Q.-Y. Zhao, and K. K. Berggren, “Using geometry to sense current,” Nano Lett. 16, 7626–7631 (2016).
[Crossref]

Allman, M. S.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

Allmaras, J. P.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Anant, V.

J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581–585 (2007).
[Crossref]

Arndt, M.

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

Assefa, S.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Autry, T. M.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
[Crossref]

Barbieri, M.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Bardin, J. C.

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
[Crossref]

Battle, P.

Bellei, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Berggren, K. K.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
[Crossref]

A. N. McCaughan, N. S. Abebe, Q.-Y. Zhao, and K. K. Berggren, “Using geometry to sense current,” Nano Lett. 16, 7626–7631 (2016).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

T. Zhong, X. Hu, F. N. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, “High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength,” Opt. Lett. 35, 1392–1394 (2010).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
[Crossref]

X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
[Crossref]

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581–585 (2007).
[Crossref]

D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting tapered nanowire detector,” arXiv:1911.09485 (2019).

Bersin, E. A.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Beutel, F.

Beyer, A.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

Beyer, A. D.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Bitauld, D.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Boes, F.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
[Crossref]

Boroson, D. M.

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

Briggs, R. M.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Bromberg, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Broome, M. A.

M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
[Crossref]

Bulgarini, G.

I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Bumble, B.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Cahall, C.

K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
[Crossref]

C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” Optica 4, 1534–1535 (2017).
[Crossref]

Charaev, I.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, and M. Siegel, “Operation of multipixel radio-frequency superconducting nanowire single-photon detector arrays,” IEEE Trans. Appl. Supercond. 27, 2201005 (2016).
[Crossref]

Chen, C.

D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting tapered nanowire detector,” arXiv:1911.09485 (2019).

Chen, L.-K.

Chen, M.

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
[Crossref]

Chen, S.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

X. Chi, K. Zou, C. Gu, J. Zichi, Y. Cheng, N. Hu, X. Lan, S. Chen, Z. Lin, V. Zwiller, and X. Hu, “Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity,” Opt. Lett. 43, 5017–5020 (2018).
[Crossref]

Chen, S.-J.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Chen, T.-Y.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Chen, Y.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Chen, Y.-A.

Cheng, Y.

X. Chi, K. Zou, C. Gu, J. Zichi, Y. Cheng, N. Hu, X. Lan, S. Chen, Z. Lin, V. Zwiller, and X. Hu, “Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity,” Opt. Lett. 43, 5017–5020 (2018).
[Crossref]

Y. Cheng, H. Liu, C. Gu, X. Zhu, and X. Hu, “Superconducting nanowire single-photon detectors integrated with current reservoirs,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JW2A–120.

Chi, X.

Choi, H.

D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

Chulkova, G.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Colangelo, M.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting tapered nanowire detector,” arXiv:1911.09485 (2019).

Crouch, G. M.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Csete, M.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Dakic, B.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7, 540–544 (2013).
[Crossref]

Dane, A.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

Dane, A. E.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

Datta, A.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Dauler, E.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

Dauler, E. A.

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
[Crossref]

X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
[Crossref]

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581–585 (2007).
[Crossref]

De Fazio, D.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

Divochiy, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Dobrovolskiy, S. M.

I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Doerner, S.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, and M. Siegel, “Operation of multipixel radio-frequency superconducting nanowire single-photon detector arrays,” IEEE Trans. Appl. Supercond. 27, 2201005 (2016).
[Crossref]

Dorenbos, S. N.

I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Dove, J.

M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
[Crossref]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Dzardanov, A.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Englund, D.

D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Erotokritou, K.

G. G. Taylor, D. Morozov, N. R. Gemmell, K. Erotokritou, and R. H. Hadfield, “2.3 μm wavelength single photon lidar with superconducting nanowire detectors,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A–93.

Esmaeil Zadeh, I.

I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Fedrizzi, A.

M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
[Crossref]

Ferrari, S.

Fiore, A.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Fitch, M. J.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Franson, J. D.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Frasca, S.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Fujiwara, M.

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Gaggero, A.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Gates, J. C.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Gauthier, D. J.

K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
[Crossref]

C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” Optica 4, 1534–1535 (2017).
[Crossref]

Gemmell, N. R.

G. G. Taylor, D. Morozov, N. R. Gemmell, K. Erotokritou, and R. H. Hadfield, “2.3 μm wavelength single photon lidar with superconducting nanowire detectors,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A–93.

Gerrits, T.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151–1157 (2003).
[Crossref]

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Gourgues, R. B.

I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Grein, M. E.

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

Gu, C.

X. Chi, K. Zou, C. Gu, J. Zichi, Y. Cheng, N. Hu, X. Lan, S. Chen, Z. Lin, V. Zwiller, and X. Hu, “Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity,” Opt. Lett. 43, 5017–5020 (2018).
[Crossref]

Y. Cheng, H. Liu, C. Gu, X. Zhu, and X. Hu, “Superconducting nanowire single-photon detectors integrated with current reservoirs,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JW2A–120.

Guan, J.-Y.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Guo, Q.

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

Hadfield, R.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Hadfield, R. H.

G. G. Taylor, D. Morozov, N. R. Gemmell, K. Erotokritou, and R. H. Hadfield, “2.3 μm wavelength single photon lidar with superconducting nanowire detectors,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A–93.

Hale, P. D.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Hamilton, S. A.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Harris, N. C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Hartmann, W.

Heilmann, R.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7, 540–544 (2013).
[Crossref]

Henrich, D.

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

Herder, C. H.

Hofherr, M.

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

Holzwarth, C. W.

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

Horansky, R. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

Hu, N.

Hu, X.

Y. Meng, K. Zou, N. Hu, X. Lan, L. Xu, J. Zichi, S. Steinhauer, V. Zwiller, and X. Hu, “Fractal superconducting nanowire avalanche photodetector at 1550 nm with 60% system detection efficiency and 1.05 polarization sensitivity,” Opt. Lett. 45, 471–474 (2020).
[Crossref]

X. Chi, K. Zou, C. Gu, J. Zichi, Y. Cheng, N. Hu, X. Lan, S. Chen, Z. Lin, V. Zwiller, and X. Hu, “Fractal superconducting nanowire single-photon detectors with reduced polarization sensitivity,” Opt. Lett. 43, 5017–5020 (2018).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

T. Zhong, X. Hu, F. N. Wong, K. K. Berggren, T. D. Roberts, and P. Battle, “High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength,” Opt. Lett. 35, 1392–1394 (2010).
[Crossref]

X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
[Crossref]

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

Y. Cheng, H. Liu, C. Gu, X. Zhu, and X. Hu, “Superconducting nanowire single-photon detectors integrated with current reservoirs,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JW2A–120.

Huang, J.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

Huang, M.

Humphreys, P. C.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Ikuta, R.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Il’In, K.

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

Imoto, N.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Islam, N. T.

K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
[Crossref]

C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” Optica 4, 1534–1535 (2017).
[Crossref]

Ismail, N.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Ivry, Y.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

Jacobs, B. C.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Jia, X.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Jiang, X.

L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, X. Ma, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of ten-photon entanglement using thin crystals,” Optica 4, 77–83 (2017).
[Crossref]

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Jin, X.-M.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Kang, L.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Kato, H.

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Kerman, A. J.

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
[Crossref]

J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581–585 (2007).
[Crossref]

Kharel, P.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Kim, J.

K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
[Crossref]

C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” Optica 4, 1534–1535 (2017).
[Crossref]

Kirkwood, R.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Koashi, M.

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Kobayashi, T.

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Kolthammer, W. S.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Korneev, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Korzh, B.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Korzh, B. A.

D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting tapered nanowire detector,” arXiv:1911.09485 (2019).

Kozorezov, A. G.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Kumor, D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

Kundys, D.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Kuzmin, A.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, and M. Siegel, “Operation of multipixel radio-frequency superconducting nanowire single-photon detector arrays,” IEEE Trans. Appl. Supercond. 27, 2201005 (2016).
[Crossref]

Lafyatis, G. P.

K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
[Crossref]

C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” Optica 4, 1534–1535 (2017).
[Crossref]

Lagoudakis, K. G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Lahini, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Lan, X.

Langford, N. K.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Lee, C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Leoni, R.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Lévy, F.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Li, H.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

Li, L.

Li, W.

Li, X.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Li, Z.-D.

Liang, H.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Lin, Z.

Lipatov, A.

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151–1157 (2003).
[Crossref]

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Lita, A. E.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Liu, H.

Y. Cheng, H. Liu, C. Gu, X. Zhu, and X. Hu, “Superconducting nanowire single-photon detectors integrated with current reservoirs,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JW2A–120.

Liu, N.-L.

Liu, X.

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

Liu, Y.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

Lobino, M.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Los, J. W.

I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Lu, C.-Y.

Lu, H.

Lu, T.-J.

D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

Lv, C.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

Ma, X.

L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, X. Ma, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of ten-photon entanglement using thin crystals,” Optica 4, 77–83 (2017).
[Crossref]

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

Marsili, F.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Masciarelli, D.

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

Matsuda, N.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Matthews, J. C. F.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Mattioli, F.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

May, T.

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

McCaughan, A.

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

McCaughan, A. N.

A. N. McCaughan, N. S. Abebe, Q.-Y. Zhao, and K. K. Berggren, “Using geometry to sense current,” Nano Lett. 16, 7626–7631 (2016).
[Crossref]

Meng, Y.

Metcalf, B. J.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Meyer, H.-G.

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

Miki, S.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Miller, A. J.

K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
[Crossref]

C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” Optica 4, 1534–1535 (2017).
[Crossref]

Minaeva, O.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Mirin, R.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

Mirin, R. P.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
[Crossref]

Miyajima, S.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Molnar, R. J.

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
[Crossref]

Moody, G.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Morozov, D.

G. G. Taylor, D. Morozov, N. R. Gemmell, K. Erotokritou, and R. H. Hadfield, “2.3 μm wavelength single photon lidar with superconducting nanowire detectors,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A–93.

Mower, J.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Münzberg, J.

Murphy, D. V.

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

Najafi, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
[Crossref]

Nam, S. W.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
[Crossref]

Nejad, S. J.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Nicolich, K. L.

K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
[Crossref]

C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, and J. Kim, “Multi-photon detection using a conventional superconducting nanowire single-photon detector,” Optica 4, 1534–1535 (2017).
[Crossref]

Nolte, S.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7, 540–544 (2013).
[Crossref]

OBrien, J. L.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Okunev, O.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Pan, J.-W.

L.-K. Chen, Z.-D. Li, X.-C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y.-B. Zhang, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, X. Ma, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of ten-photon entanglement using thin crystals,” Optica 4, 77–83 (2017).
[Crossref]

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Peña, C.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Peng, C.-Z.

Pernice, W. H.

Peruzzo, A.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Pittman, T. B.

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

Politi, A.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Poulios, K.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Rahimi-Keshari, S.

M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
[Crossref]

Ralph, T. C.

M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
[Crossref]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Ramirez, E.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Ravindran, P.

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
[Crossref]

Rezac, J. D.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Roberts, T. D.

Robinson, B. S.

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

Rockstuhl, C.

Romkey, B.

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

Rosfjord, K. M.

J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581–585 (2007).
[Crossref]

Sasaki, M.

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

Semenov, A.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Shaw, M.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

Shaw, M. D.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting tapered nanowire detector,” arXiv:1911.09485 (2019).

Shibata, H.

Shimizu, K.

Siegel, M.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, and M. Siegel, “Operation of multipixel radio-frequency superconducting nanowire single-photon detector arrays,” IEEE Trans. Appl. Supercond. 27, 2201005 (2016).
[Crossref]

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

Silberberg, Y.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Silverman, K. L.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Sinclair, N.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Smirnov, K.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Smith, B. J.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Smith, P. G. R.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Sobolewski, R.

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151–1157 (2003).
[Crossref]

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Spiropulu, M.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Spring, J. B.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Steinhauer, S.

Steinmetz, V.

I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Stevens, M.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

Stevens, M. J.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18, 1430–1437 (2010).
[Crossref]

Szameit, A.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7, 540–544 (2013).
[Crossref]

Takesue, H.

Tang, Y.-L.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Tao, X.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Taylor, G. G.

G. G. Taylor, D. Morozov, N. R. Gemmell, K. Erotokritou, and R. H. Hadfield, “2.3 μm wavelength single photon lidar with superconducting nanowire detectors,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A–93.

Terai, H.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Thomas-Peter, N.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Thompson, M. G.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Tillmann, M.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7, 540–544 (2013).
[Crossref]

Tokura, Y.

Toussaint, J.

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

Tu, X.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Velasco, A. E.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Verevkin, A.

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151–1157 (2003).
[Crossref]

Verma, V. B.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Vetter, A.

Voronov, B.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Walmsley, I. A.

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

Walther, P.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7, 540–544 (2013).
[Crossref]

Wang, J.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Wang, L.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Wang, Y.

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

Wang, Z.

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

White, A. G.

M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
[Crossref]

White, J. E.

Williams, C.

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Willis, M. M.

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

Wilsher, K.

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151–1157 (2003).
[Crossref]

Wollman, E. E.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Wong, F. N.

Wörhoff, K.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Wu, J.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

Wu, P.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Wuensch, S.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, and M. Siegel, “Operation of multipixel radio-frequency superconducting nanowire single-photon detector arrays,” IEEE Trans. Appl. Supercond. 27, 2201005 (2016).
[Crossref]

Xie, S.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

Xie, X.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

Xu, L.

Yabuno, M.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

Yamamoto, T.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Yamashita, T.

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Yang, D.-X.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Yang, J. K.

J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581–585 (2007).
[Crossref]

Yang, X.

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

Yao, X.-C.

Yin, H.-L.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

You, L.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

You, L.-X.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Yuan, X.

Zhang, L.

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Zhang, Q.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Zhang, W.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

Zhang, W.-J.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Zhang, Y.-B.

Zhang, Z.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Zhao, Q.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

Zhao, Q.-Y.

D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
[Crossref]

A. N. McCaughan, N. S. Abebe, Q.-Y. Zhao, and K. K. Berggren, “Using geometry to sense current,” Nano Lett. 16, 7626–7631 (2016).
[Crossref]

Zhong, T.

Zhou, N.

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Zhou, X.-Q.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

Zhu, D.

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting tapered nanowire detector,” arXiv:1911.09485 (2019).

Zhu, X.

Y. Cheng, H. Liu, C. Gu, X. Zhu, and X. Hu, “Superconducting nanowire single-photon detectors integrated with current reservoirs,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JW2A–120.

Zichi, J.

Zou, K.

Zwick, T.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
[Crossref]

Zwiller, V.

APL Photon. (1)

I. Esmaeil Zadeh, J. W. Los, R. B. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Appl. Phys. Lett. (5)

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111, 032603 (2017).
[Crossref]

S. Miki, S. Miyajima, M. Yabuno, T. Yamashita, T. Yamamoto, N. Imoto, R. Ikuta, R. Kirkwood, R. Hadfield, and H. Terai, “Superconducting coincidence photon detector with short timing jitter,” Appl. Phys. Lett. 112, 262601 (2018).
[Crossref]

G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103, 142602 (2013).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106, 192601 (2015).
[Crossref]

IEEE Trans. Appl. Supercond. (5)

X. Hu, C. W. Holzwarth, D. Masciarelli, E. A. Dauler, and K. K. Berggren, “Efficiently coupling light to superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 19, 336–340 (2009).
[Crossref]

M. Hofherr, M. Arndt, K. Il’In, D. Henrich, M. Siegel, J. Toussaint, T. May, and H.-G. Meyer, “Time-tagged multiplexing of serially biased superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 23, 2501205 (2013).
[Crossref]

J. K. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17, 581–585 (2007).
[Crossref]

R. Sobolewski, A. Verevkin, G. Gol’tsman, A. Lipatov, and K. Wilsher, “Ultrafast superconducting single-photon optical detectors and their applications,” IEEE Trans. Appl. Supercond. 13, 1151–1157 (2003).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, and M. Siegel, “Operation of multipixel radio-frequency superconducting nanowire single-photon detector arrays,” IEEE Trans. Appl. Supercond. 27, 2201005 (2016).
[Crossref]

Nano Lett. (3)

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett. 10, 2977–2981 (2010).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-photon detectors based on ultranarrow superconducting nanowires,” Nano Lett. 11, 2048–2053 (2011).
[Crossref]

A. N. McCaughan, N. S. Abebe, Q.-Y. Zhao, and K. K. Berggren, “Using geometry to sense current,” Nano Lett. 16, 7626–7631 (2016).
[Crossref]

Nat. Commun. (1)

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Nat. Nanotechnol. (1)

D. Zhu, Q.-Y. Zhao, H. Choi, T.-J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13, 596–601 (2018).
[Crossref]

Nat. Photonics (5)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[Crossref]

B. Korzh, Q. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution with a superconducting nanowire single-photon detector,” Nat. Photonics (2020).
[Crossref]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7, 540–544 (2013).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Optica (3)

Phys. Rev. A (2)

M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68, 043814 (2003).
[Crossref]

R. Ikuta, T. Kobayashi, H. Kato, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Nonclassical two-photon interference between independent telecommunication light pulses converted by difference-frequency generation,” Phys. Rev. A 88, 042317 (2013).
[Crossref]

Phys. Rev. Appl. (1)

K. L. Nicolich, C. Cahall, N. T. Islam, G. P. Lafyatis, J. Kim, A. J. Miller, and D. J. Gauthier, “Universal model for the turn-on dynamics of superconducting nanowire single-photon detectors,” Phys. Rev. Appl. 12, 034020 (2019).
[Crossref]

Phys. Rev. Lett. (1)

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Proc. SPIE (1)

M. E. Grein, A. J. Kerman, E. A. Dauler, M. M. Willis, B. Romkey, R. J. Molnar, B. S. Robinson, D. V. Murphy, and D. M. Boroson, “An optical receiver for the lunar laser communication demonstration based on photon-counting superconducting nanowires,” Proc. SPIE 9492, 949208 (2015).
[Crossref]

Rev. Mod. Phys. (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Sci. China: Phys. Mech. Astron. (1)

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys. Mech. Astron. 60, 120314 (2017).
[Crossref]

Science (3)

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010).
[Crossref]

J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013).
[Crossref]

M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013).
[Crossref]

Supercond. Sci. Technol. (2)

J. Huang, W. Zhang, L. You, X. Liu, Q. Guo, Y. Wang, L. Zhang, X. Yang, H. Li, Z. Wang, and X. Xie, “Spiral superconducting nanowire single-photon detector with efficiency over 50% at 1550 nm wavelength,” Supercond. Sci. Technol. 30, 074004 (2017).
[Crossref]

K. K. Berggren, Q.-Y. Zhao, N. Abebe, M. Chen, P. Ravindran, A. McCaughan, and J. C. Bardin, “A superconducting nanowire can be modeled by using spice,” Supercond. Sci. Technol. 31, 055010 (2018).
[Crossref]

Superconductor Sci. Technol. (1)

X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, and P. Wu, “A high speed and high efficiency superconducting photon number resolving detector,” Superconductor Sci. Technol. 32, 064002 (2019).
[Crossref]

Other (3)

D. Zhu, M. Colangelo, C. Chen, B. A. Korzh, F. N. Wong, M. D. Shaw, and K. K. Berggren, “Resolving photon numbers using a superconducting tapered nanowire detector,” arXiv:1911.09485 (2019).

Y. Cheng, H. Liu, C. Gu, X. Zhu, and X. Hu, “Superconducting nanowire single-photon detectors integrated with current reservoirs,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper JW2A–120.

G. G. Taylor, D. Morozov, N. R. Gemmell, K. Erotokritou, and R. H. Hadfield, “2.3 μm wavelength single photon lidar with superconducting nanowire detectors,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A–93.

Supplementary Material (1)

NameDescription
» Visualization 1       This video presents the electrothermal evolution of a superconducting nanowire two-photon detector.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Comparison between commonly used technology for N-fold coincidence photon counting with the proposed one using a superconducting nanowire multi-photon detector (SNMPD) presented in this paper. (a) A conventional N-fold coincidence photon counter requires N single-photon detectors as well as the associated electronics. (b) We propose to use a single SNMPD to count N-fold coincidence. SPD, single-photon detector; RF, radio frequency.
Fig. 2.
Fig. 2. Schematic drawing of the device layout and the operating principle of the SNMPDs. (a) Device layout. The SNMPD is composed of N cascaded photosensitive superconducting nanowires (N1,N2,,NN) and a wider one functioning as a current reservoir (R). See the main text for the definitions of Ib, Ib(0), Isw, Lk, Lc, α, β, and η. (b) Initial current distribution among the nanowires and the current reservoir. (c) Current redistribution after the first photosensitive nanowire N1 is fired by the first photon. (d) Current redistribution after the Nth photosensitive nanowire NN is fired by the Nth photon. The current reservoir R is also fired, and current is diverted into the load impedance Z0. (e) The bias conditions for the device to work as an N-photon detector as shown by the dashed lines. The open circles and triangles represent the upper bonds of Ib(0)/Isw, and the squares represent the lower bonds of Ib(0)/Isw. Note that the two sets of upper bounds (open circles and triangles) are identical.
Fig. 3.
Fig. 3. Electrothermal dynamics of a superconducting nanowire two-photon detector. Panel (a) presents the electrothermal evolution after the first photon is absorbed by the first photosensitive nanowire at t=0; (a1), (a2), and (a3) present the current-temperature phase diagrams of the first and the second photosensitive nanowires and the current reservoir, respectively. Panel (b) presents the electrothermal evolution after the second photon is absorbed by the second photosensitive nanowire at t=10  ns; (b1), (b2), and (b3) present the current-temperature phase diagrams of the first and second photosensitive nanowires and the current reservoir, respectively. In the phase diagrams, the open circles and solid dots present the initial and the final states, respectively, of the corresponding photon-detection event. The dotted lines in (a1) and (b2) represent the abrupt changes on the phase diagrams due to photon excitations, whereas the solid lines in (a1), (a2), (a3), (b1), (b2), and (b3) represent the continuous electrothermal evolutions of the nanowires after photon excitations. The black dashed lines separate the superconducting phase (S) and the normal phase (N) of the nanowires. The insets present the corresponding spatial-temporal diagrams of the temperature distribution. (c) Current dynamics of I1(t), I2(t), IR(t), and Iout(t) (see Visualization 1).
Fig. 4.
Fig. 4. Bias conditions for the detector functioning as an n-photon detector, where n=1,2,,N; (a) and (b) present the same data set in two different ways. (a) The bias regions with the maximum photon numbers for each N (n=N), with the second largest photon numbers for each N (n=N-1), and so on. (b) The bias regions for a given photon number n, for example, n=1,2,.
Fig. 5.
Fig. 5. Comparison within bias conditions for an N-SNAP (black symbols), an SNMPD with α=N (red symbols), and an SNMPD with α=2N (blue symbols).
Fig. 6.
Fig. 6. Current dynamics of a superconducting nanowire eight-photon detector. (a) Current dynamics of the eight photosensitive nanowires, (b) current dynamics of the reservoir, (c) the output voltage pulse on the load impedance without external amplification. The dashed lines in (a) and (b) present the switching currents.
Fig. 7.
Fig. 7. Operation of a superconducting nanowire eight-photon detector in the six-photon regime. (a) Current dynamics of the eight photosensitive nanowires, (b) current dynamics of the reservoir, (c) the output voltage pulse on the load impedance without external amplification. The dashed lines in (a) and (b) present the switching currents.
Fig. 8.
Fig. 8. η as a function of Ib(0)/Isw, obtained by electrothermal simulation, for a superconducting nanowire two-photon detector. For the first photon, η is slightly below 0.8; for the second photon, η is slightly above 0.8.
Fig. 9.
Fig. 9. Comparison between bias conditions obtained analytically (solid symbols) and bias conditions obtained by SPICE simulation (open symbols).
Fig. 10.
Fig. 10. Waveguide-integrated superconducting nanowire multi-photon detector.

Tables (2)

Tables Icon

Table 1. Parameters and Their Values Used in the Electrothermal Simulations

Tables Icon

Table 2. Parameters and Their Values Used in the SPICE Simulations

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

(2N12N+η1)N<Ib(0)Isw<(2N12N+η1)N1.
(2N12N+η1)n<Ib(0)Isw<(2N12N+η1)n1,
ΔIi(1)=ηIb(0)1N+α1,
Ii(1)=Ii(0)+ΔIi(1)=(1+ηN+α1)Ib(0),
ΔIi(2)=ηIi(1)1N+α1=ηIb(0)(1+ηN+α1)1N+α1,
Ii(2)=Ii(1)+ΔIi(2)=(1+ηN+α1)2Ib(0),
IN(N1)=(1+ηN+α1)N1Ib(0).
IN(N1)<Isw,
Ib(0)Isw<(N+α1N+α+η1)N1.
IR(N1)=αIb(0)(N+α+η1N+α1)N1.
IR(N1)<βIsw,
Ib(0)Isw<βα(N+α1N+α+η1)N1.
IR(N)=αIb(0)(1+ηN+α1)N.
αIb(0)(1+ηN+α1)N>βIsw.
(N+α1N+α+η1)N<Ib(0)Isw<(N+α1N+α+η1)N1.
(2N12N+η1)N<Ib(0)Isw<(2N12N+η1)N1.
(2N12N0.2)N<Ib(0)Isw<(2N12N0.2)N1.

Metrics