Abstract

Chirped random-phase gratings are designed to produce experimentally a super-bunched focusing effect with a high bunching peak value of g(2)(0)=15.38±0.05 and a high visibility of 92.5%, greatly surpassing the theoretical bunching peak of 2 of thermal light. Both slit-width-chirped and period-chirped random-phase gratings are studied theoretically and experimentally. The full width at half-maximum of the super-bunched curve decreases significantly with an increase in the slit number, focusing the photon pairs within a decreasing spot size. This super-bunched focusing effect can be useful for improving the resolution and the visibility of the correlation image simultaneously.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Synchronous position two-photon interference of random-phase grating

Peilong Hong and Guoquan Zhang
J. Opt. Soc. Am. A 32(7) 1256-1261 (2015)

High visibility two-photon interference with classical light

Peilong Hong, Lei Xu, Zhaohui Zhai, and Guoquan Zhang
Opt. Express 21(12) 14056-14065 (2013)

Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer

Bin Bai, Jianbin Liu, Yu Zhou, Huaibin Zheng, Hui Chen, Songlin Zhang, Yuchen He, Fuli Li, and Zhuo Xu
J. Opt. Soc. Am. B 34(10) 2081-2088 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
    [Crossref]
  2. R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178, 1046–1048 (1956).
    [Crossref]
  3. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
    [Crossref]
  4. R. J. Glauber, “Nobel lecture: one hundred years of light quanta,” Rev. Mod. Phys. 78, 1267–1278 (2006).
    [Crossref]
  5. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
    [Crossref]
  6. E. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963).
    [Crossref]
  7. L. Mandel, E. G. Sudarshan, and E. Wolf, “Theory of photoelectric detection of light fluctuations,” Proc. Phys. Soc. Lond. 84, 435–444 (1964).
    [Crossref]
  8. J. Liu and Y. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
    [Crossref]
  9. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [Crossref]
  10. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
    [Crossref]
  11. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
    [Crossref]
  12. G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
    [Crossref]
  13. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [Crossref]
  14. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  15. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [Crossref]
  16. K. Kuplicki and K. W. C. Chan, “High-order ghost imaging using non-Rayleigh speckle sources,” Opt. Express 24, 26766–26776 (2016).
    [Crossref]
  17. J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
    [Crossref]
  18. Y. R. Shen, “Quantum statistics of nonlinear optics,” Phys. Rev. 155, 921–931 (1967).
    [Crossref]
  19. P. Lambropoulos, “Field-correlation effects in two-photon processes,” Phys. Rev. 168, 1418–1423 (1968).
    [Crossref]
  20. B. R. Mollow, “Two-photon absorption and field correlation functions,” Phys. Rev. 175, 1555–1563 (1968).
    [Crossref]
  21. G. S. Agarwal, “Field-correlation effects in multiphoton absorption processes,” Phys. Rev. A 1, 1445–1459 (1970).
    [Crossref]
  22. A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer, and R. Menzel, “Enhanced two-photon excited fluorescence from imaging agents using true thermal light,” Nat. Photonics 7, 973–976 (2013).
    [Crossref]
  23. Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nat. Photonics 4, 721–726 (2010).
    [Crossref]
  24. A. Allevi and M. Bondani, “Direct detection of super-thermal photon-number statistics in second-harmonic generation,” Opt. Lett. 40, 3089–3092 (2015).
    [Crossref]
  25. A. Allevi, S. Cassina, and M. Bondani, “Super-thermal light for imaging applications,” Quantum Meas. Quantum Metrol. 4, 26–34 (2017).
    [Crossref]
  26. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
    [Crossref]
  27. S. Swain, P. Zhou, and Z. Ficek, “Intensity-intensity correlations and quantum interference in a driven three-level atom,” Phys. Rev. A 61, 043410 (2000).
    [Crossref]
  28. V. V. Temnov and U. Woggon, “Photon statistics in the cooperative spontaneous emission,” Opt. Express 17, 5774–5782 (2009).
    [Crossref]
  29. A. Auffëves, D. Gerace, S. Portolan, A. Drezet, and M. Franca Santos, “Few emitters in a cavity: from cooperative emission to individualization,” New J. Phys. 13, 093020 (2011).
    [Crossref]
  30. I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. Wilson, “Generation of nonclassical microwave states using an artificial atom in 1D open space,” Phys. Rev. Lett. 108, 263601 (2012).
    [Crossref]
  31. T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, “Repulsively induced photon superbunching in driven resonator arrays,” Phys. Rev. A 87, 053846 (2013).
    [Crossref]
  32. D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5, 17335 (2015).
    [Crossref]
  33. H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and superradiance in nanolasers,” Phys. Rev. Appl. 4, 044018 (2015).
    [Crossref]
  34. F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
    [Crossref]
  35. C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
    [Crossref]
  36. F. Arecchi, U. Bortolozzo, A. Montina, and S. Residori, “Granularity and inhomogeneity are the joint generators of optical rogue waves,” Phys. Rev. Lett. 106, 153901 (2011).
    [Crossref]
  37. M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
    [Crossref]
  38. T. S. Iskhakov, A. Pérez, K. Y. Spasibko, M. Chekhova, and G. Leuchs, “Superbunched bright squeezed vacuum state,” Opt. Lett. 37, 1919–1921 (2012).
    [Crossref]
  39. Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95, 053809 (2017).
    [Crossref]
  40. B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer,” J. Opt. Soc. Am. B 34, 2081–2088 (2017).
    [Crossref]
  41. I. Straka, J. Mika, and M. Ježek, “Generator of arbitrary classical photon statistics,” Opt. Express 26, 8998–9010 (2018).
    [Crossref]
  42. P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
    [Crossref]
  43. X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, and L. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3, 052121 (2013).
    [Crossref]
  44. Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
    [Crossref]
  45. N. Bender, H. Ylmaz, Y. Bromberg, and H. Cao, “Customizing speckle intensity statistics,” Optica 5, 595–600 (2018).
    [Crossref]
  46. L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99, 063827 (2019).
    [Crossref]
  47. P. Hong, L. Xu, Z. Zhai, and G. Zhang, “High visibility two-photon interference with classical light,” Opt. Express 21, 14056–14065 (2013).
    [Crossref]
  48. J. Liu and G. Zhang, “Unified interpretation for second-order subwavelength interference based on Feynman’s path-integral theory,” Phys. Rev. A 82, 013822 (2010).
    [Crossref]
  49. P. Hong and G. Zhang, “Subwavelength interference with an effective entangled source,” Phys. Rev. A 88, 043838 (2013).
    [Crossref]
  50. P. Hong and G. Zhang, “Super-resolved optical lithography with phase controlled source,” Phys. Rev. A 91, 053830 (2015).
    [Crossref]
  51. L. Li, P. Hong, and G. Zhang, “Experimental realization of Heisenberg-limit resolution imaging through a phase-controlled screen with classical light,” Opt. Express 26, 18950–18956 (2018).
    [Crossref]
  52. D. Hunter, R. Minasian, and P. Krug, “Tunable optical transversal filter based on chirped gratings,” Electron. Lett. 31, 2205–2207 (1995).
    [Crossref]
  53. X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
    [Crossref]
  54. G. Qi, “Optical beams in media with spatial dispersion,” Chin. Phys. Lett. 20, 64–67 (2003).
    [Crossref]
  55. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
    [Crossref]
  56. M. Lewis and C. West, “Some focusing properties of chirped gratings,” Opt. Quantum Electron. 21, 17–33 (1989).
    [Crossref]
  57. X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
    [Crossref]
  58. D. Feng, Y. Yan, G. Jin, and S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239, 345–352 (2004).
    [Crossref]
  59. J. Yoon, K. Choi, S. H. Song, and G. Lee, “Subwavelength focusing of light from a metallic slit surrounded by grooves with chirped period,” J. Opt. Soc. Korea 9, 162–168 (2005).
    [Crossref]
  60. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
    [Crossref]
  61. D. Feng and C. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible regime,” Phys. Proc. 22, 428–434 (2011).
    [Crossref]
  62. G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24, 11002–11008 (2016).
    [Crossref]
  63. G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
    [Crossref]
  64. L. M. Sanchez-Brea, F. J. Torcal-Milla, and T. Morlanes, “Near-field diffraction of chirped gratings,” Opt. Lett. 41, 4091–4094 (2016).
    [Crossref]
  65. N. Gao, H. Li, X. Zhu, Y. Hua, and C. Xie, “Quasi-periodic gratings: diffraction orders accelerate along curves,” Opt. Lett. 38, 2829–2831 (2013).
    [Crossref]
  66. M. C. Hettrick, S. Bowyer, R. F. Malina, C. Martin, and S. Mrowka, “Extreme ultraviolet explorer spectrometer,” Appl. Opt. 24, 1737–1756 (1985).
    [Crossref]
  67. W. R. McKinney, “Varied line-space gratings and applications,” Rev. Sci. Instrum. 63, 1410–1414 (1992).
    [Crossref]
  68. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Vol. 15 of Classics in Applied Mathematics (SIAM, 1995).

2019 (1)

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99, 063827 (2019).
[Crossref]

2018 (4)

2017 (3)

A. Allevi, S. Cassina, and M. Bondani, “Super-thermal light for imaging applications,” Quantum Meas. Quantum Metrol. 4, 26–34 (2017).
[Crossref]

Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95, 053809 (2017).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer,” J. Opt. Soc. Am. B 34, 2081–2088 (2017).
[Crossref]

2016 (6)

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24, 11002–11008 (2016).
[Crossref]

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

L. M. Sanchez-Brea, F. J. Torcal-Milla, and T. Morlanes, “Near-field diffraction of chirped gratings,” Opt. Lett. 41, 4091–4094 (2016).
[Crossref]

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

K. Kuplicki and K. W. C. Chan, “High-order ghost imaging using non-Rayleigh speckle sources,” Opt. Express 24, 26766–26776 (2016).
[Crossref]

2015 (5)

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5, 17335 (2015).
[Crossref]

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and superradiance in nanolasers,” Phys. Rev. Appl. 4, 044018 (2015).
[Crossref]

A. Allevi and M. Bondani, “Direct detection of super-thermal photon-number statistics in second-harmonic generation,” Opt. Lett. 40, 3089–3092 (2015).
[Crossref]

M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
[Crossref]

P. Hong and G. Zhang, “Super-resolved optical lithography with phase controlled source,” Phys. Rev. A 91, 053830 (2015).
[Crossref]

2014 (1)

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

2013 (7)

P. Hong, L. Xu, Z. Zhai, and G. Zhang, “High visibility two-photon interference with classical light,” Opt. Express 21, 14056–14065 (2013).
[Crossref]

P. Hong and G. Zhang, “Subwavelength interference with an effective entangled source,” Phys. Rev. A 88, 043838 (2013).
[Crossref]

T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, “Repulsively induced photon superbunching in driven resonator arrays,” Phys. Rev. A 87, 053846 (2013).
[Crossref]

X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, and L. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3, 052121 (2013).
[Crossref]

N. Gao, H. Li, X. Zhu, Y. Hua, and C. Xie, “Quasi-periodic gratings: diffraction orders accelerate along curves,” Opt. Lett. 38, 2829–2831 (2013).
[Crossref]

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer, and R. Menzel, “Enhanced two-photon excited fluorescence from imaging agents using true thermal light,” Nat. Photonics 7, 973–976 (2013).
[Crossref]

2012 (3)

I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. Wilson, “Generation of nonclassical microwave states using an artificial atom in 1D open space,” Phys. Rev. Lett. 108, 263601 (2012).
[Crossref]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[Crossref]

T. S. Iskhakov, A. Pérez, K. Y. Spasibko, M. Chekhova, and G. Leuchs, “Superbunched bright squeezed vacuum state,” Opt. Lett. 37, 1919–1921 (2012).
[Crossref]

2011 (3)

D. Feng and C. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible regime,” Phys. Proc. 22, 428–434 (2011).
[Crossref]

A. Auffëves, D. Gerace, S. Portolan, A. Drezet, and M. Franca Santos, “Few emitters in a cavity: from cooperative emission to individualization,” New J. Phys. 13, 093020 (2011).
[Crossref]

F. Arecchi, U. Bortolozzo, A. Montina, and S. Residori, “Granularity and inhomogeneity are the joint generators of optical rogue waves,” Phys. Rev. Lett. 106, 153901 (2011).
[Crossref]

2010 (3)

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nat. Photonics 4, 721–726 (2010).
[Crossref]

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
[Crossref]

J. Liu and G. Zhang, “Unified interpretation for second-order subwavelength interference based on Feynman’s path-integral theory,” Phys. Rev. A 82, 013822 (2010).
[Crossref]

2009 (3)

V. V. Temnov and U. Woggon, “Photon statistics in the cooperative spontaneous emission,” Opt. Express 17, 5774–5782 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

J. Liu and Y. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
[Crossref]

2008 (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

2006 (1)

R. J. Glauber, “Nobel lecture: one hundred years of light quanta,” Rev. Mod. Phys. 78, 1267–1278 (2006).
[Crossref]

2005 (2)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

J. Yoon, K. Choi, S. H. Song, and G. Lee, “Subwavelength focusing of light from a metallic slit surrounded by grooves with chirped period,” J. Opt. Soc. Korea 9, 162–168 (2005).
[Crossref]

2004 (4)

D. Feng, Y. Yan, G. Jin, and S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239, 345–352 (2004).
[Crossref]

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref]

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[Crossref]

2003 (1)

G. Qi, “Optical beams in media with spatial dispersion,” Chin. Phys. Lett. 20, 64–67 (2003).
[Crossref]

2001 (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

2000 (1)

S. Swain, P. Zhou, and Z. Ficek, “Intensity-intensity correlations and quantum interference in a driven three-level atom,” Phys. Rev. A 61, 043410 (2000).
[Crossref]

1995 (3)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

D. Hunter, R. Minasian, and P. Krug, “Tunable optical transversal filter based on chirped gratings,” Electron. Lett. 31, 2205–2207 (1995).
[Crossref]

1992 (1)

W. R. McKinney, “Varied line-space gratings and applications,” Rev. Sci. Instrum. 63, 1410–1414 (1992).
[Crossref]

1989 (1)

M. Lewis and C. West, “Some focusing properties of chirped gratings,” Opt. Quantum Electron. 21, 17–33 (1989).
[Crossref]

1985 (1)

1970 (1)

G. S. Agarwal, “Field-correlation effects in multiphoton absorption processes,” Phys. Rev. A 1, 1445–1459 (1970).
[Crossref]

1968 (2)

P. Lambropoulos, “Field-correlation effects in two-photon processes,” Phys. Rev. 168, 1418–1423 (1968).
[Crossref]

B. R. Mollow, “Two-photon absorption and field correlation functions,” Phys. Rev. 175, 1555–1563 (1968).
[Crossref]

1967 (1)

Y. R. Shen, “Quantum statistics of nonlinear optics,” Phys. Rev. 155, 921–931 (1967).
[Crossref]

1964 (1)

L. Mandel, E. G. Sudarshan, and E. Wolf, “Theory of photoelectric detection of light fluctuations,” Proc. Phys. Soc. Lond. 84, 435–444 (1964).
[Crossref]

1963 (3)

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
[Crossref]

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[Crossref]

E. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963).
[Crossref]

1956 (2)

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[Crossref]

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178, 1046–1048 (1956).
[Crossref]

1954 (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[Crossref]

Agarwal, G. S.

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5, 17335 (2015).
[Crossref]

G. S. Agarwal, “Field-correlation effects in multiphoton absorption processes,” Phys. Rev. A 1, 1445–1459 (1970).
[Crossref]

Akturk, S.

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
[Crossref]

Allevi, A.

A. Allevi, S. Cassina, and M. Bondani, “Super-thermal light for imaging applications,” Quantum Meas. Quantum Metrol. 4, 26–34 (2017).
[Crossref]

A. Allevi and M. Bondani, “Direct detection of super-thermal photon-number statistics in second-harmonic generation,” Opt. Lett. 40, 3089–3092 (2015).
[Crossref]

Angelakis, D. G.

T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, “Repulsively induced photon superbunching in driven resonator arrays,” Phys. Rev. A 87, 053846 (2013).
[Crossref]

Arecchi, F.

F. Arecchi, U. Bortolozzo, A. Montina, and S. Residori, “Granularity and inhomogeneity are the joint generators of optical rogue waves,” Phys. Rev. Lett. 106, 153901 (2011).
[Crossref]

Assmann, M.

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

Auffëves, A.

A. Auffëves, D. Gerace, S. Portolan, A. Drezet, and M. Franca Santos, “Few emitters in a cavity: from cooperative emission to individualization,” New J. Phys. 13, 093020 (2011).
[Crossref]

Azaña, J.

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref]

Bai, B.

Bayer, M.

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

Bender, N.

Bhatti, D.

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5, 17335 (2015).
[Crossref]

Bondani, M.

A. Allevi, S. Cassina, and M. Bondani, “Super-thermal light for imaging applications,” Quantum Meas. Quantum Metrol. 4, 26–34 (2017).
[Crossref]

A. Allevi and M. Bondani, “Direct detection of super-thermal photon-number statistics in second-harmonic generation,” Opt. Lett. 40, 3089–3092 (2015).
[Crossref]

Bortolozzo, U.

F. Arecchi, U. Bortolozzo, A. Montina, and S. Residori, “Granularity and inhomogeneity are the joint generators of optical rogue waves,” Phys. Rev. Lett. 106, 153901 (2011).
[Crossref]

Bowyer, S.

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref]

Bromberg, Y.

N. Bender, H. Ylmaz, Y. Bromberg, and H. Cao, “Customizing speckle intensity statistics,” Optica 5, 595–600 (2018).
[Crossref]

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nat. Photonics 4, 721–726 (2010).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Cao, H.

N. Bender, H. Ylmaz, Y. Bromberg, and H. Cao, “Customizing speckle intensity statistics,” Optica 5, 595–600 (2018).
[Crossref]

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

Cassina, S.

A. Allevi, S. Cassina, and M. Bondani, “Super-thermal light for imaging applications,” Quantum Meas. Quantum Metrol. 4, 26–34 (2017).
[Crossref]

Chan, K. W. C.

Chang-Hasnain, C. J.

Chase, C.

Chekhova, M.

Chen, G.

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24, 11002–11008 (2016).
[Crossref]

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

Chen, H.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95, 053809 (2017).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer,” J. Opt. Soc. Am. B 34, 2081–2088 (2017).
[Crossref]

Chen, L.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

Choi, K.

Clark, S. R.

T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, “Repulsively induced photon superbunching in driven resonator arrays,” Phys. Rev. A 87, 053846 (2013).
[Crossref]

Conti, C.

M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
[Crossref]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

Dai, L.

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24, 11002–11008 (2016).
[Crossref]

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

Delsing, P.

I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. Wilson, “Generation of nonclassical microwave states using an artificial atom in 1D open space,” Phys. Rev. Lett. 108, 263601 (2012).
[Crossref]

Dicke, R. H.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[Crossref]

Drezet, A.

A. Auffëves, D. Gerace, S. Portolan, A. Drezet, and M. Franca Santos, “Few emitters in a cavity: from cooperative emission to individualization,” New J. Phys. 13, 093020 (2011).
[Crossref]

Fan, S.

D. Feng, Y. Yan, G. Jin, and S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239, 345–352 (2004).
[Crossref]

Feng, D.

D. Feng and C. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible regime,” Phys. Proc. 22, 428–434 (2011).
[Crossref]

D. Feng, Y. Yan, G. Jin, and S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239, 345–352 (2004).
[Crossref]

Ficek, Z.

S. Swain, P. Zhou, and Z. Ficek, “Intensity-intensity correlations and quantum interference in a driven three-level atom,” Phys. Rev. A 61, 043410 (2000).
[Crossref]

Foerster, A.

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and superradiance in nanolasers,” Phys. Rev. Appl. 4, 044018 (2015).
[Crossref]

Franca Santos, M.

A. Auffëves, D. Gerace, S. Portolan, A. Drezet, and M. Franca Santos, “Few emitters in a cavity: from cooperative emission to individualization,” New J. Phys. 13, 093020 (2011).
[Crossref]

Gao, N.

Gatti, A.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref]

Gerace, D.

A. Auffëves, D. Gerace, S. Portolan, A. Drezet, and M. Franca Santos, “Few emitters in a cavity: from cooperative emission to individualization,” New J. Phys. 13, 093020 (2011).
[Crossref]

Gies, C.

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and superradiance in nanolasers,” Phys. Rev. Appl. 4, 044018 (2015).
[Crossref]

Glauber, R. J.

R. J. Glauber, “Nobel lecture: one hundred years of light quanta,” Rev. Mod. Phys. 78, 1267–1278 (2006).
[Crossref]

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
[Crossref]

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[Crossref]

Grujic, T.

T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, “Repulsively induced photon superbunching in driven resonator arrays,” Phys. Rev. A 87, 053846 (2013).
[Crossref]

Gu, X.

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
[Crossref]

Hanbury Brown, R.

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[Crossref]

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178, 1046–1048 (1956).
[Crossref]

Hanson, R. J.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Vol. 15 of Classics in Applied Mathematics (SIAM, 1995).

He, Y.

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer,” J. Opt. Soc. Am. B 34, 2081–2088 (2017).
[Crossref]

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

Hettrick, M. C.

Heuer, A.

A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer, and R. Menzel, “Enhanced two-photon excited fluorescence from imaging agents using true thermal light,” Nat. Photonics 7, 973–976 (2013).
[Crossref]

Hofling, S.

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Hoi, I.-C.

I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. Wilson, “Generation of nonclassical microwave states using an artificial atom in 1D open space,” Phys. Rev. Lett. 108, 263601 (2012).
[Crossref]

Holzinger, S.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Hong, P.

L. Li, P. Hong, and G. Zhang, “Experimental realization of Heisenberg-limit resolution imaging through a phase-controlled screen with classical light,” Opt. Express 26, 18950–18956 (2018).
[Crossref]

P. Hong and G. Zhang, “Super-resolved optical lithography with phase controlled source,” Phys. Rev. A 91, 053830 (2015).
[Crossref]

P. Hong and G. Zhang, “Subwavelength interference with an effective entangled source,” Phys. Rev. A 88, 043838 (2013).
[Crossref]

P. Hong, L. Xu, Z. Zhai, and G. Zhang, “High visibility two-photon interference with classical light,” Opt. Express 21, 14056–14065 (2013).
[Crossref]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[Crossref]

Hua, Y.

Hunter, D.

D. Hunter, R. Minasian, and P. Krug, “Tunable optical transversal filter based on chirped gratings,” Electron. Lett. 31, 2205–2207 (1995).
[Crossref]

Iskhakov, T. S.

Jahnke, F.

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and superradiance in nanolasers,” Phys. Rev. Appl. 4, 044018 (2015).
[Crossref]

Jaksch, D.

T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, “Repulsively induced photon superbunching in driven resonator arrays,” Phys. Rev. A 87, 053846 (2013).
[Crossref]

Jechow, A.

A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer, and R. Menzel, “Enhanced two-photon excited fluorescence from imaging agents using true thermal light,” Nat. Photonics 7, 973–976 (2013).
[Crossref]

Ježek, M.

Jiang, S.

Jin, G.

D. Feng, Y. Yan, G. Jin, and S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239, 345–352 (2004).
[Crossref]

Johansson, G.

I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. Wilson, “Generation of nonclassical microwave states using an artificial atom in 1D open space,” Phys. Rev. Lett. 108, 263601 (2012).
[Crossref]

Kamp, M.

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Karagodsky, V.

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

Kreinberg, S.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Krug, P.

D. Hunter, R. Minasian, and P. Krug, “Tunable optical transversal filter based on chirped gratings,” Electron. Lett. 31, 2205–2207 (1995).
[Crossref]

Kuplicki, K.

Kurzke, H.

A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer, and R. Menzel, “Enhanced two-photon excited fluorescence from imaging agents using true thermal light,” Nat. Photonics 7, 973–976 (2013).
[Crossref]

Lahini, Y.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nat. Photonics 4, 721–726 (2010).
[Crossref]

Lambropoulos, P.

P. Lambropoulos, “Field-correlation effects in two-photon processes,” Phys. Rev. 168, 1418–1423 (1968).
[Crossref]

Lawson, C. L.

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Vol. 15 of Classics in Applied Mathematics (SIAM, 1995).

Lee, G.

Leonetti, M.

M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
[Crossref]

Leuchs, G.

Lewis, M.

M. Lewis and C. West, “Some focusing properties of chirped gratings,” Opt. Quantum Electron. 21, 17–33 (1989).
[Crossref]

Leymann, H. A.

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

Leymann, H. A. M.

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and superradiance in nanolasers,” Phys. Rev. Appl. 4, 044018 (2015).
[Crossref]

Li, C.

Li, F.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer,” J. Opt. Soc. Am. B 34, 2081–2088 (2017).
[Crossref]

Li, F.-L.

Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95, 053809 (2017).
[Crossref]

Li, H.

Li, L.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99, 063827 (2019).
[Crossref]

L. Li, P. Hong, and G. Zhang, “Experimental realization of Heisenberg-limit resolution imaging through a phase-controlled screen with classical light,” Opt. Express 26, 18950–18956 (2018).
[Crossref]

Li, M.

X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, and L. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3, 052121 (2013).
[Crossref]

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

Li, Y.

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24, 11002–11008 (2016).
[Crossref]

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

Lin, F.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24, 11002–11008 (2016).
[Crossref]

Lindkvist, J.

I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. Wilson, “Generation of nonclassical microwave states using an artificial atom in 1D open space,” Phys. Rev. Lett. 108, 263601 (2012).
[Crossref]

Lingnau, B.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Liu, J.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95, 053809 (2017).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer,” J. Opt. Soc. Am. B 34, 2081–2088 (2017).
[Crossref]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[Crossref]

J. Liu and G. Zhang, “Unified interpretation for second-order subwavelength interference based on Feynman’s path-integral theory,” Phys. Rev. A 82, 013822 (2010).
[Crossref]

J. Liu and Y. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
[Crossref]

Liu, S.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

Liu, X.

X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, and L. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3, 052121 (2013).
[Crossref]

Liu, Y.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Lu, F.

Lu, Y.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99, 063827 (2019).
[Crossref]

Lüdge, K.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Lugiato, L. A.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref]

Lv, X.

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

Ma, Y.

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

Malina, R. F.

Mandel, L.

L. Mandel, E. G. Sudarshan, and E. Wolf, “Theory of photoelectric detection of light fluctuations,” Proc. Phys. Soc. Lond. 84, 435–444 (1964).
[Crossref]

Martin, C.

McKinney, W. R.

W. R. McKinney, “Varied line-space gratings and applications,” Rev. Sci. Instrum. 63, 1410–1414 (1992).
[Crossref]

Menzel, R.

A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer, and R. Menzel, “Enhanced two-photon excited fluorescence from imaging agents using true thermal light,” Nat. Photonics 7, 973–976 (2013).
[Crossref]

Mika, J.

Minasian, R.

D. Hunter, R. Minasian, and P. Krug, “Tunable optical transversal filter based on chirped gratings,” Electron. Lett. 31, 2205–2207 (1995).
[Crossref]

Mollow, B. R.

B. R. Mollow, “Two-photon absorption and field correlation functions,” Phys. Rev. 175, 1555–1563 (1968).
[Crossref]

Montina, A.

F. Arecchi, U. Bortolozzo, A. Montina, and S. Residori, “Granularity and inhomogeneity are the joint generators of optical rogue waves,” Phys. Rev. Lett. 106, 153901 (2011).
[Crossref]

Morlanes, T.

Mrowka, S.

Muriel, M. A.

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

Palomaki, T.

I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. Wilson, “Generation of nonclassical microwave states using an artificial atom in 1D open space,” Phys. Rev. Lett. 108, 263601 (2012).
[Crossref]

Pan, J.

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

Pérez, A.

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Portolan, S.

A. Auffëves, D. Gerace, S. Portolan, A. Drezet, and M. Franca Santos, “Few emitters in a cavity: from cooperative emission to individualization,” New J. Phys. 13, 093020 (2011).
[Crossref]

Qi, G.

G. Qi, “Optical beams in media with spatial dispersion,” Chin. Phys. Lett. 20, 64–67 (2003).
[Crossref]

Qiu, W.

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

Redlich, C.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Reitzenstein, S.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Residori, S.

F. Arecchi, U. Bortolozzo, A. Montina, and S. Residori, “Granularity and inhomogeneity are the joint generators of optical rogue waves,” Phys. Rev. Lett. 106, 153901 (2011).
[Crossref]

Sanchez-Brea, L. M.

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[Crossref]

Schlottmann, E.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Schneider, C.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

Sedgwick, F. G.

Seefeldt, M.

A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer, and R. Menzel, “Enhanced two-photon excited fluorescence from imaging agents using true thermal light,” Nat. Photonics 7, 973–976 (2013).
[Crossref]

Sergienko, A. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Shen, Y. R.

Y. R. Shen, “Quantum statistics of nonlinear optics,” Phys. Rev. 155, 921–931 (1967).
[Crossref]

Shih, Y.

J. Liu and Y. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[Crossref]

Shih, Y. H.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Silberberg, Y.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nat. Photonics 4, 721–726 (2010).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

Small, E.

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nat. Photonics 4, 721–726 (2010).
[Crossref]

Song, S. H.

Spasibko, K. Y.

Straka, I.

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

Sudarshan, E.

E. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963).
[Crossref]

Sudarshan, E. G.

L. Mandel, E. G. Sudarshan, and E. Wolf, “Theory of photoelectric detection of light fluctuations,” Proc. Phys. Soc. Lond. 84, 435–444 (1964).
[Crossref]

Swain, S.

S. Swain, P. Zhou, and Z. Ficek, “Intensity-intensity correlations and quantum interference in a driven three-level atom,” Phys. Rev. A 61, 043410 (2000).
[Crossref]

Temnov, V. V.

Torcal-Milla, F. J.

Trebino, R.

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
[Crossref]

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178, 1046–1048 (1956).
[Crossref]

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[Crossref]

Von Zanthier, J.

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5, 17335 (2015).
[Crossref]

Wang, J.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

Wang, X.

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24, 11002–11008 (2016).
[Crossref]

Wen, Z.

G. Chen, K. Zhang, A. Yu, X. Wang, Z. Zhang, Y. Li, Z. Wen, C. Li, L. Dai, S. Jiang, and F. Lin, “Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light,” Opt. Express 24, 11002–11008 (2016).
[Crossref]

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

West, C.

M. Lewis and C. West, “Some focusing properties of chirped gratings,” Opt. Quantum Electron. 21, 17–33 (1989).
[Crossref]

Wiersig, J.

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and superradiance in nanolasers,” Phys. Rev. Appl. 4, 044018 (2015).
[Crossref]

Wilson, C.

I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. Wilson, “Generation of nonclassical microwave states using an artificial atom in 1D open space,” Phys. Rev. Lett. 108, 263601 (2012).
[Crossref]

Woggon, U.

Wolf, E.

L. Mandel, E. G. Sudarshan, and E. Wolf, “Theory of photoelectric detection of light fluctuations,” Proc. Phys. Soc. Lond. 84, 435–444 (1964).
[Crossref]

Wolters, J.

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Wu, L.

X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, and L. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3, 052121 (2013).
[Crossref]

Xie, C.

Xu, L.

Xu, Z.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95, 053809 (2017).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer,” J. Opt. Soc. Am. B 34, 2081–2088 (2017).
[Crossref]

Yan, Y.

D. Feng, Y. Yan, G. Jin, and S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239, 345–352 (2004).
[Crossref]

Yao, X.

X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, and L. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3, 052121 (2013).
[Crossref]

Ylmaz, H.

Yoon, J.

Yu, A.

Yu, H.

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

Yu, W.

X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, and L. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3, 052121 (2013).
[Crossref]

Zhai, G.

X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, and L. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3, 052121 (2013).
[Crossref]

Zhai, Z.

Zhang, C.

D. Feng and C. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible regime,” Phys. Proc. 22, 428–434 (2011).
[Crossref]

Zhang, G.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99, 063827 (2019).
[Crossref]

L. Li, P. Hong, and G. Zhang, “Experimental realization of Heisenberg-limit resolution imaging through a phase-controlled screen with classical light,” Opt. Express 26, 18950–18956 (2018).
[Crossref]

P. Hong and G. Zhang, “Super-resolved optical lithography with phase controlled source,” Phys. Rev. A 91, 053830 (2015).
[Crossref]

P. Hong and G. Zhang, “Subwavelength interference with an effective entangled source,” Phys. Rev. A 88, 043838 (2013).
[Crossref]

P. Hong, L. Xu, Z. Zhai, and G. Zhang, “High visibility two-photon interference with classical light,” Opt. Express 21, 14056–14065 (2013).
[Crossref]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[Crossref]

J. Liu and G. Zhang, “Unified interpretation for second-order subwavelength interference based on Feynman’s path-integral theory,” Phys. Rev. A 82, 013822 (2010).
[Crossref]

Zhang, H.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99, 063827 (2019).
[Crossref]

Zhang, K.

Zhang, L.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99, 063827 (2019).
[Crossref]

Zhang, S.

Zhang, Z.

Zhao, J.

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

Zheng, H.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer,” J. Opt. Soc. Am. B 34, 2081–2088 (2017).
[Crossref]

Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95, 053809 (2017).
[Crossref]

Zhou, D.

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99, 063827 (2019).
[Crossref]

Zhou, P.

S. Swain, P. Zhou, and Z. Ficek, “Intensity-intensity correlations and quantum interference in a driven three-level atom,” Phys. Rev. A 61, 043410 (2000).
[Crossref]

Zhou, Y.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95, 053809 (2017).
[Crossref]

B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He, F. Li, and Z. Xu, “Photon superbunching of classical light in the Hanbury Brown–Twiss interferometer,” J. Opt. Soc. Am. B 34, 2081–2088 (2017).
[Crossref]

Zhu, X.

AIP Adv. (1)

X. Liu, M. Li, X. Yao, W. Yu, G. Zhai, and L. Wu, “High-visibility ghost imaging from artificially generated non-Gaussian intensity fluctuations,” AIP Adv. 3, 052121 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Leonetti and C. Conti, “Observation of three dimensional optical rogue waves through obstacles,” Appl. Phys. Lett. 106, 254103 (2015).
[Crossref]

Chin. Phys. Lett. (1)

G. Qi, “Optical beams in media with spatial dispersion,” Chin. Phys. Lett. 20, 64–67 (2003).
[Crossref]

Electron. Lett. (1)

D. Hunter, R. Minasian, and P. Krug, “Tunable optical transversal filter based on chirped gratings,” Electron. Lett. 31, 2205–2207 (1995).
[Crossref]

Europhys. Lett. (1)

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7, 728–744 (2001).
[Crossref]

IEEE Photon. J. (1)

X. Lv, W. Qiu, J. Wang, Y. Ma, J. Zhao, M. Li, H. Yu, and J. Pan, “A chirped subwavelength grating with both reflection and transmission focusing,” IEEE Photon. J. 5, 2200907 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. Chen, Y. Li, X. Wang, Z. Wen, F. Lin, L. Dai, L. Chen, Y. He, and S. Liu, “Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array,” IEEE Photon. Technol. Lett. 28, 335–338 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

Nat. Commun. (1)

F. Jahnke, C. Gies, M. Assmann, M. Bayer, H. A. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Hofling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

Nat. Photonics (2)

A. Jechow, M. Seefeldt, H. Kurzke, A. Heuer, and R. Menzel, “Enhanced two-photon excited fluorescence from imaging agents using true thermal light,” Nat. Photonics 7, 973–976 (2013).
[Crossref]

Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nat. Photonics 4, 721–726 (2010).
[Crossref]

Nature (2)

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[Crossref]

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178, 1046–1048 (1956).
[Crossref]

New J. Phys. (2)

A. Auffëves, D. Gerace, S. Portolan, A. Drezet, and M. Franca Santos, “Few emitters in a cavity: from cooperative emission to individualization,” New J. Phys. 13, 093020 (2011).
[Crossref]

C. Redlich, B. Lingnau, S. Holzinger, E. Schlottmann, S. Kreinberg, C. Schneider, M. Kamp, S. Hofling, J. Wolters, S. Reitzenstein, and K. Lüdge, “Mode-switching induced super-thermal bunching in quantum-dot microlasers,” New J. Phys. 18, 063011 (2016).
[Crossref]

Opt. Commun. (3)

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

D. Feng, Y. Yan, G. Jin, and S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239, 345–352 (2004).
[Crossref]

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242, 599–604 (2004).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

M. Lewis and C. West, “Some focusing properties of chirped gratings,” Opt. Quantum Electron. 21, 17–33 (1989).
[Crossref]

Optica (1)

Phys. Proc. (1)

D. Feng and C. Zhang, “Optical focusing by planar lenses based on nano-scale metallic slits in visible regime,” Phys. Proc. 22, 428–434 (2011).
[Crossref]

Phys. Rev. (6)

Y. R. Shen, “Quantum statistics of nonlinear optics,” Phys. Rev. 155, 921–931 (1967).
[Crossref]

P. Lambropoulos, “Field-correlation effects in two-photon processes,” Phys. Rev. 168, 1418–1423 (1968).
[Crossref]

B. R. Mollow, “Two-photon absorption and field correlation functions,” Phys. Rev. 175, 1555–1563 (1968).
[Crossref]

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[Crossref]

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).
[Crossref]

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[Crossref]

Phys. Rev. A (13)

S. Swain, P. Zhou, and Z. Ficek, “Intensity-intensity correlations and quantum interference in a driven three-level atom,” Phys. Rev. A 61, 043410 (2000).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[Crossref]

T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, “Repulsively induced photon superbunching in driven resonator arrays,” Phys. Rev. A 87, 053846 (2013).
[Crossref]

Y. Zhou, F.-L. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng, “Superbunching pseudothermal light,” Phys. Rev. A 95, 053809 (2017).
[Crossref]

P. Hong, J. Liu, and G. Zhang, “Two-photon superbunching of thermal light via multiple two-photon path interference,” Phys. Rev. A 86, 013807 (2012).
[Crossref]

J. Liu and Y. Shih, “Nth-order coherence of thermal light,” Phys. Rev. A 79, 023819 (2009).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

G. S. Agarwal, “Field-correlation effects in multiphoton absorption processes,” Phys. Rev. A 1, 1445–1459 (1970).
[Crossref]

J. Liu and G. Zhang, “Unified interpretation for second-order subwavelength interference based on Feynman’s path-integral theory,” Phys. Rev. A 82, 013822 (2010).
[Crossref]

P. Hong and G. Zhang, “Subwavelength interference with an effective entangled source,” Phys. Rev. A 88, 043838 (2013).
[Crossref]

P. Hong and G. Zhang, “Super-resolved optical lithography with phase controlled source,” Phys. Rev. A 91, 053830 (2015).
[Crossref]

L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang, “Superbunching effect of classical light with a digitally designed spatially phase-correlated wave front,” Phys. Rev. A 99, 063827 (2019).
[Crossref]

Phys. Rev. Appl. (1)

H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, “Sub- and superradiance in nanolasers,” Phys. Rev. Appl. 4, 044018 (2015).
[Crossref]

Phys. Rev. Lett. (7)

E. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[Crossref]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon ‘ghost’ interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).
[Crossref]

Y. Bromberg and H. Cao, “Generating non-Rayleigh speckles with tailored intensity statistics,” Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

F. Arecchi, U. Bortolozzo, A. Montina, and S. Residori, “Granularity and inhomogeneity are the joint generators of optical rogue waves,” Phys. Rev. Lett. 106, 153901 (2011).
[Crossref]

I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing, and C. Wilson, “Generation of nonclassical microwave states using an artificial atom in 1D open space,” Phys. Rev. Lett. 108, 263601 (2012).
[Crossref]

Proc. Phys. Soc. Lond. (1)

L. Mandel, E. G. Sudarshan, and E. Wolf, “Theory of photoelectric detection of light fluctuations,” Proc. Phys. Soc. Lond. 84, 435–444 (1964).
[Crossref]

Quantum Meas. Quantum Metrol. (1)

A. Allevi, S. Cassina, and M. Bondani, “Super-thermal light for imaging applications,” Quantum Meas. Quantum Metrol. 4, 26–34 (2017).
[Crossref]

Rev. Mod. Phys. (1)

R. J. Glauber, “Nobel lecture: one hundred years of light quanta,” Rev. Mod. Phys. 78, 1267–1278 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

W. R. McKinney, “Varied line-space gratings and applications,” Rev. Sci. Instrum. 63, 1410–1414 (1992).
[Crossref]

Sci. Rep. (1)

D. Bhatti, J. Von Zanthier, and G. S. Agarwal, “Superbunching and nonclassicality as new hallmarks of superradiance,” Sci. Rep. 5, 17335 (2015).
[Crossref]

Other (1)

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Vol. 15 of Classics in Applied Mathematics (SIAM, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic diagram of the designed slit-width-chirped random-phase grating. an (n=1,2,,N) is the width of the nth slit, and N is the total slit number of the grating; ϕ(t) is a random phase changing with time among [0,2π), and d is the fixed period of the grating. (b) Schematic configuration for studying the coherence property of the light field transmitting through the chirped random-phase grating in the Fraunhofer zone, where L represents a lens for collecting the scattering light from the chirped random-phase gratings and CCD is the charge-coupled device camera for recording the intensity distribution on the focal plane of lens L. (c) Schematic diagram of indistinguishable two-photon paths.
Fig. 2.
Fig. 2. Schematic diagram of the experimental setup. λ/2, half-wave plate; L1, L2, L3, lenses; A1, A2, irises; BE, beam expander; P, polarizer; BS, 50∶50 beam splitter; CRPG, chirped random-phase grating; CCD, charge-coupled device camera. The straight arrows in the optical path indicate the propagating and scattering light. The upper-right inset shows the detailed structure of the chirped random-phase grating, which is composed of an N-slit black–white transmitting amplitude mask and an SLM, and they are placed as close as possible. The lower-left inset shows the object placed on the focal plane of L3 in the ghost imaging experiments.
Fig. 3.
Fig. 3. Experimental results for the super-bunched focusing effect with (a) slit-width-chirped random-phase gratings and (b) period-chirped random-phase gratings. The grating period in (a) was fixed at d=400  μm, and the chirped slit width {an} values are listed in Appendix B.1. In (b), the slit width was set to be a=100  μm, and the chirped grating grid lines {bk} are listed in Appendix B.2. The black solid curves, the blue dash-dotted curves, and the red dotted curves depict the results for N=4, 8, and 16, respectively.
Fig. 4.
Fig. 4. Experimental results for the super-bunched focusing effect through chirped random-phase gratings with N=50. (a) Slit-width-chirped random-phase grating with a fixed period d=200  μm, (b) period-chirped random-phase grating with a fixed slit width a=30  μm. The corresponding structure parameters can be found in Appendices B.3 and B.4, respectively.
Fig. 5.
Fig. 5. Normalized ghost image profiles with super-bunched focusing light fields for (a) the slit-width-chirped random-phase gratings and (b) the period-chirped random-phase gratings. The shaded parts represent the opaque areas of the double-slit mask. The blue dashed curves, the green dotted curves, the red dash-dotted curves, and the pink dash-dot-dotted curves depict the results with N=4, 8, 16, and 50, respectively. For comparison, the black solid curves show the case of a pseudo-thermal light field generated through a phase-only SLM.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E^(+)(x)n=1Nsinc(πanxλf)ei2πx(n1)dλfei(n1)ϕa^,
G(1)(x)=E*(x)E(x)n=1Nsinc2(πanxλf),
G(2)(x,x)=E*(x)E*(x)E(x)E(x).
G(2)(x,x)l=02N2|(m,n);m+n2=leilϕ[sinc(πamxλf)×ei2πx(m1)dλfsinc(πanxλf)ei2πx(n1)dλf+H(m,n)sinc(πanxλf)ei2πx(n1)dλf×sinc(πamxλf)ei2πx(m1)dλf]|2,
gN(2)(x,x)=G(2)(x,x)G(1)(x)G(1)(x)=1+r=1N1{2cos[2πλf(xx)rd]C(x,x)}D(x,x),
C(x,x)=p=1Nrq=1Nrsinc(πxapλf)sinc(πxap+rλf)×sinc(πxaqλf)sinc(πxaq+rλf),
D(x,x)=m=1Nsinc2(πxamλf)×n=1Nsinc2(πxanλf).
gN(2)(x)=1+2r=1N[(Nr)cos(2πxrdλf)q=1Nrsinc(πxaqλf)sinc(πxaq+rλf)]Nn=1Nsinc2(πxanλf),
gN(2)(0)=1+2r=1N1(Nr)2N2=2N2+13N,
V=gmax(2)gmin(2)gmax(2)+gmin(2)=N21N2+2.
Sε2=[gN(2)(xi)f(xi)]2,SST=[f(xi)f¯(xi)]2,
gN(2)(x,x)=1+2N2r=1N1p=1Nrq=1Nr×cos{2πλf[ra(xx)+xk=pp+r1bkxk=qq+r1bk]},
{Sε2a1=2[gN(2)(xi)f(xi)]×gN(2)(xi)a1=0Sε2a2=2[gN(2)(xi)f(xi)]×gN(2)(xi)a2=0Sε2a3=2[gN(2)(xi)f(xi)]×gN(2)(xi)a3=0Sε2aN=2[gN(2)(xi)f(xi)]×gN(2)(xi)aN=0.