Abstract

The ability to sense dynamic biochemical reactions and material processes is particularly crucial for a wide range of applications, such as early-stage disease diagnosis and biomedicine development. Optical microcavities-based label-free biosensors are renowned for ultrahigh sensitivities, and the detection limit has reached a single nanoparticle/molecule level. In particular, a microbubble resonator combined with an ultrahigh quality factor (Q) and inherent microfluidic channel is an intriguing platform for optical biosensing in an aqueous environment. In this work, an ultrahigh Q microbubble resonator-based sensor is used to characterize dynamic phase transition of a thermosensitive hydrogel. Experimentally, by monitoring resonance wavelength shift and linewidth broadening, we (for the first time to our knowledge) reveal that the refractive index is increased and light scattering is enhanced simultaneously during the hydrogel hydrophobic transition process. The platform demonstrated here paves the way to microfluidical biochemical dynamic detection and can be further adapted to investigating single-molecule kinetics.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation

Steven H. Huang, Saahil Sheth, Era Jain, Xuefeng Jiang, Silviya P. Zustiak, and Lan Yang
Opt. Express 26(1) 51-62 (2018)

High Q silica microbubble resonators fabricated by arc discharge

S. Berneschi, D. Farnesi, F. Cosi, G. Nunzi Conti, S. Pelli, G. C. Righini, and S. Soria
Opt. Lett. 36(17) 3521-3523 (2011)

Real-time monitoring of the enzymatic reaction of urease by using whispering gallery mode lasing

Rui Duan, Yanzeng Li, Hanyang Li, and Jun Yang
Opt. Express 27(24) 35427-35436 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Onuki, Phase Transition Dynamics (Cambridge University, 2002).
  2. K. Kadau, T. C. Germann, P. S. Lomdahl, and B. Holian, “Microscopic view of structural phase transitions induced by shock waves,” Science 296, 1681–1684 (2002).
    [Crossref]
  3. A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
    [Crossref]
  4. G. W. Ashley, J. Henise, R. Reid, and D. V. Santi, “Hydrogel drug delivery system with predictable and tunable drug release and degradation rates,” Proc. Natl. Acad. Sci. USA 110, 2318–2323 (2013).
    [Crossref]
  5. S. P. Zustiak and J. B. Leach, “Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels,” Biotechnol. Bioeng. 108, 197–206 (2011).
    [Crossref]
  6. F. Ordikhani, S. P. Zustiak, and A. Simchi, “Surface modifications of titanium implants by multilayer bioactive coatings with drug delivery potential: antimicrobial, biological, and drug release studies,” J. Miner. Met. Mater. Soc. 68, 1100–1108 (2016).
    [Crossref]
  7. M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
    [Crossref]
  8. A. M. Mathur and A. B. Scranton, “Characterization of hydrogels using nuclear magnetic resonance spectroscopy,” Biomaterials 17, 547–557 (1996).
    [Crossref]
  9. K. M. Schultz, A. D. Baldwin, K. L. Kiick, and E. M. Furst, “Gelation of covalently cross-linked PEG-heparin hydrogels,” Macromolecules 42, 5310–5316 (2009).
    [Crossref]
  10. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  11. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
    [Crossref]
  12. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
    [Crossref]
  13. Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
    [Crossref]
  14. H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
    [Crossref]
  15. S. Frustaci and F. Vollmer, “Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics,” Curr. Opin. Chem. Biol. 51, 66–73 (2019).
    [Crossref]
  16. F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref]
  17. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
    [Crossref]
  18. W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
    [Crossref]
  19. S. Q. Liu, B. J. Shi, Y. Wang, L. G. Cui, J. Yang, W. M. Sun, and H. Y. Li, “Whispering gallery modes in a liquid-filled hollow glass microsphere,” Opt. Lett. 42, 4659–4662 (2017).
    [Crossref]
  20. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  21. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
    [Crossref]
  22. L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref]
  23. B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
    [Crossref]
  24. S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
    [Crossref]
  25. K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
    [Crossref]
  26. J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
    [Crossref]
  27. X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
    [Crossref]
  28. X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
    [Crossref]
  29. N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
    [Crossref]
  30. S.-J. Tang, S. Liu, X.-C. Yu, Q. Song, Q. Gong, and Y.-F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Adv. Mater. 30, 1800262 (2018).
    [Crossref]
  31. J. M. Ward, Y. Yang, F. Lei, X.-C. Yu, Y.-F. Xiao, and S. N. Chormaic, “Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity,” Optica 5, 674–677 (2018).
    [Crossref]
  32. H. Jing, H. Lü, S. K. Ozdemir, T. Carmon, and F. Nori, “Nanoparticle sensing with a spinning resonator,” Optica 5, 1424–1430 (2018).
    [Crossref]
  33. M. R. Foreman, D. Keng, E. Treasurer, J. R. Lopez, and S. Arnold, “Whispering gallery mode single nanoparticle detection and sizing: the validity of the dipole approximation,” Opt. Lett. 42, 963–966 (2017).
    [Crossref]
  34. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  35. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
    [Crossref]
  36. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
    [Crossref]
  37. I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
    [Crossref]
  38. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
    [Crossref]
  39. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref]
  40. J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photon. 2, 1241–1245 (2015).
    [Crossref]
  41. E. Kim, M. D. Baaske, and F. Vollmer, “In situ observation of single-molecule surface reactions from low to high affinities,” Adv. Mater. 28, 9941–9948 (2016).
    [Crossref]
  42. W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
    [Crossref]
  43. S. Subramanian, H.-Y. Wu, T. Constant, J. Xavier, and F. Vollmer, “Label-free optical single-molecule micro-and nanosensors,” Adv. Mater. 30, 1801246 (2018).
    [Crossref]
  44. E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3, e1603044 (2017).
    [Crossref]
  45. Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines 9, 274 (2018).
    [Crossref]
  46. Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
    [Crossref]
  47. M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
    [Crossref]
  48. S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
    [Crossref]
  49. H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Prog. Polym. Sci. 17, 163–249 (1992).
    [Crossref]
  50. B. Jeong, S. W. Kim, and Y. H. Bae, “Thermosensitive sol-gel reversible hydrogels,” Adv. Drug Delivery Rev. 64, 154–162 (2012).
    [Crossref]
  51. M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, and H. Zhong, “Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer,” Biosens. Bioelectron. 50, 229–234 (2013).
    [Crossref]
  52. Y. Zhou, Y. Cai, X. Hu, and Y. Long, “Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for smart window applications,” J. Mater. Chem. A 2, 13550–13555 (2014).
    [Crossref]
  53. Y. Ding, X. Ye, and G. Zhang, “Microcalorimetric investigation on aggregation and dissolution of poly(N-isopropylacrylamide) chains in water,” Macromolecules 38, 904–908 (2005).
    [Crossref]
  54. H. Cheng, L. Shen, and C. Wu, “LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water,” Macromolecules 39, 2325–2329 (2006).
    [Crossref]
  55. G. Graziano, “On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutions,” Int. J. Biol. Macromol. 27, 89–97 (2000).
    [Crossref]
  56. A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, and R. Von Klitzing, “The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles,” Polymers 3, 1575–1590 (2011).
    [Crossref]
  57. S. Cai and Z. Suo, “Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels,” J. Mech. Phys. Solids 59, 2259–2278 (2011).
    [Crossref]

2019 (3)

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

S. Frustaci and F. Vollmer, “Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics,” Curr. Opin. Chem. Biol. 51, 66–73 (2019).
[Crossref]

2018 (8)

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
[Crossref]

S.-J. Tang, S. Liu, X.-C. Yu, Q. Song, Q. Gong, and Y.-F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Adv. Mater. 30, 1800262 (2018).
[Crossref]

J. M. Ward, Y. Yang, F. Lei, X.-C. Yu, Y.-F. Xiao, and S. N. Chormaic, “Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity,” Optica 5, 674–677 (2018).
[Crossref]

H. Jing, H. Lü, S. K. Ozdemir, T. Carmon, and F. Nori, “Nanoparticle sensing with a spinning resonator,” Optica 5, 1424–1430 (2018).
[Crossref]

S. Subramanian, H.-Y. Wu, T. Constant, J. Xavier, and F. Vollmer, “Label-free optical single-molecule micro-and nanosensors,” Adv. Mater. 30, 1801246 (2018).
[Crossref]

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines 9, 274 (2018).
[Crossref]

Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
[Crossref]

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
[Crossref]

2017 (6)

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3, e1603044 (2017).
[Crossref]

M. R. Foreman, D. Keng, E. Treasurer, J. R. Lopez, and S. Arnold, “Whispering gallery mode single nanoparticle detection and sizing: the validity of the dipole approximation,” Opt. Lett. 42, 963–966 (2017).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

S. Q. Liu, B. J. Shi, Y. Wang, L. G. Cui, J. Yang, W. M. Sun, and H. Y. Li, “Whispering gallery modes in a liquid-filled hollow glass microsphere,” Opt. Lett. 42, 4659–4662 (2017).
[Crossref]

2016 (6)

F. Ordikhani, S. P. Zustiak, and A. Simchi, “Surface modifications of titanium implants by multilayer bioactive coatings with drug delivery potential: antimicrobial, biological, and drug release studies,” J. Miner. Met. Mater. Soc. 68, 1100–1108 (2016).
[Crossref]

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

E. Kim, M. D. Baaske, and F. Vollmer, “In situ observation of single-molecule surface reactions from low to high affinities,” Adv. Mater. 28, 9941–9948 (2016).
[Crossref]

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

2015 (1)

J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photon. 2, 1241–1245 (2015).
[Crossref]

2014 (5)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Y. Zhou, Y. Cai, X. Hu, and Y. Long, “Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for smart window applications,” J. Mater. Chem. A 2, 13550–13555 (2014).
[Crossref]

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

2013 (5)

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

G. W. Ashley, J. Henise, R. Reid, and D. V. Santi, “Hydrogel drug delivery system with predictable and tunable drug release and degradation rates,” Proc. Natl. Acad. Sci. USA 110, 2318–2323 (2013).
[Crossref]

M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, and H. Zhong, “Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer,” Biosens. Bioelectron. 50, 229–234 (2013).
[Crossref]

2012 (3)

B. Jeong, S. W. Kim, and Y. H. Bae, “Thermosensitive sol-gel reversible hydrogels,” Adv. Drug Delivery Rev. 64, 154–162 (2012).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

2011 (5)

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

S. P. Zustiak and J. B. Leach, “Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels,” Biotechnol. Bioeng. 108, 197–206 (2011).
[Crossref]

A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, and R. Von Klitzing, “The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles,” Polymers 3, 1575–1590 (2011).
[Crossref]

S. Cai and Z. Suo, “Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels,” J. Mech. Phys. Solids 59, 2259–2278 (2011).
[Crossref]

2010 (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

2009 (1)

K. M. Schultz, A. D. Baldwin, K. L. Kiick, and E. M. Furst, “Gelation of covalently cross-linked PEG-heparin hydrogels,” Macromolecules 42, 5310–5316 (2009).
[Crossref]

2008 (3)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

2006 (1)

H. Cheng, L. Shen, and C. Wu, “LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water,” Macromolecules 39, 2325–2329 (2006).
[Crossref]

2005 (1)

Y. Ding, X. Ye, and G. Zhang, “Microcalorimetric investigation on aggregation and dissolution of poly(N-isopropylacrylamide) chains in water,” Macromolecules 38, 904–908 (2005).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

2002 (1)

K. Kadau, T. C. Germann, P. S. Lomdahl, and B. Holian, “Microscopic view of structural phase transitions induced by shock waves,” Science 296, 1681–1684 (2002).
[Crossref]

2001 (1)

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

2000 (1)

G. Graziano, “On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutions,” Int. J. Biol. Macromol. 27, 89–97 (2000).
[Crossref]

1996 (1)

A. M. Mathur and A. B. Scranton, “Characterization of hydrogels using nuclear magnetic resonance spectroscopy,” Biomaterials 17, 547–557 (1996).
[Crossref]

1993 (1)

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[Crossref]

1992 (1)

H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Prog. Polym. Sci. 17, 163–249 (1992).
[Crossref]

Ament, I.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Arnold, S.

M. R. Foreman, D. Keng, E. Treasurer, J. R. Lopez, and S. Arnold, “Whispering gallery mode single nanoparticle detection and sizing: the validity of the dipole approximation,” Opt. Lett. 42, 963–966 (2017).
[Crossref]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Ashley, G. W.

G. W. Ashley, J. Henise, R. Reid, and D. V. Santi, “Hydrogel drug delivery system with predictable and tunable drug release and degradation rates,” Proc. Natl. Acad. Sci. USA 110, 2318–2323 (2013).
[Crossref]

Baaske, M. D.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3, e1603044 (2017).
[Crossref]

E. Kim, M. D. Baaske, and F. Vollmer, “In situ observation of single-molecule surface reactions from low to high affinities,” Adv. Mater. 28, 9941–9948 (2016).
[Crossref]

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Bae, Y. H.

B. Jeong, S. W. Kim, and Y. H. Bae, “Thermosensitive sol-gel reversible hydrogels,” Adv. Drug Delivery Rev. 64, 154–162 (2012).
[Crossref]

Baldwin, A. D.

K. M. Schultz, A. D. Baldwin, K. L. Kiick, and E. M. Furst, “Gelation of covalently cross-linked PEG-heparin hydrogels,” Macromolecules 42, 5310–5316 (2009).
[Crossref]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Betzig, E.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[Crossref]

Bowen, W. P.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

Burmistrova, A.

A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, and R. Von Klitzing, “The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles,” Polymers 3, 1575–1590 (2011).
[Crossref]

Cai, S.

S. Cai and Z. Suo, “Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels,” J. Mech. Phys. Solids 59, 2259–2278 (2011).
[Crossref]

Cai, Y.

Y. Zhou, Y. Cai, X. Hu, and Y. Long, “Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for smart window applications,” J. Mater. Chem. A 2, 13550–13555 (2014).
[Crossref]

Carmon, T.

Cavalleri, A.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Cedano-Serrano, F. J.

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, H.-Y.

M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, and H. Zhong, “Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer,” Biosens. Bioelectron. 50, 229–234 (2013).
[Crossref]

Chen, P.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Chen, W. J.

W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Cheng, H.

H. Cheng, L. Shen, and C. Wu, “LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water,” Macromolecules 39, 2325–2329 (2006).
[Crossref]

Cherqui, C.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Chichester, R. J.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[Crossref]

Chormaic, S. N.

Clements, W. R.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Constant, T.

S. Subramanian, H.-Y. Wu, T. Constant, J. Xavier, and F. Vollmer, “Label-free optical single-molecule micro-and nanosensors,” Adv. Mater. 30, 1801246 (2018).
[Crossref]

Creton, C.

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

Cui, L. G.

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Ding, Y.

Y. Ding, X. Ye, and G. Zhang, “Microcalorimetric investigation on aggregation and dissolution of poly(N-isopropylacrylamide) chains in water,” Macromolecules 38, 904–908 (2005).
[Crossref]

Dompé, M.

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

Duan, Z.

Eisele, M.

A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, and R. Von Klitzing, “The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles,” Polymers 3, 1575–1590 (2011).
[Crossref]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Fei, Y.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines 9, 274 (2018).
[Crossref]

Feng, X.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Foreman, M. R.

M. R. Foreman, D. Keng, E. Treasurer, J. R. Lopez, and S. Arnold, “Whispering gallery mode single nanoparticle detection and sizing: the validity of the dipole approximation,” Opt. Lett. 42, 963–966 (2017).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Forget, P.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Frustaci, S.

S. Frustaci and F. Vollmer, “Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics,” Curr. Opin. Chem. Biol. 51, 66–73 (2019).
[Crossref]

Furst, E. M.

K. M. Schultz, A. D. Baldwin, K. L. Kiick, and E. M. Furst, “Gelation of covalently cross-linked PEG-heparin hydrogels,” Macromolecules 42, 5310–5316 (2009).
[Crossref]

Germann, T. C.

K. Kadau, T. C. Germann, P. S. Lomdahl, and B. Holian, “Microscopic view of structural phase transitions induced by shock waves,” Science 296, 1681–1684 (2002).
[Crossref]

Goldberg, A. F.

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

Goldsmith, R. H.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Gong, Q.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
[Crossref]

S.-J. Tang, S. Liu, X.-C. Yu, Q. Song, Q. Gong, and Y.-F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Adv. Mater. 30, 1800262 (2018).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Graziano, G.

G. Graziano, “On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutions,” Int. J. Biol. Macromol. 27, 89–97 (2000).
[Crossref]

Gu, B.

M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, and H. Zhong, “Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer,” Biosens. Bioelectron. 50, 229–234 (2013).
[Crossref]

Gu, Z.

Guan, B.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Guo, Z.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines 9, 274 (2018).
[Crossref]

Han, B.

Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
[Crossref]

He, L.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Heckert, O.

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

Henise, J.

G. W. Ashley, J. Henise, R. Reid, and D. V. Santi, “Hydrogel drug delivery system with predictable and tunable drug release and degradation rates,” Proc. Natl. Acad. Sci. USA 110, 2318–2323 (2013).
[Crossref]

Henkel, A.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Heylman, K. D.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Holian, B.

K. Kadau, T. C. Germann, P. S. Lomdahl, and B. Holian, “Microscopic view of structural phase transitions induced by shock waves,” Science 296, 1681–1684 (2002).
[Crossref]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Horak, E. H.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Hou, G.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Hourdet, D.

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

Hu, X.

Y. Zhou, Y. Cai, X. Hu, and Y. Long, “Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for smart window applications,” J. Mater. Chem. A 2, 13550–13555 (2014).
[Crossref]

Huang, S. H.

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
[Crossref]

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Huang, Y.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Jain, E.

Jeong, B.

B. Jeong, S. W. Kim, and Y. H. Bae, “Thermosensitive sol-gel reversible hydrogels,” Adv. Drug Delivery Rev. 64, 154–162 (2012).
[Crossref]

Jiang, W. C.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Jiang, X.

Jiang, X. F.

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Jiang, X.-F.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

Jing, H.

Kadau, K.

K. Kadau, T. C. Germann, P. S. Lomdahl, and B. Holian, “Microscopic view of structural phase transitions induced by shock waves,” Science 296, 1681–1684 (2002).
[Crossref]

Kamperman, M.

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

Keng, D.

M. R. Foreman, D. Keng, E. Treasurer, J. R. Lopez, and S. Arnold, “Whispering gallery mode single nanoparticle detection and sizing: the validity of the dipole approximation,” Opt. Lett. 42, 963–966 (2017).
[Crossref]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Kieffer, J. C.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Kiick, K. L.

K. M. Schultz, A. D. Baldwin, K. L. Kiick, and E. M. Furst, “Gelation of covalently cross-linked PEG-heparin hydrogels,” Macromolecules 42, 5310–5316 (2009).
[Crossref]

Kim, E.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3, e1603044 (2017).
[Crossref]

E. Kim, M. D. Baaske, and F. Vollmer, “In situ observation of single-molecule surface reactions from low to high affinities,” Adv. Mater. 28, 9941–9948 (2016).
[Crossref]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Kim, S. W.

B. Jeong, S. W. Kim, and Y. H. Bae, “Thermosensitive sol-gel reversible hydrogels,” Adv. Drug Delivery Rev. 64, 154–162 (2012).
[Crossref]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Knapper, K. A.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Knittel, J.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Leach, J. B.

S. P. Zustiak and J. B. Leach, “Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels,” Biotechnol. Bioeng. 108, 197–206 (2011).
[Crossref]

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Lei, F.

Li, B.-B.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
[Crossref]

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Li, H.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Li, H. Y.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Y.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

Li, Z.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines 9, 274 (2018).
[Crossref]

Liang, H.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Liang, L.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Lin, Q.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Liu, S.

S.-J. Tang, S. Liu, X.-C. Yu, Q. Song, Q. Gong, and Y.-F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Adv. Mater. 30, 1800262 (2018).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Liu, S. Q.

Lomdahl, P. S.

K. Kadau, T. C. Germann, P. S. Lomdahl, and B. Holian, “Microscopic view of structural phase transitions induced by shock waves,” Science 296, 1681–1684 (2002).
[Crossref]

Long, G. L.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Long, Y.

Y. Zhou, Y. Cai, X. Hu, and Y. Long, “Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for smart window applications,” J. Mater. Chem. A 2, 13550–13555 (2014).
[Crossref]

Lopez, J. R.

Lu, T.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Lü, H.

Masiello, D. J.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Mathur, A. M.

A. M. Mathur and A. B. Scranton, “Characterization of hydrogels using nuclear magnetic resonance spectroscopy,” Biomaterials 17, 547–557 (1996).
[Crossref]

Monifi, F.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Nori, F.

Onuki, A.

A. Onuki, Phase Transition Dynamics (Cambridge University, 2002).

Ordikhani, F.

F. Ordikhani, S. P. Zustiak, and A. Simchi, “Surface modifications of titanium implants by multilayer bioactive coatings with drug delivery potential: antimicrobial, biological, and drug release studies,” J. Miner. Met. Mater. Soc. 68, 1100–1108 (2016).
[Crossref]

Ozdemir, S. K.

H. Jing, H. Lü, S. K. Ozdemir, T. Carmon, and F. Nori, “Nanoparticle sensing with a spinning resonator,” Optica 5, 1424–1430 (2018).
[Crossref]

W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Peng, B.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Prasad, J.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Qiu, C.-W.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
[Crossref]

Quillin, S. C.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Raksi, F.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Reid, R.

G. W. Ashley, J. Henise, R. Reid, and D. V. Santi, “Hydrogel drug delivery system with predictable and tunable drug release and degradation rates,” Proc. Natl. Acad. Sci. USA 110, 2318–2323 (2013).
[Crossref]

Richter, M.

A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, and R. Von Klitzing, “The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles,” Polymers 3, 1575–1590 (2011).
[Crossref]

Santi, D. V.

G. W. Ashley, J. Henise, R. Reid, and D. V. Santi, “Hydrogel drug delivery system with predictable and tunable drug release and degradation rates,” Proc. Natl. Acad. Sci. USA 110, 2318–2323 (2013).
[Crossref]

Schild, H. G.

H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Prog. Polym. Sci. 17, 163–249 (1992).
[Crossref]

Schmachtel, S.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Schuldes, I.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3, e1603044 (2017).
[Crossref]

Schultz, K. M.

K. M. Schultz, A. D. Baldwin, K. L. Kiick, and E. M. Furst, “Gelation of covalently cross-linked PEG-heparin hydrogels,” Macromolecules 42, 5310–5316 (2009).
[Crossref]

Scranton, A. B.

A. M. Mathur and A. B. Scranton, “Characterization of hydrogels using nuclear magnetic resonance spectroscopy,” Biomaterials 17, 547–557 (1996).
[Crossref]

Shao, L.

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Shen, L.

H. Cheng, L. Shen, and C. Wu, “LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water,” Macromolecules 39, 2325–2329 (2006).
[Crossref]

Sheth, S.

Shi, B. J.

Shi, K.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Siders, C. W.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Simchi, A.

F. Ordikhani, S. P. Zustiak, and A. Simchi, “Surface modifications of titanium implants by multilayer bioactive coatings with drug delivery potential: antimicrobial, biological, and drug release studies,” J. Miner. Met. Mater. Soc. 68, 1100–1108 (2016).
[Crossref]

Song, Q.

S.-J. Tang, S. Liu, X.-C. Yu, Q. Song, Q. Gong, and Y.-F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Adv. Mater. 30, 1800262 (2018).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Sonnichsen, C.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

Squier, J. A.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Stoltz, B. M.

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

Su, J.

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photon. 2, 1241–1245 (2015).
[Crossref]

Subramanian, S.

S. Subramanian, H.-Y. Wu, T. Constant, J. Xavier, and F. Vollmer, “Label-free optical single-molecule micro-and nanosensors,” Adv. Mater. 30, 1801246 (2018).
[Crossref]

Sun, W.

Sun, W. M.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Suo, Z.

S. Cai and Z. Suo, “Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels,” J. Mech. Phys. Solids 59, 2259–2278 (2011).
[Crossref]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Swaim, J. D.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

Tang, S.-J.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
[Crossref]

S.-J. Tang, S. Liu, X.-C. Yu, Q. Song, Q. Gong, and Y.-F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Adv. Mater. 30, 1800262 (2018).
[Crossref]

Thakkar, N.

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

Tong, L.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

Toth, C.

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Tran, Y.

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

Treasurer, E.

Üzüm, C.

A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, and R. Von Klitzing, “The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles,” Polymers 3, 1575–1590 (2011).
[Crossref]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

van den Heuvel, N.

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

van der Gucht, J.

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

Vollmer, F.

S. Frustaci and F. Vollmer, “Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics,” Curr. Opin. Chem. Biol. 51, 66–73 (2019).
[Crossref]

S. Subramanian, H.-Y. Wu, T. Constant, J. Xavier, and F. Vollmer, “Label-free optical single-molecule micro-and nanosensors,” Adv. Mater. 30, 1801246 (2018).
[Crossref]

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3, e1603044 (2017).
[Crossref]

E. Kim, M. D. Baaske, and F. Vollmer, “In situ observation of single-molecule surface reactions from low to high affinities,” Adv. Mater. 28, 9941–9948 (2016).
[Crossref]

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Von Klitzing, R.

A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, and R. Von Klitzing, “The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles,” Polymers 3, 1575–1590 (2011).
[Crossref]

Wang, B.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines 9, 274 (2018).
[Crossref]

Wang, P.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

Wang, S.

Wang, W.

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Wang, Y.

Ward, J. M.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Wiersig, J.

W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Wilsch, P. S.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3, e1603044 (2017).
[Crossref]

Wu, C.

H. Cheng, L. Shen, and C. Wu, “LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water,” Macromolecules 39, 2325–2329 (2006).
[Crossref]

Wu, H.-Y.

S. Subramanian, H.-Y. Wu, T. Constant, J. Xavier, and F. Vollmer, “Label-free optical single-molecule micro-and nanosensors,” Adv. Mater. 30, 1801246 (2018).
[Crossref]

Wu, X.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines 9, 274 (2018).
[Crossref]

Xavier, J.

S. Subramanian, H.-Y. Wu, T. Constant, J. Xavier, and F. Vollmer, “Label-free optical single-molecule micro-and nanosensors,” Adv. Mater. 30, 1801246 (2018).
[Crossref]

Xiao, A.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Xiao, S.

Xiao, Y.-F.

S.-J. Tang, S. Liu, X.-C. Yu, Q. Song, Q. Gong, and Y.-F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Adv. Mater. 30, 1800262 (2018).
[Crossref]

J. M. Ward, Y. Yang, F. Lei, X.-C. Yu, Y.-F. Xiao, and S. N. Chormaic, “Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity,” Optica 5, 674–677 (2018).
[Crossref]

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Xiong, M.

M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, and H. Zhong, “Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer,” Biosens. Bioelectron. 50, 229–234 (2013).
[Crossref]

Xu, J.-J.

M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, and H. Zhong, “Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer,” Biosens. Bioelectron. 50, 229–234 (2013).
[Crossref]

Yang, J.

Yang, L.

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, X.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Yang, Y.

Ye, X.

Y. Ding, X. Ye, and G. Zhang, “Microcalorimetric investigation on aggregation and dissolution of poly(N-isopropylacrylamide) chains in water,” Macromolecules 38, 904–908 (2005).
[Crossref]

Yilmaz, H.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Yu, W.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Yu, X.-C.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
[Crossref]

J. M. Ward, Y. Yang, F. Lei, X.-C. Yu, Y.-F. Xiao, and S. N. Chormaic, “Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity,” Optica 5, 674–677 (2018).
[Crossref]

S.-J. Tang, S. Liu, X.-C. Yu, Q. Song, Q. Gong, and Y.-F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Adv. Mater. 30, 1800262 (2018).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Zhang, A.

Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
[Crossref]

Zhang, G.

Y. Ding, X. Ye, and G. Zhang, “Microcalorimetric investigation on aggregation and dissolution of poly(N-isopropylacrylamide) chains in water,” Macromolecules 38, 904–908 (2005).
[Crossref]

Zhang, J.-D.

M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, and H. Zhong, “Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer,” Biosens. Bioelectron. 50, 229–234 (2013).
[Crossref]

Zhang, N.

Zhang, Y.

Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
[Crossref]

Zhao, G. M.

W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Zhao, X.

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Zhao, Y.

Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
[Crossref]

Zhi, Y.

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Zhong, H.

M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, and H. Zhong, “Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer,” Biosens. Bioelectron. 50, 229–234 (2013).
[Crossref]

Zhou, T.

Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
[Crossref]

Zhou, Y.

Y. Zhou, Y. Cai, X. Hu, and Y. Long, “Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for smart window applications,” J. Mater. Chem. A 2, 13550–13555 (2014).
[Crossref]

Zhu, C.

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines 9, 274 (2018).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Zhu, J.

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zustiak, S. P.

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26, 51–62 (2018).
[Crossref]

F. Ordikhani, S. P. Zustiak, and A. Simchi, “Surface modifications of titanium implants by multilayer bioactive coatings with drug delivery potential: antimicrobial, biological, and drug release studies,” J. Miner. Met. Mater. Soc. 68, 1100–1108 (2016).
[Crossref]

S. P. Zustiak and J. B. Leach, “Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels,” Biotechnol. Bioeng. 108, 197–206 (2011).
[Crossref]

ACS Photon. (1)

J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photon. 2, 1241–1245 (2015).
[Crossref]

Adv. Drug Delivery Rev. (1)

B. Jeong, S. W. Kim, and Y. H. Bae, “Thermosensitive sol-gel reversible hydrogels,” Adv. Drug Delivery Rev. 64, 154–162 (2012).
[Crossref]

Adv. Mater. (7)

S.-J. Tang, S. Liu, X.-C. Yu, Q. Song, Q. Gong, and Y.-F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Adv. Mater. 30, 1800262 (2018).
[Crossref]

E. Kim, M. D. Baaske, and F. Vollmer, “In situ observation of single-molecule surface reactions from low to high affinities,” Adv. Mater. 28, 9941–9948 (2016).
[Crossref]

S. Subramanian, H.-Y. Wu, T. Constant, J. Xavier, and F. Vollmer, “Label-free optical single-molecule micro-and nanosensors,” Adv. Mater. 30, 1801246 (2018).
[Crossref]

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref]

L. Shao, X. F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

M. Dompé, F. J. Cedano-Serrano, O. Heckert, N. van den Heuvel, J. van der Gucht, Y. Tran, D. Hourdet, C. Creton, and M. Kamperman, “Thermoresponsive complex coacervate-based underwater adhesive,” Adv. Mater. 31, 1808179 (2019).
[Crossref]

Y. Zhi, X.-C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Anal. Chim. Acta. (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta. 620, 8–26 (2008).
[Crossref]

Appl. Phys. Lett. (1)

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

Biomaterials (1)

A. M. Mathur and A. B. Scranton, “Characterization of hydrogels using nuclear magnetic resonance spectroscopy,” Biomaterials 17, 547–557 (1996).
[Crossref]

Biosens. Bioelectron. (1)

M. Xiong, B. Gu, J.-D. Zhang, J.-J. Xu, H.-Y. Chen, and H. Zhong, “Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer,” Biosens. Bioelectron. 50, 229–234 (2013).
[Crossref]

Biotechnol. Bioeng. (1)

S. P. Zustiak and J. B. Leach, “Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels,” Biotechnol. Bioeng. 108, 197–206 (2011).
[Crossref]

Curr. Opin. Chem. Biol. (1)

S. Frustaci and F. Vollmer, “Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics,” Curr. Opin. Chem. Biol. 51, 66–73 (2019).
[Crossref]

Int. J. Biol. Macromol. (1)

G. Graziano, “On the temperature-induced coil to globule transition of poly-N-isopropylacrylamide in dilute aqueous solutions,” Int. J. Biol. Macromol. 27, 89–97 (2000).
[Crossref]

J. Mater. Chem. A (1)

Y. Zhou, Y. Cai, X. Hu, and Y. Long, “Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for smart window applications,” J. Mater. Chem. A 2, 13550–13555 (2014).
[Crossref]

J. Mech. Phys. Solids (1)

S. Cai and Z. Suo, “Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels,” J. Mech. Phys. Solids 59, 2259–2278 (2011).
[Crossref]

J. Miner. Met. Mater. Soc. (1)

F. Ordikhani, S. P. Zustiak, and A. Simchi, “Surface modifications of titanium implants by multilayer bioactive coatings with drug delivery potential: antimicrobial, biological, and drug release studies,” J. Miner. Met. Mater. Soc. 68, 1100–1108 (2016).
[Crossref]

Light Sci. Appl. (2)

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light Sci. Appl. 5, e16001 (2016).
[Crossref]

X.-C. Yu, Y. Zhi, S.-J. Tang, B.-B. Li, Q. Gong, C.-W. Qiu, and Y.-F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7, 18003 (2018).
[Crossref]

Macromolecules (3)

K. M. Schultz, A. D. Baldwin, K. L. Kiick, and E. M. Furst, “Gelation of covalently cross-linked PEG-heparin hydrogels,” Macromolecules 42, 5310–5316 (2009).
[Crossref]

Y. Ding, X. Ye, and G. Zhang, “Microcalorimetric investigation on aggregation and dissolution of poly(N-isopropylacrylamide) chains in water,” Macromolecules 38, 904–908 (2005).
[Crossref]

H. Cheng, L. Shen, and C. Wu, “LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water,” Macromolecules 39, 2325–2329 (2006).
[Crossref]

Micromachines (1)

Z. Li, C. Zhu, Z. Guo, B. Wang, X. Wu, and Y. Fei, “Highly sensitive label-free detection of small molecules with an optofluidic microbubble resonator,” Micromachines 9, 274 (2018).
[Crossref]

Nano Lett. (2)

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett. 12, 1092–1095 (2012).
[Crossref]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Nanoscale (1)

Y. Zhang, T. Zhou, B. Han, A. Zhang, and Y. Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale 10, 13832–13856 (2018).
[Crossref]

Nat. Commun. (1)

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (2)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref]

Nat. Photonics (3)

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733–739 (2016).
[Crossref]

K. D. Heylman, N. Thakkar, E. H. Horak, S. C. Quillin, C. Cherqui, K. A. Knapper, D. J. Masiello, and R. H. Goldsmith, “Optical microresonators as single-particle absorption spectrometers,” Nat. Photonics 10, 788–795 (2016).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nature (2)

W. J. Chen, S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (3)

Phys. Rev. Lett. (1)

A. Cavalleri, C. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref]

Polymers (1)

A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, and R. Von Klitzing, “The effect of co-monomer content on the swelling/shrinking and mechanical behaviour of individually adsorbed PNIPAM microgel particles,” Polymers 3, 1575–1590 (2011).
[Crossref]

Proc. Natl. Acad. Sci. USA (5)

G. W. Ashley, J. Henise, R. Reid, and D. V. Santi, “Hydrogel drug delivery system with predictable and tunable drug release and degradation rates,” Proc. Natl. Acad. Sci. USA 110, 2318–2323 (2013).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref]

Prog. Polym. Sci. (1)

H. G. Schild, “Poly(N-isopropylacrylamide): experiment, theory and application,” Prog. Polym. Sci. 17, 163–249 (1992).
[Crossref]

Sci. Adv. (2)

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Adv. 3, e1603044 (2017).
[Crossref]

H. Li, Y. Huang, G. Hou, A. Xiao, P. Chen, H. Liang, Y. Huang, X. Zhao, L. Liang, X. Feng, and B. Guan, “Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface,” Sci. Adv. 5, eaax4659 (2019).
[Crossref]

Science (2)

K. Kadau, T. C. Germann, P. S. Lomdahl, and B. Holian, “Microscopic view of structural phase transitions induced by shock waves,” Science 296, 1681–1684 (2002).
[Crossref]

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[Crossref]

Other (1)

A. Onuki, Phase Transition Dynamics (Cambridge University, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic of the MBR platform for real-time monitoring of the dynamic reactions of hydrogel phase transition. The thermosensitive phase transition of PNIPA is optically controlled by the irradiation light power (1550  nm) from an SMF. (b) Monitoring the phase transition dynamics of the PNIPA solution by tracking the wavelength shift and linewidth broadening of a WGM. Insets, CCD images of the microbubble with the PNIPA solution at hydrophilic and hydrophobic state, respectively. (c) Transmission spectrum of MBR with the PNIPA solution at hydrophilic state. The enlarged view of the red square region is shown in (d). (e) Typical optical field distribution of a WGM in the MBR by finite-element method simulation.
Fig. 2.
Fig. 2. Transmission evolution of the microbubble with the PNIPA hydrogel when the control power of the irradiation light first (a) increases from 0 to 3.00 mW, and then (b) decreases from 3.00 to 0 mW; (c) CCD images of a cycle of phase-transition process of the PNIPA hydrogel. The microbubble changes from transparent hydrophilic state to opaque hydrophobic state due to the increased scattering. Inset, the scale bar is 125 μm.
Fig. 3.
Fig. 3. (a) WGM wavelength shifts and (b) linewidth broadenings as a function of control power of the irradiation light from 0 to 3.00 mW, when the MBRs are filled with air (blue line with triangular marker), DI water (black line with square marker), and PNIPA hydrogel (red line with circular marker). Compared with the result of microbubble cavities filled with air and DI water, note that a hydrophilic to hydrophobic transition process of PNIPA can be clarified as four stages: (i) pure hydrophilic state (0–1.44 mW); (ii) subtransition state (1.44–2.04 mW); (iii) transition state (2.04–2.52 mW); (iv) pure hydrophobic state (>2.52  mW).
Fig. 4.
Fig. 4. (a) Real-time WGM resonance wavelength shift and (b) linewidth broadening during the PNIPA hydrogel phase transition (a hydrophilic to hydrophobic transition) monitored by an MBR. The control power of the irradiation light is switched on at 12.5  s. During the whole phase-transition process, a small blueshift of 8.02 pm in wavelength is first observed within 13.22–15.62 s; then the overall redshift of the resonance wavelength is 39.23 pm, and the maximized linewidth broadening is 3.96 GHz.