Abstract

Reducing power dissipation in electro-optic modulators is a key step for widespread application of silicon photonics to optical communication. In this work, we design Mach–Zehnder modulators in the silicon-on-insulator platform, which make use of slow light in a waveguide grating and of a reverse-biased p-n junction with interleaved contacts along the waveguide axis. After optimizing the junction parameters, we discuss the full simulation of the modulator in order to find a proper trade-off among various figures of merit, such as modulation efficiency, insertion loss, cutoff frequency, optical modulation amplitude, and dissipated energy per bit. Comparison with conventional structures (with lateral p-n junction and/or in rib waveguides without slow light) highlights the importance of combining slow light with the interleaved p-n junction, thanks to the increased overlap between the travelling optical wave and the depletion regions. As a surprising result, the modulator performance is improved over an optical bandwidth that is much wider than the slow-light bandwidth.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency strip-loaded waveguide based silicon Mach-Zehnder modulator with vertical p-n junction phase shifter

Yuriko Maegami, Guangwei Cong, Morifumi Ohno, Makoto Okano, Kazuto Itoh, Nobuhiko Nishiyama, Shigehisa Arai, and Koji Yamada
Opt. Express 25(25) 31407-31416 (2017)

Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions

Zhi-Yong Li, Dan-Xia Xu, W. Ross McKinnon, Siegfried Janz, Jens H. Schmid, Pavel Cheben, and Jin-Zhong Yu
Opt. Express 17(18) 15947-15958 (2009)

Optimization of efficiency-loss figure of merit in carrier-depletion silicon Mach-Zehnder optical modulator

Ilya Goykhman, Boris Desiatov, Shalva Ben-Ezra, Joseph Shappir, and Uriel Levy
Opt. Express 21(17) 19518-19529 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
    [Crossref]
  2. Z. Zhou, R. Chen, X. Li, and T. Li, “Development trends in silicon photonics for data centers,” Opt. Fiber Technol. 44, 13–23 (2018).
    [Crossref]
  3. C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
    [Crossref]
  4. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  5. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
    [Crossref]
  6. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  7. D. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
    [Crossref]
  8. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
  9. E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
    [Crossref]
  10. A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
    [Crossref]
  11. A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
    [Crossref]
  12. R. Hosseini, L. Mirzoyan, and K. Jamshidi, “Energy consumption enhancement of reverse-biased silicon-based Mach-Zehnder modulators using corrugated slow light waveguides,” IEEE Photon. J. 10, 8200207 (2018).
    [Crossref]
  13. A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti, and A. Brimont, “Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers,” in 14th International Conference on Group IV Photonics (2017), pp. 149–150.
  14. R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, and K. Jamshidi, “Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM3B.6.
  15. Y. Hinakura, H. Arai, and T. Baba, “64  Gbps Si photonic crystal slow light modulator by electro-optic phase matching,” Opt. Express 27, 14321–14327 (2019).
    [Crossref]
  16. M. Povinelli, S. G. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
    [Crossref]
  17. S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
    [Crossref]
  18. C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo, and B. B. Bakir, “Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI,” Proc. SPIE 9372, 93720G (2015).
    [Crossref]
  19. M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Optimizing band-edge slow light in silicon-on-insulator waveguide gratings,” Opt. Express 26, 8470–8478 (2018).
    [Crossref]
  20. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [Crossref]
  21. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
    [Crossref]
  22. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [Crossref]
  23. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [Crossref]
  24. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
    [Crossref]
  25. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
    [Crossref]
  26. R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
    [Crossref]
  27. A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
    [Crossref]
  28. T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 024602 (2014).
    [Crossref]
  29. T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light,” J. Lightwave Technol. 33, 3034–3040 (2015).
    [Crossref]
  30. Z.-Y. Li, D.-X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J.-Z. Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Opt. Express 17, 15947–15958 (2009).
    [Crossref]
  31. H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
    [Crossref]
  32. H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
    [Crossref]
  33. D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. L. Roux, D. Bouville, S. Menezo, F. Boeuf, and L. Vivien, “Low loss 40  Gbit/s silicon modulator based on interleaved junctions and fabricated on 300  mm SOI wafers,” Opt. Express 21, 22471–22475 (2013).
    [Crossref]
  34. D. Pérez-Galacho, D. Marris-Morini, R. Stoffer, E. Cassan, C. Baudot, T. Korthorst, F. Boeuf, and L. Vivien, “Simplified modeling and optimization of silicon modulators based on free-carrier plasma dispersion effect,” Opt. Express 24, 26332–26337 (2016).
    [Crossref]
  35. D. Perez-Galacho, C. Baudot, T. Hirtzlin, S. Messaoudène, N. Vulliet, P. Crozat, F. Boeuf, L. Vivien, and D. Marris-Morini, “Low voltage 25  Gbps silicon Mach-Zehnder modulator in the O-band,” Opt. Express 25, 11217–11222 (2017).
    [Crossref]
  36. X. Li, F. Yang, F. Zhong, Q. Deng, J. Michel, and Z. Zhou, “Single-drive high-speed lumped depletion-type modulators toward 10  fJ/bit energy consumption,” Photon. Res. 5, 134–142 (2017).
    [Crossref]
  37. Y. Terada, H. Ito, H. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2, 61 (2014).
    [Crossref]
  38. Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3, 17 (2016).
    [Crossref]
  39. K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photon. Technol. Lett. 28, 1438–1441 (2016).
    [Crossref]
  40. Y. Terada, T. Tatebe, Y. Hinakura, and T. Baba, “Si photonic crystal slow-light modulators with periodic p-n junctions,” J. Lightwave Technol. 35, 1684–1692 (2017).
    [Crossref]
  41. Y. Terada, K. Kondo, R. Abe, and T. Baba, “Full C-band Si photonic crystal waveguide modulator,” Opt. Lett. 42, 5110–5112 (2017).
    [Crossref]
  42. A. Al-Saadi, H. J. Eichler, and S. Meister, “High speed silicon electro-optic modulator with p-i-n comb diode,” Opt. Quantum Electron. 44, 125–131 (2012).
    [Crossref]
  43. S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21, 16210–16221 (2013).
    [Crossref]
  44. S. Kupijai, H. Rhee, A. Al-Saadi, M. Henniges, D. Bronzi, D. Selicke, C. Theiss, S. Otte, H. J. Eichler, U. Woggon, D. Stolarek, H. H. Richter, L. Zimmermann, B. Tillack, and S. Meister, “25  Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator,” J. Lightwave Technol. 34, 2920–2923 (2016).
    [Crossref]
  45. M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Slow light with interleaved p-n junction to enhance performance of integrated Mach-Zehnder silicon modulators,” Nanophotonics 8, 1485–1494 (2019).
    [Crossref]
  46. F. Boeuf, S. Crémer, E. Temporiti, M. Ferè, M. Shaw, C. Baudot, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, H. Petiton, P. Le Maitre, M. Traldi, and L. Maggi, “Silicon photonics R&D and manufacturing on 300-mm wafer platform,” J. Lightwave Technol. 34, 286–295 (2016).
    [Crossref]
  47. M. Pantouvaki, S. A. Srinivasan, Y. Ban, P. De Heyn, P. Verheyen, G. Lepage, H. Chen, J. De Coster, N. Golshani, S. Balakrishnan, P. Absil, and J. Van Campenhout, “Active components for 50  Gb/s NRZ-OOK optical interconnects in a silicon photonics platform,” J. Lightwave Technol. 35, 631–638 (2017).
    [Crossref]
  48. C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
    [Crossref]
  49. P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
    [Crossref]
  50. J. Hugonin, P. Lalanne, I. D. Villar, and I. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
    [Crossref]
  51. W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20, 083002 (2018).
    [Crossref]
  52. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
    [Crossref]
  53. D. Gill, C. Xiong, J. Rosenberg, P. Pepeljugoski, J. Orcutt, and W. Green, “Modulator figure of merit for short reach data links,” Opt. Express 25, 24326–24339 (2017).
    [Crossref]
  54. P. Jean, A. Gervais, S. LaRochelle, and W. Shi, “Slow light in subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 26, 8200108 (2020).
    [Crossref]
  55. S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
    [Crossref]
  56. K. Ashida, M. Okano, T. Yasuda, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36, 4774–4782 (2018).
    [Crossref]

2020 (1)

P. Jean, A. Gervais, S. LaRochelle, and W. Shi, “Slow light in subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 26, 8200108 (2020).
[Crossref]

2019 (2)

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Slow light with interleaved p-n junction to enhance performance of integrated Mach-Zehnder silicon modulators,” Nanophotonics 8, 1485–1494 (2019).
[Crossref]

Y. Hinakura, H. Arai, and T. Baba, “64  Gbps Si photonic crystal slow light modulator by electro-optic phase matching,” Opt. Express 27, 14321–14327 (2019).
[Crossref]

2018 (6)

R. Hosseini, L. Mirzoyan, and K. Jamshidi, “Energy consumption enhancement of reverse-biased silicon-based Mach-Zehnder modulators using corrugated slow light waveguides,” IEEE Photon. J. 10, 8200207 (2018).
[Crossref]

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Optimizing band-edge slow light in silicon-on-insulator waveguide gratings,” Opt. Express 26, 8470–8478 (2018).
[Crossref]

Z. Zhou, R. Chen, X. Li, and T. Li, “Development trends in silicon photonics for data centers,” Opt. Fiber Technol. 44, 13–23 (2018).
[Crossref]

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

K. Ashida, M. Okano, T. Yasuda, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36, 4774–4782 (2018).
[Crossref]

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20, 083002 (2018).
[Crossref]

2017 (6)

2016 (7)

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3, 17 (2016).
[Crossref]

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photon. Technol. Lett. 28, 1438–1441 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
[Crossref]

F. Boeuf, S. Crémer, E. Temporiti, M. Ferè, M. Shaw, C. Baudot, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, H. Petiton, P. Le Maitre, M. Traldi, and L. Maggi, “Silicon photonics R&D and manufacturing on 300-mm wafer platform,” J. Lightwave Technol. 34, 286–295 (2016).
[Crossref]

D. Pérez-Galacho, D. Marris-Morini, R. Stoffer, E. Cassan, C. Baudot, T. Korthorst, F. Boeuf, and L. Vivien, “Simplified modeling and optimization of silicon modulators based on free-carrier plasma dispersion effect,” Opt. Express 24, 26332–26337 (2016).
[Crossref]

S. Kupijai, H. Rhee, A. Al-Saadi, M. Henniges, D. Bronzi, D. Selicke, C. Theiss, S. Otte, H. J. Eichler, U. Woggon, D. Stolarek, H. H. Richter, L. Zimmermann, B. Tillack, and S. Meister, “25  Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator,” J. Lightwave Technol. 34, 2920–2923 (2016).
[Crossref]

2015 (3)

2014 (4)

Y. Terada, H. Ito, H. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2, 61 (2014).
[Crossref]

T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 024602 (2014).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

2013 (4)

2012 (7)

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

A. Al-Saadi, H. J. Eichler, and S. Meister, “High speed silicon electro-optic modulator with p-i-n comb diode,” Opt. Quantum Electron. 44, 125–131 (2012).
[Crossref]

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

D. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
[Crossref]

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

2010 (4)

2009 (1)

2008 (3)

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

2005 (2)

M. Povinelli, S. G. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
[Crossref]

J. Hugonin, P. Lalanne, I. D. Villar, and I. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

2004 (1)

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

2002 (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Aamer, M.

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

Abe, R.

Absil, P.

Akagawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

Akiyama, S.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

Alloatti, L.

Al-Saadi, A.

Andreani, L. C.

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Slow light with interleaved p-n junction to enhance performance of integrated Mach-Zehnder silicon modulators,” Nanophotonics 8, 1485–1494 (2019).
[Crossref]

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Optimizing band-edge slow light in silicon-on-insulator waveguide gratings,” Opt. Express 26, 8470–8478 (2018).
[Crossref]

Arai, H.

Ashida, K.

Baba, T.

Y. Hinakura, H. Arai, and T. Baba, “64  Gbps Si photonic crystal slow light modulator by electro-optic phase matching,” Opt. Express 27, 14321–14327 (2019).
[Crossref]

Y. Terada, T. Tatebe, Y. Hinakura, and T. Baba, “Si photonic crystal slow-light modulators with periodic p-n junctions,” J. Lightwave Technol. 35, 1684–1692 (2017).
[Crossref]

Y. Terada, K. Kondo, R. Abe, and T. Baba, “Full C-band Si photonic crystal waveguide modulator,” Opt. Lett. 42, 5110–5112 (2017).
[Crossref]

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photon. Technol. Lett. 28, 1438–1441 (2016).
[Crossref]

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3, 17 (2016).
[Crossref]

T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light,” J. Lightwave Technol. 33, 3034–3040 (2015).
[Crossref]

Y. Terada, H. Ito, H. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2, 61 (2014).
[Crossref]

T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 024602 (2014).
[Crossref]

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

Baets, R.

Bakir, B. B.

C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo, and B. B. Bakir, “Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI,” Proc. SPIE 9372, 93720G (2015).
[Crossref]

Balakrishnan, S.

Baldi, D.

E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
[Crossref]

Ban, Y.

Bao, C.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

Baudot, C.

Beggs, D. M.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[Crossref]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Boeuf, F.

Bogaerts, W.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Bouville, D.

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Brimont, A.

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti, and A. Brimont, “Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers,” in 14th International Conference on Group IV Photonics (2017), pp. 149–150.

Bronzi, D.

Campenhout, J. V.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Cassan, E.

D. Pérez-Galacho, D. Marris-Morini, R. Stoffer, E. Cassan, C. Baudot, T. Korthorst, F. Boeuf, and L. Vivien, “Simplified modeling and optimization of silicon modulators based on free-carrier plasma dispersion effect,” Opt. Express 24, 26332–26337 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[Crossref]

Catuneanu, M.

R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, and K. Jamshidi, “Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM3B.6.

Cheben, P.

Chen, H.

Chen, L.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

Chen, R.

Z. Zhou, R. Chen, X. Li, and T. Li, “Development trends in silicon photonics for data centers,” Opt. Fiber Technol. 44, 13–23 (2018).
[Crossref]

Chen, S.-W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Chrostowski, L.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

Chu, T.

Crémer, S.

Crozat, P.

De Coster, J.

De Heyn, P.

Delvaux, C.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Deng, Q.

Dumon, P.

Duprez, H.

C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo, and B. B. Bakir, “Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI,” Proc. SPIE 9372, 93720G (2015).
[Crossref]

Eich, M.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

Eichler, H. J.

Ellinger, F.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Fatemi, R.

R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, and K. Jamshidi, “Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM3B.6.

Fedeli, J.

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

Fedeli, J. M.

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. L. Roux, D. Bouville, S. Menezo, F. Boeuf, and L. Vivien, “Low loss 40  Gbit/s silicon modulator based on interleaved junctions and fabricated on 300  mm SOI wafers,” Opt. Express 21, 22471–22475 (2013).
[Crossref]

Ferè, M.

Ferrotti, T.

C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo, and B. B. Bakir, “Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI,” Proc. SPIE 9372, 93720G (2015).
[Crossref]

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Franke, B. A.

Gao, D.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Gerace, D.

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Slow light with interleaved p-n junction to enhance performance of integrated Mach-Zehnder silicon modulators,” Nanophotonics 8, 1485–1494 (2019).
[Crossref]

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Optimizing band-edge slow light in silicon-on-insulator waveguide gratings,” Opt. Express 26, 8470–8478 (2018).
[Crossref]

Gervais, A.

P. Jean, A. Gervais, S. LaRochelle, and W. Shi, “Slow light in subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 26, 8200108 (2020).
[Crossref]

Ghilioni, A.

E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
[Crossref]

Gill, D.

Golshani, N.

Gomez-Iglesias, A.

Green, W.

Gutierrez, A. M.

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

Hajimiri, A.

R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, and K. Jamshidi, “Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM3B.6.

Hao, R.

Harduin, J.

C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo, and B. B. Bakir, “Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI,” Proc. SPIE 9372, 93720G (2015).
[Crossref]

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Hashimoto, S.

T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 024602 (2014).
[Crossref]

Hassan, K.

C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo, and B. B. Bakir, “Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI,” Proc. SPIE 9372, 93720G (2015).
[Crossref]

Henker, R.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Henniges, M.

Hillerkuss, D.

Hinakura, Y.

Hirayama, N.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

Hirtzlin, T.

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

Hojo, K.

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photon. Technol. Lett. 28, 1438–1441 (2016).
[Crossref]

Horikawa, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

Hosseini, R.

R. Hosseini, L. Mirzoyan, and K. Jamshidi, “Energy consumption enhancement of reverse-biased silicon-based Mach-Zehnder modulators using corrugated slow light waveguides,” IEEE Photon. J. 10, 8200207 (2018).
[Crossref]

R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, and K. Jamshidi, “Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM3B.6.

Hou, J.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Hu, Y.

Hugonin, J.

J. Hugonin, P. Lalanne, I. D. Villar, and I. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Hugonin, J. P.

Ibanescu, M.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Imai, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

Ishikura, N.

Ito, H.

Y. Terada, H. Ito, H. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2, 61 (2014).
[Crossref]

Jamshidi, K.

R. Hosseini, L. Mirzoyan, and K. Jamshidi, “Energy consumption enhancement of reverse-biased silicon-based Mach-Zehnder modulators using corrugated slow light waveguides,” IEEE Photon. J. 10, 8200207 (2018).
[Crossref]

R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, and K. Jamshidi, “Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM3B.6.

Janz, S.

Jean, P.

P. Jean, A. Gervais, S. LaRochelle, and W. Shi, “Slow light in subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 26, 8200108 (2020).
[Crossref]

Joannopoulos, J.

Joannopoulos, J. D.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Johnson, S. G.

M. Povinelli, S. G. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
[Crossref]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Khachaturian, A.

R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, and K. Jamshidi, “Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM3B.6.

Khanh, V. D.

Khial, P. P.

R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, and K. Jamshidi, “Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM3B.6.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Komorowska, K.

Kondo, K.

Korn, D.

Korthorst, T.

Koshino, K.

K. Ashida, M. Okano, T. Yasuda, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36, 4774–4782 (2018).
[Crossref]

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

Krauss, T. F.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[Crossref]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[Crossref]

Kuipers, L.

Kupijai, S.

Lalanne, P.

Lallas, E. N.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Lapointe, J.

LaRochelle, S.

P. Jean, A. Gervais, S. LaRochelle, and W. Shi, “Slow light in subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 26, 8200108 (2020).
[Crossref]

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20, 083002 (2018).
[Crossref]

Le Maitre, P.

Lepage, G.

M. Pantouvaki, S. A. Srinivasan, Y. Ban, P. De Heyn, P. Verheyen, G. Lepage, H. Chen, J. De Coster, N. Golshani, S. Balakrishnan, P. Absil, and J. Van Campenhout, “Active components for 50  Gb/s NRZ-OOK optical interconnects in a silicon photonics platform,” J. Lightwave Technol. 35, 631–638 (2017).
[Crossref]

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Leuthold, J.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Li, J.

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Li, T.

Z. Zhou, R. Chen, X. Li, and T. Li, “Development trends in silicon photonics for data centers,” Opt. Fiber Technol. 44, 13–23 (2018).
[Crossref]

Li, X.

Li, Y.

Li, Z.

Li, Z.-Y.

Locorotondo, S.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Maggi, L.

Marris-Morini, D.

Marti, J.

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti, and A. Brimont, “Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers,” in 14th International Conference on Group IV Photonics (2017), pp. 149–150.

Martí, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Masini, G.

Matias, I.

J. Hugonin, P. Lalanne, I. D. Villar, and I. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Mazoyer, S.

McKinnon, W. R.

Meister, S.

Mekis, A.

Melloni, A.

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[Crossref]

Menezo, S.

Messaoudène, S.

Michel, J.

Milenin, A.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Miller, D.

Minoia, G.

E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
[Crossref]

Mirzoyan, L.

R. Hosseini, L. Mirzoyan, and K. Jamshidi, “Energy consumption enhancement of reverse-biased silicon-based Mach-Zehnder modulators using corrugated slow light waveguides,” IEEE Photon. J. 10, 8200207 (2018).
[Crossref]

Morichetti, F.

Murdoch, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Neumann, N.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Nguyen, H.

Y. Terada, H. Ito, H. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2, 61 (2014).
[Crossref]

Nguyen, H. C.

T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 024602 (2014).
[Crossref]

Noguchi, Y.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

O’Faolain, L.

Offrein, B. J.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Ohtsuka, M.

Okano, M.

Olivier, S.

Ong, P.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Opheij, A.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

Orcutt, J.

Oriol, A.

A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti, and A. Brimont, “Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers,” in 14th International Conference on Group IV Photonics (2017), pp. 149–150.

Orlandi, P.

E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
[Crossref]

Otte, S.

Painchaud, Y.

Pantouvaki, M.

Passoni, M.

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Slow light with interleaved p-n junction to enhance performance of integrated Mach-Zehnder silicon modulators,” Nanophotonics 8, 1485–1494 (2019).
[Crossref]

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Optimizing band-edge slow light in silicon-on-insulator waveguide gratings,” Opt. Express 26, 8470–8478 (2018).
[Crossref]

Pathak, S.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Pepeljugoski, P.

Perez-Galacho, D.

Pérez-Galacho, D.

Petiton, H.

Petrov, A. Y.

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

Picard, M.-J.

Pinguet, T.

Plettemeier, D.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Povinelli, M.

Rasigade, G.

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Repossi, M.

E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
[Crossref]

Rey, I. H.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

Rhee, H.

Richter, H. H.

Rivallin, P.

Rosa, A.

A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti, and A. Brimont, “Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers,” in 14th International Conference on Group IV Photonics (2017), pp. 149–150.

Rosenberg, J.

Rotenberg, N.

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

Roux, X. L.

Rusch, L. A.

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20, 083002 (2018).
[Crossref]

Sanchis, P.

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti, and A. Brimont, “Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers,” in 14th International Conference on Group IV Photonics (2017), pp. 149–150.

Schares, L.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Schmid, J. H.

Schneider, T.

Schulz, S. A.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[Crossref]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

Sciancalepore, C.

C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo, and B. B. Bakir, “Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI,” Proc. SPIE 9372, 93720G (2015).
[Crossref]

Seki, M.

K. Ashida, M. Okano, T. Yasuda, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36, 4774–4782 (2018).
[Crossref]

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

Selicke, D.

Selvaraja, S. K.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Sepehrian, H.

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20, 083002 (2018).
[Crossref]

Shaw, M.

Shi, W.

P. Jean, A. Gervais, S. LaRochelle, and W. Shi, “Slow light in subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 26, 8200108 (2020).
[Crossref]

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20, 083002 (2018).
[Crossref]

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Souhaité, A.

Spasenovic, M.

Srinivasan, S. A.

Sterckx, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Stoffer, R.

Stolarek, D.

Svelto, F.

E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
[Crossref]

Takahashi, Y.

Tamura, T.

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3, 17 (2016).
[Crossref]

T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light,” J. Lightwave Technol. 33, 3034–3040 (2015).
[Crossref]

Tatebe, T.

Temporiti, E.

F. Boeuf, S. Crémer, E. Temporiti, M. Ferè, M. Shaw, C. Baudot, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, H. Petiton, P. Le Maitre, M. Traldi, and L. Maggi, “Silicon photonics R&D and manufacturing on 300-mm wafer platform,” J. Lightwave Technol. 34, 286–295 (2016).
[Crossref]

E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
[Crossref]

Terada, Y.

Y. Terada, K. Kondo, R. Abe, and T. Baba, “Full C-band Si photonic crystal waveguide modulator,” Opt. Lett. 42, 5110–5112 (2017).
[Crossref]

Y. Terada, T. Tatebe, Y. Hinakura, and T. Baba, “Si photonic crystal slow-light modulators with periodic p-n junctions,” J. Lightwave Technol. 35, 1684–1692 (2017).
[Crossref]

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photon. Technol. Lett. 28, 1438–1441 (2016).
[Crossref]

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3, 17 (2016).
[Crossref]

T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light,” J. Lightwave Technol. 33, 3034–3040 (2015).
[Crossref]

Y. Terada, H. Ito, H. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2, 61 (2014).
[Crossref]

T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 024602 (2014).
[Crossref]

Theiss, C.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

Thourhout, D. V.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Thraskias, C. A.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Tian, H.

Tillack, B.

Tomkos, I.

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Toyama, M.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

Traldi, M.

Usuki, T.

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

Vachon, M.

Van Campenhout, J.

Verheyen, P.

Villar, I. D.

J. Hugonin, P. Lalanne, I. D. Villar, and I. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Vivien, L.

Vulliet, N.

Wang, S.

Watanabe, T.

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photon. Technol. Lett. 28, 1438–1441 (2016).
[Crossref]

T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 024602 (2014).
[Crossref]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

White, T. P.

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Winroth, G.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Woggon, U.

Wu, H.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

Xiao, X.

Xie, W.

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Xiong, C.

Xu, D.-X.

Xu, H.

Xu, Y.

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20, 083002 (2018).
[Crossref]

Yamada, K.

Yang, F.

Yasuda, T.

Yazawa, N.

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photon. Technol. Lett. 28, 1438–1441 (2016).
[Crossref]

T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 024602 (2014).
[Crossref]

Yokoyama, N.

Yu, H.

Yu, J.

Yu, J.-Z.

Yu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[Crossref]

Zanzi, A.

A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti, and A. Brimont, “Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers,” in 14th International Conference on Group IV Photonics (2017), pp. 149–150.

Zhang, X.

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[Crossref]

Zhong, F.

Zhou, Z.

Ziebell, M.

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

Zimmermann, L.

Appl. Phys. Lett. (1)

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

Commun. Surveys Tuts. (1)

C. A. Thraskias, E. N. Lallas, N. Neumann, L. Schares, B. J. Offrein, R. Henker, D. Plettemeier, F. Ellinger, J. Leuthold, and I. Tomkos, “Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications,” Commun. Surveys Tuts. 20, 2758–2783 (2018).
[Crossref]

Front. Phys. (1)

Y. Terada, H. Ito, H. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2, 61 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama, Y. Noguchi, M. Seki, K. Koshino, M. Toyama, T. Horikawa, and T. Usuki, “Compact pin-diode-based silicon modulator using side-wall-grating waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 74–84 (2013).
[Crossref]

P. Jean, A. Gervais, S. LaRochelle, and W. Shi, “Slow light in subwavelength grating waveguides,” IEEE J. Sel. Top. Quantum Electron. 26, 8200108 (2020).
[Crossref]

IEEE J. Solid-State Circuits (1)

E. Temporiti, A. Ghilioni, G. Minoia, P. Orlandi, M. Repossi, D. Baldi, and F. Svelto, “Insights into silicon photonics Mach-Zehnder-based optical transmitter architectures,” IEEE J. Solid-State Circuits 51, 3178–3191 (2016).
[Crossref]

IEEE Photon. J. (2)

A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J. Fedeli, G. T. Reed, J. Marti, and P. Sanchis, “Slow-light-enhanced silicon optical modulators under low-drive-voltage operation,” IEEE Photon. J. 4, 1306–1315 (2012).
[Crossref]

R. Hosseini, L. Mirzoyan, and K. Jamshidi, “Energy consumption enhancement of reverse-biased silicon-based Mach-Zehnder modulators using corrugated slow light waveguides,” IEEE Photon. J. 10, 8200207 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (2)

K. Hojo, Y. Terada, N. Yazawa, T. Watanabe, and T. Baba, “Compact QPSK and PAM modulators with Si photonic crystal slow-light phase shifters,” IEEE Photon. Technol. Lett. 28, 1438–1441 (2016).
[Crossref]

C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett. 24, 7–9 (2012).
[Crossref]

J. Lightwave Technol. (6)

M. Pantouvaki, S. A. Srinivasan, Y. Ban, P. De Heyn, P. Verheyen, G. Lepage, H. Chen, J. De Coster, N. Golshani, S. Balakrishnan, P. Absil, and J. Van Campenhout, “Active components for 50  Gb/s NRZ-OOK optical interconnects in a silicon photonics platform,” J. Lightwave Technol. 35, 631–638 (2017).
[Crossref]

Y. Terada, T. Tatebe, Y. Hinakura, and T. Baba, “Si photonic crystal slow-light modulators with periodic p-n junctions,” J. Lightwave Technol. 35, 1684–1692 (2017).
[Crossref]

T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light,” J. Lightwave Technol. 33, 3034–3040 (2015).
[Crossref]

F. Boeuf, S. Crémer, E. Temporiti, M. Ferè, M. Shaw, C. Baudot, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, H. Petiton, P. Le Maitre, M. Traldi, and L. Maggi, “Silicon photonics R&D and manufacturing on 300-mm wafer platform,” J. Lightwave Technol. 34, 286–295 (2016).
[Crossref]

S. Kupijai, H. Rhee, A. Al-Saadi, M. Henniges, D. Bronzi, D. Selicke, C. Theiss, S. Otte, H. J. Eichler, U. Woggon, D. Stolarek, H. H. Richter, L. Zimmermann, B. Tillack, and S. Meister, “25  Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator,” J. Lightwave Technol. 34, 2920–2923 (2016).
[Crossref]

K. Ashida, M. Okano, T. Yasuda, M. Ohtsuka, M. Seki, N. Yokoyama, K. Koshino, K. Yamada, and Y. Takahashi, “Photonic crystal nanocavities with an average Q factor of 1.9 million fabricated on a 300-mm-wide SOI wafer using a CMOS-compatible process,” J. Lightwave Technol. 36, 4774–4782 (2018).
[Crossref]

J. Opt. (3)

W. Shi, Y. Xu, H. Sepehrian, S. LaRochelle, and L. A. Rusch, “Silicon photonic modulators for PAM transmissions,” J. Opt. 20, 083002 (2018).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18, 073003 (2016).
[Crossref]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[Crossref]

Nanophotonics (2)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Yu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Slow light with interleaved p-n junction to enhance performance of integrated Mach-Zehnder silicon modulators,” Nanophotonics 8, 1485–1494 (2019).
[Crossref]

Nat. Photonics (3)

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Opt. Express (16)

M. Povinelli, S. G. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

Z.-Y. Li, D.-X. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J.-Z. Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Opt. Express 17, 15947–15958 (2009).
[Crossref]

R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[Crossref]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

D. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[Crossref]

Y. Hinakura, H. Arai, and T. Baba, “64  Gbps Si photonic crystal slow light modulator by electro-optic phase matching,” Opt. Express 27, 14321–14327 (2019).
[Crossref]

D. Pérez-Galacho, D. Marris-Morini, R. Stoffer, E. Cassan, C. Baudot, T. Korthorst, F. Boeuf, and L. Vivien, “Simplified modeling and optimization of silicon modulators based on free-carrier plasma dispersion effect,” Opt. Express 24, 26332–26337 (2016).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23, 22553–22563 (2015).
[Crossref]

S. Meister, H. Rhee, A. Al-Saadi, B. A. Franke, S. Kupijai, C. Theiss, L. Zimmermann, B. Tillack, H. H. Richter, H. Tian, D. Stolarek, T. Schneider, U. Woggon, and H. J. Eichler, “Matching p-i-n-junctions and optical modes enables fast and ultra-small silicon modulators,” Opt. Express 21, 16210–16221 (2013).
[Crossref]

D. Marris-Morini, C. Baudot, J.-M. Fédéli, G. Rasigade, N. Vulliet, A. Souhaité, M. Ziebell, P. Rivallin, S. Olivier, P. Crozat, X. L. Roux, D. Bouville, S. Menezo, F. Boeuf, and L. Vivien, “Low loss 40  Gbit/s silicon modulator based on interleaved junctions and fabricated on 300  mm SOI wafers,” Opt. Express 21, 22471–22475 (2013).
[Crossref]

D. Perez-Galacho, C. Baudot, T. Hirtzlin, S. Messaoudène, N. Vulliet, P. Crozat, F. Boeuf, L. Vivien, and D. Marris-Morini, “Low voltage 25  Gbps silicon Mach-Zehnder modulator in the O-band,” Opt. Express 25, 11217–11222 (2017).
[Crossref]

D. Gill, C. Xiong, J. Rosenberg, P. Pepeljugoski, J. Orcutt, and W. Green, “Modulator figure of merit for short reach data links,” Opt. Express 25, 24326–24339 (2017).
[Crossref]

M. Passoni, D. Gerace, L. O’Faolain, and L. C. Andreani, “Optimizing band-edge slow light in silicon-on-insulator waveguide gratings,” Opt. Express 26, 8470–8478 (2018).
[Crossref]

Opt. Fiber Technol. (1)

Z. Zhou, R. Chen, X. Li, and T. Li, “Development trends in silicon photonics for data centers,” Opt. Fiber Technol. 44, 13–23 (2018).
[Crossref]

Opt. Lett. (2)

Opt. Quantum Electron. (2)

J. Hugonin, P. Lalanne, I. D. Villar, and I. Matias, “Fourier modal methods for modeling optical dielectric waveguides,” Opt. Quantum Electron. 37, 107–119 (2005).
[Crossref]

A. Al-Saadi, H. J. Eichler, and S. Meister, “High speed silicon electro-optic modulator with p-i-n comb diode,” Opt. Quantum Electron. 44, 125–131 (2012).
[Crossref]

Photon. Res. (1)

Photonics (1)

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3, 17 (2016).
[Crossref]

Phys. Rev. E (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Proc. SPIE (2)

C. Sciancalepore, K. Hassan, T. Ferrotti, J. Harduin, H. Duprez, S. Menezo, and B. B. Bakir, “Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI,” Proc. SPIE 9372, 93720G (2015).
[Crossref]

S. K. Selvaraja, G. Winroth, S. Locorotondo, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, W. Xie, G. Sterckx, G. Lepage, D. V. Thourhout, W. Bogaerts, J. V. Campenhout, and P. Absil, “193 nm immersion lithography for high-performance silicon photonic circuits,” Proc. SPIE 9052, 90520F (2014).
[Crossref]

Sci. Rep. (1)

A. Opheij, N. Rotenberg, D. M. Beggs, I. H. Rey, T. F. Krauss, and L. Kuipers, “Ultracompact (3  μm) silicon slow-light optical modulator,” Sci. Rep. 3, 3546 (2013).
[Crossref]

Sci. Technol. Adv. Mater. (1)

T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, “Slow-light Mach-Zehnder modulators based on Si photonic crystals,” Sci. Technol. Adv. Mater. 15, 024602 (2014).
[Crossref]

Other (3)

A. Zanzi, A. Rosa, A. Oriol, P. Sanchis, J. Marti, and A. Brimont, “Advanced high speed slow-light silicon modulators in the O-band for low power optical interconnects in data centers,” in 14th International Conference on Group IV Photonics (2017), pp. 149–150.

R. Hosseini, A. Khachaturian, M. Cătuneanu, P. P. Khial, R. Fatemi, A. Hajimiri, and K. Jamshidi, “Compact, high extinction ratio silicon Mach-Zehnder modulator with corrugated waveguides,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2018), paper SM3B.6.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of the slow-light waveguide with definition of the structure (a) in 3D and (b) in top view with grating parameters and (c) doping profiles. The silicon material in (a) and (b) (orange) is fully embedded in SiO2 (gray). In panel (c), the boundary between p and n regions, which is perpendicular to the waveguide axis, can be either placed at the center of the wide grating section (left part) or displaced along the waveguide direction by the parameter Off (right part).
Fig. 2.
Fig. 2. Group index (left scale) and propagation loss per unit length at zero bias (right scale) as a function of wavelength. Parameters: see discussion in Section 2, in particular Wi=0.6  μm, N=P=8×1017  cm3, Off=0.
Fig. 3.
Fig. 3. (a) Capacitance per unit length (left scale) and resistance times length (right scale). (b) 3 dB cutoff frequency as a function of reverse voltage. Parameters: see discussion in Section 2, in particular Wi=0.6  μm, N=P=8×1017  cm3, Off=0.
Fig. 4.
Fig. 4. (Upper panels) VπLπ, (lower panels) IL(Lπ) for phase shifters in four different configurations (see text).
Fig. 5.
Fig. 5. (a), (b) Charge densities for V=0  V or V=1  V, respectively. (c) Difference in charge density from 0 to 1 V. (d) Electric field (modulus) at λ=1.315  μm. The values are taken at a height of 155 nm from the bottom of the waveguide and span one period a=0.234  μm along the propagation direction z.
Fig. 6.
Fig. 6. (a) Schematic structure of a Mach–Zehnder interferometer and (b) output power as a function of the phase difference between the arms (with definition of the quadrature working point): solid, Pout, dashed, P¯out.
Fig. 7.
Fig. 7. (a) Transmission spectrum and (b) extinction ratio and total loss of an MZ modulator with length 0.5 mm and bias 1 V.
Fig. 8.
Fig. 8. Normalized OMA as a function of wavelength for different modulator lengths and applied voltages.
Fig. 9.
Fig. 9. Minimum normalized OMA level as a function of modulator length, for different bandwidths (bw) and applied voltages. Upper panels: slow-light waveguide with interleaved p-n junction. Lower panels: rib waveguide with interleaved p-n junction, notice that the three curves with bw=10, 20, 30 nm are coincident. The upper scale of the x axis represents the dissipated energy per bit, calculated as Ebit=CV2/2, where the capacitance is proportional to the modulator length.
Fig. 10.
Fig. 10. (a) Normalized OMA as a function of wavelength for an L=0.5  mm modulator. (b) Minimum normalized OMA level as a function of modulator length for 10 nm bandwidth, for different values of the additional disorder-induced loss. The upper x scale in (b) represents the dissipated energy per bit, as in Fig. 9. The reverse applied voltage is V=1  V.
Fig. 11.
Fig. 11. Various figures of merit: capacitance per unit length, resistance times length, 3 dB cutoff frequency, VπLπ and IL(Lπ) at λ=1.315  μm. The quantities are plotted as a function of doping level at fixed modulation width Wi=0.6  μm and offset Off=0 (left panels), as a function of modulation width at fixed doping N=P=8×1017  cm3 and offset Off=0 (central panels), as a function of offset at fixed doping N=P=8×1017  cm3 and modulation width Wi=0.6  μm (right panels). Green lines and symbols: V=0  V. Black lines and symbols: V=1  V. Red lines and symbols: V=2  V. Blue lines and symbols: V=3  V.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δn=3.64×1010λ2N3.51×106λ2P0.8,
Δκ=2.80×105λ3N+1.91×105λ3P,
Δϕ(V)=LdkdωΔω(V).
Δω=ω02|E(r)|2Δε(r)dr|E(r)|2ε(r)dr,
Pout=Pmaxcos2(Δϕ2),
P¯out=Pmaxsin2(Δϕ2),
OMA=PineαLV·LVπLπ,
Ebit=12CV2,