Abstract

Herein we propose a novel strategy to enhance surface plasmon resonance (SPR) by introducing a photonic cavity into a total-internal-reflection architecture. The photonic cavity, which is comprised of a highly reflective photonic crystal (PC), defect layers, and a gold (Au) film, enables Fabry–Perot (FP) resonances in the defect layers and therefore narrows the SPR resonance width in the metallic surface as well as increases the electric field intensity and penetration depth in the evanescent region. The fabricated sensor exhibits a 5.7-fold increase in the figure of merit and a higher linear coefficient as compared with the conventional Au-SPR sensor. The demonstrated PC/FP cavity/metal structure presents a new design philosophy for SPR performance enhancement.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Side-polished few-mode fiber based surface plasmon resonance biosensor

Jiangli Dong, Yaxin Zhang, Yajun Wang, Fan Yang, Shiqi Hu, Yaofei Chen, Wenguo Zhu, Wentao Qiu, Heyuan Guan, Huihui Lu, Jianhui Yu, Yongchun Zhong, Jun Zhang, Yunhan Luo, and Zhe Chen
Opt. Express 27(8) 11348-11360 (2019)

Sensitivity enhancement of a graphene–barium titanate-based surface plasmon resonance biosensor with an Ag–Au bimetallic structure in the visible region

Lili Liu, Mei Wang, Lipeng Jiao, Ting Wu, Feng Xia, Meijie Liu, Weijin Kong, Lifeng Dong, and Maojin Yun
J. Opt. Soc. Am. B 36(4) 1108-1116 (2019)

Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles

S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee
Opt. Lett. 29(12) 1390-1392 (2004)

References

  • View by:
  • |
  • |
  • |

  1. E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
    [Crossref]
  2. O. Tabasi and C. Falamaki, “Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors,” Anal. Meth. 10, 3906–3925 (2018).
    [Crossref]
  3. L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10, 213–239 (2015).
    [Crossref]
  4. M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, and M. D. Walkinshaw, “A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A,” Anal. Biochem. 345, 214–226 (2005).
    [Crossref]
  5. S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
    [Crossref]
  6. S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491 (2011).
    [Crossref]
  7. Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, and C.-C. Huang, “Colorimetric assay for lead ions based on the leaching of gold nanoparticles,” Anal. Chem. 81, 9433–9439 (2009).
    [Crossref]
  8. S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21, 115202 (2010).
    [Crossref]
  9. A. Lahav, A. Shalabaney, and I. S. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J. Nanophoton. 3, 031501 (2009).
    [Crossref]
  10. R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 81–88 (2017).
    [Crossref]
  11. H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
    [Crossref]
  12. M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
    [Crossref]
  13. Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
    [Crossref]
  14. H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
    [Crossref]
  15. S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
    [Crossref]
  16. R. B. Schasfoort, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2017).
  17. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
    [Crossref]
  18. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
    [Crossref]
  19. B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
    [Crossref]
  20. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
    [Crossref]
  21. M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit,” ACS Nano 9, 7621–7633 (2015).
    [Crossref]
  22. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
    [Crossref]
  23. R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).
    [Crossref]
  24. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
    [Crossref]
  25. A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113, 263902 (2014).
    [Crossref]
  26. Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
    [Crossref]
  27. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
    [Crossref]
  28. H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
    [Crossref]
  29. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
    [Crossref]
  30. Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
    [Crossref]
  31. X. Zhang, X.-S. Zhu, and Y.-W. Shi, “Improving the performance of hollow fiber surface plasssmon resonance sensor with one dimensional photonic crystal structure,” Opt. Express 26, 130–140 (2018).
    [Crossref]
  32. V. Konopsky, “Long-range surface plasmon amplification with current injection on a one-dimensional photonic crystal surface,” Opt. Lett. 40, 2261–2264 (2015).
    [Crossref]
  33. A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
    [Crossref]
  34. V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
    [Crossref]
  35. K. Meradi, F. Tayeboun, and F. Benkabou, “Surface plasmon sensor based on a dual dielectric–silver photonic crystal,” J. Russ. Laser Res. 37, 180–184 (2016).
    [Crossref]
  36. J. Y. Ye and M. Ishikawa, “Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration,” Opt. Lett. 33, 1729–1731 (2008).
    [Crossref]
  37. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [Crossref]
  38. V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B 174, 94–101 (2012).
    [Crossref]
  39. Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, “Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film,” Sensors 17, 1846 (2017).
    [Crossref]
  40. R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).
    [Crossref]
  41. J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
    [Crossref]
  42. B. Choi, X. Dou, Y. Fang, B. M. Phillips, and P. Jiang, “Outstanding surface plasmon resonance performance enabled by templated oxide gratings,” Phys. Chem. Chem. Phys. 18, 26078–26087 (2016).
    [Crossref]
  43. A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
    [Crossref]
  44. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
    [Crossref]
  45. Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
    [Crossref]
  46. X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
    [Crossref]

2019 (1)

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

2018 (7)

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

O. Tabasi and C. Falamaki, “Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors,” Anal. Meth. 10, 3906–3925 (2018).
[Crossref]

A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
[Crossref]

X. Zhang, X.-S. Zhu, and Y.-W. Shi, “Improving the performance of hollow fiber surface plasssmon resonance sensor with one dimensional photonic crystal structure,” Opt. Express 26, 130–140 (2018).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

2017 (4)

Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, “Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film,” Sensors 17, 1846 (2017).
[Crossref]

V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 81–88 (2017).
[Crossref]

2016 (6)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

K. Meradi, F. Tayeboun, and F. Benkabou, “Surface plasmon sensor based on a dual dielectric–silver photonic crystal,” J. Russ. Laser Res. 37, 180–184 (2016).
[Crossref]

R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).
[Crossref]

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

B. Choi, X. Dou, Y. Fang, B. M. Phillips, and P. Jiang, “Outstanding surface plasmon resonance performance enabled by templated oxide gratings,” Phys. Chem. Chem. Phys. 18, 26078–26087 (2016).
[Crossref]

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

2015 (6)

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

V. Konopsky, “Long-range surface plasmon amplification with current injection on a one-dimensional photonic crystal surface,” Opt. Lett. 40, 2261–2264 (2015).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit,” ACS Nano 9, 7621–7633 (2015).
[Crossref]

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10, 213–239 (2015).
[Crossref]

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

2014 (3)

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113, 263902 (2014).
[Crossref]

Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
[Crossref]

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

2013 (4)

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[Crossref]

2012 (1)

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B 174, 94–101 (2012).
[Crossref]

2011 (2)

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491 (2011).
[Crossref]

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

2010 (3)

S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21, 115202 (2010).
[Crossref]

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

2009 (3)

A. Lahav, A. Shalabaney, and I. S. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J. Nanophoton. 3, 031501 (2009).
[Crossref]

Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, and C.-C. Huang, “Colorimetric assay for lead ions based on the leaching of gold nanoparticles,” Anal. Chem. 81, 9433–9439 (2009).
[Crossref]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[Crossref]

2008 (1)

2005 (1)

M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, and M. D. Walkinshaw, “A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A,” Anal. Biochem. 345, 214–226 (2005).
[Crossref]

2003 (2)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[Crossref]

1998 (1)

Abasahl, B.

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit,” ACS Nano 9, 7621–7633 (2015).
[Crossref]

Abdulhalim, I. S.

A. Lahav, A. Shalabaney, and I. S. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J. Nanophoton. 3, 031501 (2009).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Ameling, R.

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Anderson, T.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Bahramipanah, M.

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit,” ACS Nano 9, 7621–7633 (2015).
[Crossref]

Baillargeat, D.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

Baker, J. J. R.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
[Crossref]

Benkabou, F.

K. Meradi, F. Tayeboun, and F. Benkabou, “Surface plasmon sensor based on a dual dielectric–silver photonic crystal,” J. Russ. Laser Res. 37, 180–184 (2016).
[Crossref]

Boukherroub, R.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

Braun, P. V.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Cao, S.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

Caucheteur, C.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Chabot, V.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B 174, 94–101 (2012).
[Crossref]

Chanda, D.

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113, 263902 (2014).
[Crossref]

Chang, H.-T.

Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, and C.-C. Huang, “Colorimetric assay for lead ions based on the leaching of gold nanoparticles,” Anal. Chem. 81, 9433–9439 (2009).
[Crossref]

Charette, P. G.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B 174, 94–101 (2012).
[Crossref]

Chen, H.

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[Crossref]

Chen, P.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10, 213–239 (2015).
[Crossref]

Chen, Q.-D.

Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
[Crossref]

Chen, S.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Chen, S.-J.

Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, “Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film,” Sensors 17, 1846 (2017).
[Crossref]

Chen, Y.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

Chen, Y.-Y.

Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, and C.-C. Huang, “Colorimetric assay for lead ions based on the leaching of gold nanoparticles,” Anal. Chem. 81, 9433–9439 (2009).
[Crossref]

Chen, Z.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Chen, Z.-Y.

Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, “Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film,” Sensors 17, 1846 (2017).
[Crossref]

Chiang, C.-K.

Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, and C.-C. Huang, “Colorimetric assay for lead ions based on the leaching of gold nanoparticles,” Anal. Chem. 81, 9433–9439 (2009).
[Crossref]

Chiavaioli, F.

A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
[Crossref]

Cho, N.-J.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10, 213–239 (2015).
[Crossref]

Choi, B.

B. Choi, X. Dou, Y. Fang, B. M. Phillips, and P. Jiang, “Outstanding surface plasmon resonance performance enabled by templated oxide gratings,” Phys. Chem. Chem. Phys. 18, 26078–26087 (2016).
[Crossref]

Coquet, P.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Danz, N.

A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
[Crossref]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

Ding, Y.-C.

Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, “Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film,” Sensors 17, 1846 (2017).
[Crossref]

Dinh, X.-Q.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491 (2011).
[Crossref]

Divin, C.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
[Crossref]

Dong, J.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Dou, X.

B. Choi, X. Dou, Y. Fang, B. M. Phillips, and P. Jiang, “Outstanding surface plasmon resonance performance enabled by templated oxide gratings,” Phys. Chem. Chem. Phys. 18, 26078–26087 (2016).
[Crossref]

Du, J.-L.

Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
[Crossref]

Du, Q. Q.

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

Dunsmore, C.

M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, and M. D. Walkinshaw, “A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A,” Anal. Biochem. 345, 214–226 (2005).
[Crossref]

Dutta-Gupta, S.

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit,” ACS Nano 9, 7621–7633 (2015).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

Falamaki, C.

O. Tabasi and C. Falamaki, “Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors,” Anal. Meth. 10, 3906–3925 (2018).
[Crossref]

Fan, S.

Fang, Y.

B. Choi, X. Dou, Y. Fang, B. M. Phillips, and P. Jiang, “Outstanding surface plasmon resonance performance enabled by templated oxide gratings,” Phys. Chem. Chem. Phys. 18, 26078–26087 (2016).
[Crossref]

Fink, Y.

Franklin, D.

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113, 263902 (2014).
[Crossref]

Fu, C.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

Gao, S.

Gao, X. X.

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

Giessen, H.

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Grandbois, M.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B 174, 94–101 (2012).
[Crossref]

Guan, H.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Guo, L.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10, 213–239 (2015).
[Crossref]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

Guo, Y.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
[Crossref]

Gupta, B. D.

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 81–88 (2017).
[Crossref]

R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).
[Crossref]

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21, 115202 (2010).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

Habraken, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

Hao, Y.-W.

Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
[Crossref]

Hastanin, J.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

He, M.

He, R.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Hentschel, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

Ho, H.-P.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[Crossref]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

Hu, R.

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

Hu, S.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Huang, B.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
[Crossref]

Huang, C.-C.

Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, and C.-C. Huang, “Colorimetric assay for lead ions based on the leaching of gold nanoparticles,” Anal. Chem. 81, 9433–9439 (2009).
[Crossref]

Huang, T.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Hung, Y.-L.

Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, and C.-C. Huang, “Colorimetric assay for lead ions based on the leaching of gold nanoparticles,” Anal. Chem. 81, 9433–9439 (2009).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

Ishikawa, M.

Jackman, J. A.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10, 213–239 (2015).
[Crossref]

Jiang, H.

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[Crossref]

Jiang, P.

B. Choi, X. Dou, Y. Fang, B. M. Phillips, and P. Jiang, “Outstanding surface plasmon resonance performance enabled by templated oxide gratings,” Phys. Chem. Chem. Phys. 18, 26078–26087 (2016).
[Crossref]

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Jiang, Z.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Joannopoulos, J. D.

Kim, D.-H.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10, 213–239 (2015).
[Crossref]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Klimov, V. V.

V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]

Konopsky, V.

Lahav, A.

A. Lahav, A. Shalabaney, and I. S. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J. Nanophoton. 3, 031501 (2009).
[Crossref]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Law, W.-C.

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

Lenaerts, C.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

Li, H.

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[Crossref]

Li, S. H.

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

Li, Z.

Lian, J.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

Liao, C.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

Lienau, C.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Lin, C.-Y.

Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, “Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film,” Sensors 17, 1846 (2017).
[Crossref]

Lin, H.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Liu, B.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Liu, M.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Liu, S.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Liu, W.

Lu, H.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Luan, F.

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491 (2011).
[Crossref]

Luo, Y.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Malone, K.

M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, and M. D. Walkinshaw, “A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A,” Anal. Biochem. 345, 214–226 (2005).
[Crossref]

Mantovani, D.

A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
[Crossref]

Maricot, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

Martin, O. J. F.

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit,” ACS Nano 9, 7621–7633 (2015).
[Crossref]

Meng, Q.-Q.

Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, “Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film,” Sensors 17, 1846 (2017).
[Crossref]

Meng, X.-M.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Meradi, K.

K. Meradi, F. Tayeboun, and F. Benkabou, “Surface plasmon sensor based on a dual dielectric–silver photonic crystal,” J. Russ. Laser Res. 37, 180–184 (2016).
[Crossref]

Mesch, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Michelotti, F.

A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
[Crossref]

Miron, Y.

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B 174, 94–101 (2012).
[Crossref]

Mishra, A. K.

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

Mishra, S. K.

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

Modak, S.

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113, 263902 (2014).
[Crossref]

Montaño-Machado, V.

A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
[Crossref]

Munzert, P.

A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
[Crossref]

Norris, T. B.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
[Crossref]

Patterson, A.

M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, and M. D. Walkinshaw, “A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A,” Anal. Biochem. 345, 214–226 (2005).
[Crossref]

Pavlov, A. A.

V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]

Phillips, B. M.

B. Choi, X. Dou, Y. Fang, B. M. Phillips, and P. Jiang, “Outstanding surface plasmon resonance performance enabled by templated oxide gratings,” Phys. Chem. Chem. Phys. 18, 26078–26087 (2016).
[Crossref]

Piliarik, M.

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Qiu, W.

Ren, B.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Roy, I.

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491 (2011).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Safaei, A.

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113, 263902 (2014).
[Crossref]

Schasfoort, R. B.

R. B. Schasfoort, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2017).

Shalabaney, A.

A. Lahav, A. Shalabaney, and I. S. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J. Nanophoton. 3, 031501 (2009).
[Crossref]

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Shi, Y.-W.

Shiang, Y.-C.

Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, and C.-C. Huang, “Colorimetric assay for lead ions based on the leaching of gold nanoparticles,” Anal. Chem. 81, 9433–9439 (2009).
[Crossref]

Singh, S.

S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21, 115202 (2010).
[Crossref]

Sinibaldi, A.

A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
[Crossref]

Song, D.

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

Sun, H.-B.

Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
[Crossref]

Sun, Y.

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[Crossref]

Szunerits, S.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

Tabasi, O.

O. Tabasi and C. Falamaki, “Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors,” Anal. Meth. 10, 3906–3925 (2018).
[Crossref]

Tabassum, R.

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 81–88 (2017).
[Crossref]

R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).
[Crossref]

Tang, J.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Tayeboun, F.

K. Meradi, F. Tayeboun, and F. Benkabou, “Surface plasmon sensor based on a dual dielectric–silver photonic crystal,” J. Russ. Laser Res. 37, 180–184 (2016).
[Crossref]

Thomas, T. P.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
[Crossref]

Treshin, I. V.

V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]

Turner, N. J.

M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, and M. D. Walkinshaw, “A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A,” Anal. Biochem. 345, 214–226 (2005).
[Crossref]

Vázquez-Guardado, A.

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113, 263902 (2014).
[Crossref]

Vilcot, J.-P.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

Walkinshaw, M. D.

M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, and M. D. Walkinshaw, “A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A,” Anal. Biochem. 345, 214–226 (2005).
[Crossref]

Wang, G.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

Wang, H.

Wang, H.-Y.

Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
[Crossref]

Wang, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Wang, L.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Wang, W. J.

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Wang, Y.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

Wear, M. A.

M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, and M. D. Walkinshaw, “A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A,” Anal. Biochem. 345, 214–226 (2005).
[Crossref]

Wijaya, E.

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

Winn, J. N.

Xia, J.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Xing, X.

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

Xiong, X.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Xu, G.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

Xu, X.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

Yang, H.-H.

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10, 213–239 (2015).
[Crossref]

Yang, M.

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Yang, Z.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Yao, X.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Ye, J. Y.

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
[Crossref]

J. Y. Ye and M. Ishikawa, “Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration,” Opt. Lett. 33, 1729–1731 (2008).
[Crossref]

Yong, K.-T.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491 (2011).
[Crossref]

Yu, J.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

Yu, X.

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491 (2011).
[Crossref]

Zabkov, I. V.

V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]

Zeng, S.

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491 (2011).
[Crossref]

Zhang, B. Y.

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

Zhang, D.

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

Zhang, H.

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[Crossref]

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[Crossref]

Zhang, J.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, and Y. Luo, “Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer,” Photon. Res. 6, 485–491 (2018).
[Crossref]

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[Crossref]

Zhang, X.

Zhang, X.-L.

Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
[Crossref]

Zhang, Y.

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[Crossref]

Zhang, Z.-Y.

Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
[Crossref]

Zhao, J.

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

Zhao, X.

Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, “Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film,” Sensors 17, 1846 (2017).
[Crossref]

Zheng, W. Q.

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

Zhi, Y.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Zhong, J.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Zhong, Y.

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Y. Luo, S. Hu, H. Wang, Y. Chen, J. Dong, Z. Jiang, X. Xiong, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “Sensitivity-enhanced surface plasmon sensor modified with MoSe2 overlayer,” Opt. Express 26, 34250–34258 (2018).
[Crossref]

Zhou, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhou, Z.-K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhu, J.

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Zhu, S.

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[Crossref]

Zhu, W.

Zhu, X.-S.

ACS Appl. Mater. Interface (2)

M. Yang, X. Xiong, R. He, Y. Luo, J. Tang, J. Dong, H. Lu, J. Yu, H. Guan, J. Zhang, Z. Chen, and M. Liu, “Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing,” ACS Appl. Mater. Interface 10, 5933–5940 (2018).
[Crossref]

A. Sinibaldi, V. Montaño-Machado, N. Danz, P. Munzert, F. Chiavaioli, F. Michelotti, and D. Mantovani, “Real-time study of the adsorption and grafting process of biomolecules by means of Bloch surface wave biosensors,” ACS Appl. Mater. Interface 10, 33611–33618 (2018).
[Crossref]

ACS Nano (1)

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit,” ACS Nano 9, 7621–7633 (2015).
[Crossref]

Adv. Mater. (1)

B. Liu, S. Chen, J. Zhang, X. Yao, J. Zhong, H. Lin, T. Huang, Z. Yang, J. Zhu, S. Liu, C. Lienau, L. Wang, and B. Ren, “A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm,” Adv. Mater. 30, 1706031 (2018).
[Crossref]

Adv. Opt. Mater. (1)

Y. Chen, S. Hu, H. Wang, Y. Zhi, Y. Luo, X. Xiong, J. Dong, Z. Jiang, W. Zhu, W. Qiu, H. Lu, H. Guan, Y. Zhong, J. Yu, J. Zhang, and Z. Chen, “MoS2 nanosheets modified surface plasmon resonance sensors for sensitivity enhancement,” Adv. Opt. Mater. 7, 1900479 (2019).
[Crossref]

Anal. Bioanal. Chem. (2)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. 407, 3883–3897 (2015).
[Crossref]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[Crossref]

Anal. Biochem. (1)

M. A. Wear, A. Patterson, K. Malone, C. Dunsmore, N. J. Turner, and M. D. Walkinshaw, “A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A,” Anal. Biochem. 345, 214–226 (2005).
[Crossref]

Anal. Chem. (2)

Y.-Y. Chen, H.-T. Chang, Y.-C. Shiang, Y.-L. Hung, C.-K. Chiang, and C.-C. Huang, “Colorimetric assay for lead ions based on the leaching of gold nanoparticles,” Anal. Chem. 81, 9433–9439 (2009).
[Crossref]

Y. Guo, J. Y. Ye, C. Divin, B. Huang, T. P. Thomas, J. J. R. Baker, and T. B. Norris, “Real-time biomolecular binding detection using a sensitive photonic crystal biosensor,” Anal. Chem. 82, 5211–5218 (2010).
[Crossref]

Anal. Meth. (1)

O. Tabasi and C. Falamaki, “Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors,” Anal. Meth. 10, 3906–3925 (2018).
[Crossref]

Appl. Phys. Lett. (3)

Z.-Y. Zhang, H.-Y. Wang, J.-L. Du, X.-L. Zhang, Y.-W. Hao, Q.-D. Chen, and H.-B. Sun, “Strong coupling in hybrid plasmon-modulated nanostructured cavities,” Appl. Phys. Lett. 105, 191117 (2014).
[Crossref]

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003).
[Crossref]

Chem. Soc. Rev. (1)

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43, 3426–3452 (2014).
[Crossref]

Curr. Opin. Solid State Mater. Sci. (1)

E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, and S. Szunerits, “Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies,” Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Tabassum and B. D. Gupta, “Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers,” IEEE J. Sel. Top. Quantum Electron. 23, 81–88 (2017).
[Crossref]

J. Nanophoton. (1)

A. Lahav, A. Shalabaney, and I. S. Abdulhalim, “Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer,” J. Nanophoton. 3, 031501 (2009).
[Crossref]

J. Phys. D (1)

V. V. Klimov, A. A. Pavlov, I. V. Treshin, and I. V. Zabkov, “Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing,” J. Phys. D 50, 285101 (2017).
[Crossref]

J. Russ. Laser Res. (1)

K. Meradi, F. Tayeboun, and F. Benkabou, “Surface plasmon sensor based on a dual dielectric–silver photonic crystal,” J. Russ. Laser Res. 37, 180–184 (2016).
[Crossref]

Laser Photon. Rev. (1)

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).
[Crossref]

Meas. Sci. Technol. (1)

S. Singh and B. D. Gupta, “Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites,” Meas. Sci. Technol. 21, 115202 (2010).
[Crossref]

Nano Today (1)

L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today 10, 213–239 (2015).
[Crossref]

Nat. Commun. (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z.-K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013).
[Crossref]

Nat. Mater. (1)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621 (2016).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Opt. Commun. (2)

R. Tabassum and B. D. Gupta, “SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations,” Opt. Commun. 367, 23–34 (2016).
[Crossref]

A. K. Mishra, S. K. Mishra, and B. D. Gupta, “SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region,” Opt. Commun. 344, 86–91 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optik (1)

X. Xing, W. J. Wang, S. H. Li, W. Q. Zheng, D. Zhang, Q. Q. Du, X. X. Gao, and B. Y. Zhang, “Investigation of defect modes with Al2O3 and TiO2 in one-dimensional photonic crystals,” Optik 127, 135–138 (2016).
[Crossref]

Photon. Res. (1)

Phys. Chem. Chem. Phys. (1)

B. Choi, X. Dou, Y. Fang, B. M. Phillips, and P. Jiang, “Outstanding surface plasmon resonance performance enabled by templated oxide gratings,” Phys. Chem. Chem. Phys. 18, 26078–26087 (2016).
[Crossref]

Phys. Rev. Lett. (1)

A. Vázquez-Guardado, A. Safaei, S. Modak, D. Franklin, and D. Chanda, “Hybrid coupling mechanism in a system supporting high order diffraction, plasmonic, and cavity resonances,” Phys. Rev. Lett. 113, 263902 (2014).
[Crossref]

Plasmonics (1)

S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics 6, 491 (2011).
[Crossref]

Sens. Actuators B (4)

S. Zeng, X. Yu, W.-C. Law, Y. Zhang, R. Hu, X.-Q. Dinh, H.-P. Ho, and K.-T. Yong, “Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement,” Sens. Actuators B 176, 1128–1133 (2013).
[Crossref]

S. Zeng, S. Hu, J. Xia, T. Anderson, X.-Q. Dinh, X.-M. Meng, P. Coquet, and K.-T. Yong, “Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, C. Fu, G. Xu, J. Lian, and Y. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuators B 230, 206–211 (2016).
[Crossref]

V. Chabot, Y. Miron, M. Grandbois, and P. G. Charette, “Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth,” Sens. Actuators B 174, 94–101 (2012).
[Crossref]

Sensors (1)

Q.-Q. Meng, X. Zhao, C.-Y. Lin, S.-J. Chen, Y.-C. Ding, and Z.-Y. Chen, “Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film,” Sensors 17, 1846 (2017).
[Crossref]

Small (1)

H. Zhang, Y. Sun, S. Gao, J. Zhang, H. Zhang, and D. Song, “A novel graphene oxide-based surface plasmon resonance biosensor for immunoassay,” Small 9, 2537–2540 (2013).
[Crossref]

Other (1)

R. B. Schasfoort, Handbook of Surface Plasmon Resonance (Royal Society of Chemistry, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of the proposed PC-SPR sensor. Simulated reflectance spectra of the sensor with (b) different bilayers of TiO2/SiO2, (c) different dAu at 30 nm Si layer, and (d) different dSi at 20 nm Au layer. The ambient RI is 1.33 for the simulations. (e) Performance of the sensor with different dSi and dAu. (f) Linear fitting of the resonant wavelength of the optimized PC-SPR device versus ambient refractive index of 1.31–1.37.
Fig. 2.
Fig. 2. (a) SEM image of the cross-sectional PC-Au on a glass substrate and (b) the corresponding EDS spectrum. (c) SEM image of the cross-sectional glass substrate and (d) the corresponding EDS spectrum.
Fig. 3.
Fig. 3. (a) Reflectance spectra of the PC-SPR sensors for the liquid RI changing from 1.31 to 1.37, (b) linear fitting of the resonant wavelength versus ambient refractive index, (c) reflectance spectra of the 50 nm Au-SPR sensor with the RI ranging from 1.31 to 1.37, and (d) polynomial and linear fitting of the resonant wavelength versus ambient RI.
Fig. 4.
Fig. 4. Comparison of the Au-SPR and PC-SPR sensors in terms of (a) sensitivity, (b) FWHM, (c) FOM, and (d) average FOM enhancement. The standard deviations are obtained from three tests with different sensors.
Fig. 5.
Fig. 5. Distribution of electric field intensity of (a), (c) the conventional 50 nm Au-SPR sensor and (b), (d) the PC-SPR sensor. The field intensity is obtained using finite-difference time-domain (FDTD) simulations provided by the Lumerical Solutions software.
Fig. 6.
Fig. 6. Reflectance spectra for the PC-SPR sensors versus BSA concentration ranging from 0 to 15  mg·mL1. (b) Linear fitting of the average resonant wavelength for different BSA concentrations; the standard deviations are obtained from three tests with different sensors.

Tables (1)

Tables Icon

Table 1. Comparison of the PC-SPR Sensor and Other SPR Sensors

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

4πλ(nSidSicosθSi+nSiO2dSiO2cosθxSiO2)+α=(2m+1)π(m=0,1,),
α=2arctan[(nxSiO2nt)2(nxSiO22sin2θsnt2nxSiO22ns2sin2θs)1/2],
R=[M12M22],
M=|M11M12M21M22|=I01L1I12L2I23L3I1011L11I1112,
Ijk=[1rjkrjk1]andLj=[eikzjdj00eikzjdj],
rjk=kzjεjkzkεkkzjεj+kzkεk,kzj=εj(ωc)2kx2,kx=ε0ωcsinθ,