Abstract

Transmission through seemingly opaque surfaces, so-called extraordinary transmission, provides an exciting platform for strong light–matter interaction, spectroscopy, optical trapping, and color filtering. Much of the effort has been devoted to understanding and exploiting TM extraordinary transmission, while TE anomalous extraordinary transmission has been largely omitted in the literature. This is regrettable from a practical point of view since the stronger dependence of the TE anomalous extraordinary transmission on the array’s substrate provides additional design parameters for exploitation. To provide high-performance and cost-effective applications based on TE anomalous extraordinary transmission, a complete physical insight about the underlying mechanisms of the phenomenon must be first laid down. To this end, resorting to a combined methodology including quasi-optical terahertz (THz) time-domain measurements, full-wave simulations, and method of moments analysis, subwavelength slit arrays under s-polarized illumination are studied here, filling the void in the current literature. We believe this work unequivocally reveals the leaky-wave role of the grounded-dielectric slab mode mediating in TE anomalous extraordinary transmission and provides the necessary framework to design practical high-performance THz components and systems.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Mechanisms underlying extraordinary transmission enhancement in subwavelength hole arrays

R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson
J. Opt. Soc. Am. B 24(10) 2589-2596 (2007)

Regular and anomalous Extraordinary Optical Transmission at the THz-gap

S.A. Kuznetsov, M. Navarro-Cía, V.V. Kubarev, A.V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla
Opt. Express 17(14) 11730-11738 (2009)

Surface-mode model of the extraordinary optical transmission without plasmons

Yunya Xie, Haitao Liu, Hongwei Jia, and Ying Zhong
Opt. Express 23(5) 5749-5762 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications (IEEE, 1998).
  2. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49, 269–279 (1986).
    [Crossref]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  4. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [Crossref]
  5. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
    [Crossref]
  6. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
    [Crossref]
  7. F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
    [Crossref]
  8. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
    [Crossref]
  9. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [Crossref]
  10. D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6510 (2005).
    [Crossref]
  11. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
    [Crossref]
  12. V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970–984 (2006).
    [Crossref]
  13. E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A 8, S94–S97 (2006).
    [Crossref]
  14. M. Beruete, M. Sorolla, M. Navarro-Cía, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express 15, 1107–1114 (2007).
    [Crossref]
  15. S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
    [Crossref]
  16. M. Guillaume, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
    [Crossref]
  17. M. Beruete, M. Navarro-Cía, S. A. Kuznetsov, and M. Sorolla, “Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission,” Appl. Phys. Lett. 98, 014106 (2011).
    [Crossref]
  18. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).
  19. M. Beruete, M. Navarro-Cía, and M. Sorolla-Ayza, “Understanding anomalous extraordinary transmission from equivalent circuit and grounded slab concepts,” IEEE Trans. Microw. Theory Tech. 59, 2180–2188 (2011).
    [Crossref]
  20. I. Schwarz, N. Livneh, and R. Rapaport, “General closed-form condition for enhanced transmission in subwavelength metallic gratings in both TE and TM polarizations,” Opt. Express 20, 426–439 (2012).
    [Crossref]
  21. K. S. Reichel, P. Y. Lu, S. Backus, R. Mendis, and D. M. Mittleman, “Extraordinary optical transmission inside a waveguide: spatial mode dependence,” Opt. Express 24, 28221–28227 (2016).
    [Crossref]
  22. M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes,” Opt. Express 25, 24670–24677 (2017).
    [Crossref]
  23. Y. Xie, H. Liu, H. Jia, and Y. Zhong, “Surface-mode model of the extraordinary optical transmission without plasmons,” Opt. Express 23, 5749–5762 (2015).
    [Crossref]
  24. M. Navarro-Cía, P. Rodríguez-Ulibarri, V. Torres, and M. Beruete, “Quarter-wave plate based on dielectric-enabled extraordinary resonant transmission,” IEEE Photon. Technol. Lett. 24, 945–947 (2012).
    [Crossref]
  25. J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang, and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photon. 2, 076102 (2017).
    [Crossref]
  26. I. Jáuregui-López, P. Rodríguez-Ulibarri, S. A. Kuznetsov, N. A. Nikolaev, and M. Beruete, “THz sensing with anomalous extraordinary optical transmission hole arrays,” Sensors 18, 3848 (2018).
    [Crossref]
  27. M. Beruete, U. Beaskoetxea, and T. Akalin, “Flat corrugated and bull’s-eye antennas,” in Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications (Springer, 2018), pp. 111–141.
  28. M. Navarro-Cía, V. Pacheco-Peña, S. A. Kuznetsov, and M. Beruete, “Extraordinary THz transmission with a small beam spot: the leaky wave mechanism,” Adv. Opt. Mater. 6, 1701312 (2018).
    [Crossref]
  29. M. Navarro-Cía, S. A. Kuznetsov, M. Aznabet, F. F. M. Beruete, and M. Sorolla-Ayza, “Route for bulk millimeter wave and terahertz metamaterial design,” IEEE J. Quantum Electron. 47, 375–385 (2011).
    [Crossref]
  30. M. Camacho, R. R. Boix, S. A. Kuznetsov, M. Beruete, and M. Navarro-Cía, “Far-field and near-field physics of extraordinary THz transmitting hole-array antennas,” IEEE Trans. Antennas Propag. 67, 6029–6038 (2019).
    [Crossref]
  31. F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
    [Crossref]
  32. M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Wireless. Compon. Lett. 15, 116–118 (2005).
    [Crossref]
  33. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
    [Crossref]
  34. M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
    [Crossref]
  35. A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A 11, 125702 (2009).
    [Crossref]
  36. U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
    [Crossref]
  37. U. Beaskoetxea, S. Maci, M. Navarro-Cía, and M. Beruete, “3D-printed 96 GHz bull’s-eye antenna with off-axis beaming,” IEEE Trans. Antennas Propag. 65, 17–25 (2017).
    [Crossref]
  38. D. R. Jackson and A. A. Oliner, Modern Antenna Handbook (Wiley, 2017).
  39. A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13, 3535–3542 (2005).
    [Crossref]
  40. R. Ulrich, ed., Proceedings of the Symposium on Optical and Acoustical Micro-Electronics (Polytechnic Press, 1975).
  41. F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Antennas Propag. 56, 3108–3120 (2008).
    [Crossref]
  42. R. Florencio, R. Boix, and J. Encinar, “Enhanced MoM analysis of the scattering by periodic strip gratings in multilayered substrates,” IEEE Trans. Antennas Propag. 61, 5088–5099 (2013).
    [Crossref]
  43. M. Camacho, R. Boix, F. Medina, A. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
    [Crossref]

2019 (1)

M. Camacho, R. R. Boix, S. A. Kuznetsov, M. Beruete, and M. Navarro-Cía, “Far-field and near-field physics of extraordinary THz transmitting hole-array antennas,” IEEE Trans. Antennas Propag. 67, 6029–6038 (2019).
[Crossref]

2018 (2)

I. Jáuregui-López, P. Rodríguez-Ulibarri, S. A. Kuznetsov, N. A. Nikolaev, and M. Beruete, “THz sensing with anomalous extraordinary optical transmission hole arrays,” Sensors 18, 3848 (2018).
[Crossref]

M. Navarro-Cía, V. Pacheco-Peña, S. A. Kuznetsov, and M. Beruete, “Extraordinary THz transmission with a small beam spot: the leaky wave mechanism,” Adv. Opt. Mater. 6, 1701312 (2018).
[Crossref]

2017 (4)

J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang, and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photon. 2, 076102 (2017).
[Crossref]

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes,” Opt. Express 25, 24670–24677 (2017).
[Crossref]

U. Beaskoetxea, S. Maci, M. Navarro-Cía, and M. Beruete, “3D-printed 96 GHz bull’s-eye antenna with off-axis beaming,” IEEE Trans. Antennas Propag. 65, 17–25 (2017).
[Crossref]

M. Camacho, R. Boix, F. Medina, A. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

2016 (2)

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref]

K. S. Reichel, P. Y. Lu, S. Backus, R. Mendis, and D. M. Mittleman, “Extraordinary optical transmission inside a waveguide: spatial mode dependence,” Opt. Express 24, 28221–28227 (2016).
[Crossref]

2015 (2)

Y. Xie, H. Liu, H. Jia, and Y. Zhong, “Surface-mode model of the extraordinary optical transmission without plasmons,” Opt. Express 23, 5749–5762 (2015).
[Crossref]

U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
[Crossref]

2013 (1)

R. Florencio, R. Boix, and J. Encinar, “Enhanced MoM analysis of the scattering by periodic strip gratings in multilayered substrates,” IEEE Trans. Antennas Propag. 61, 5088–5099 (2013).
[Crossref]

2012 (2)

M. Navarro-Cía, P. Rodríguez-Ulibarri, V. Torres, and M. Beruete, “Quarter-wave plate based on dielectric-enabled extraordinary resonant transmission,” IEEE Photon. Technol. Lett. 24, 945–947 (2012).
[Crossref]

I. Schwarz, N. Livneh, and R. Rapaport, “General closed-form condition for enhanced transmission in subwavelength metallic gratings in both TE and TM polarizations,” Opt. Express 20, 426–439 (2012).
[Crossref]

2011 (3)

M. Navarro-Cía, S. A. Kuznetsov, M. Aznabet, F. F. M. Beruete, and M. Sorolla-Ayza, “Route for bulk millimeter wave and terahertz metamaterial design,” IEEE J. Quantum Electron. 47, 375–385 (2011).
[Crossref]

M. Beruete, M. Navarro-Cía, S. A. Kuznetsov, and M. Sorolla, “Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission,” Appl. Phys. Lett. 98, 014106 (2011).
[Crossref]

M. Beruete, M. Navarro-Cía, and M. Sorolla-Ayza, “Understanding anomalous extraordinary transmission from equivalent circuit and grounded slab concepts,” IEEE Trans. Microw. Theory Tech. 59, 2180–2188 (2011).
[Crossref]

2010 (2)

2009 (2)

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A 11, 125702 (2009).
[Crossref]

S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
[Crossref]

2008 (1)

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Antennas Propag. 56, 3108–3120 (2008).
[Crossref]

2007 (2)

2006 (3)

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970–984 (2006).
[Crossref]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A 8, S94–S97 (2006).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
[Crossref]

2005 (5)

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Wireless. Compon. Lett. 15, 116–118 (2005).
[Crossref]

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13, 3535–3542 (2005).
[Crossref]

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6510 (2005).
[Crossref]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
[Crossref]

2004 (3)

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
[Crossref]

2003 (1)

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

1986 (1)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49, 269–279 (1986).
[Crossref]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13, 3535–3542 (2005).
[Crossref]

Akalin, T.

U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
[Crossref]

M. Beruete, U. Beaskoetxea, and T. Akalin, “Flat corrugated and bull’s-eye antennas,” in Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications (Springer, 2018), pp. 111–141.

Aznabet, M.

M. Navarro-Cía, S. A. Kuznetsov, M. Aznabet, F. F. M. Beruete, and M. Sorolla-Ayza, “Route for bulk millimeter wave and terahertz metamaterial design,” IEEE J. Quantum Electron. 47, 375–385 (2011).
[Crossref]

Backus, S.

Beaskoetxea, U.

U. Beaskoetxea, S. Maci, M. Navarro-Cía, and M. Beruete, “3D-printed 96 GHz bull’s-eye antenna with off-axis beaming,” IEEE Trans. Antennas Propag. 65, 17–25 (2017).
[Crossref]

U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
[Crossref]

M. Beruete, U. Beaskoetxea, and T. Akalin, “Flat corrugated and bull’s-eye antennas,” in Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications (Springer, 2018), pp. 111–141.

Beruete, F. F. M.

M. Navarro-Cía, S. A. Kuznetsov, M. Aznabet, F. F. M. Beruete, and M. Sorolla-Ayza, “Route for bulk millimeter wave and terahertz metamaterial design,” IEEE J. Quantum Electron. 47, 375–385 (2011).
[Crossref]

Beruete, M.

M. Camacho, R. R. Boix, S. A. Kuznetsov, M. Beruete, and M. Navarro-Cía, “Far-field and near-field physics of extraordinary THz transmitting hole-array antennas,” IEEE Trans. Antennas Propag. 67, 6029–6038 (2019).
[Crossref]

M. Navarro-Cía, V. Pacheco-Peña, S. A. Kuznetsov, and M. Beruete, “Extraordinary THz transmission with a small beam spot: the leaky wave mechanism,” Adv. Opt. Mater. 6, 1701312 (2018).
[Crossref]

I. Jáuregui-López, P. Rodríguez-Ulibarri, S. A. Kuznetsov, N. A. Nikolaev, and M. Beruete, “THz sensing with anomalous extraordinary optical transmission hole arrays,” Sensors 18, 3848 (2018).
[Crossref]

U. Beaskoetxea, S. Maci, M. Navarro-Cía, and M. Beruete, “3D-printed 96 GHz bull’s-eye antenna with off-axis beaming,” IEEE Trans. Antennas Propag. 65, 17–25 (2017).
[Crossref]

U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
[Crossref]

M. Navarro-Cía, P. Rodríguez-Ulibarri, V. Torres, and M. Beruete, “Quarter-wave plate based on dielectric-enabled extraordinary resonant transmission,” IEEE Photon. Technol. Lett. 24, 945–947 (2012).
[Crossref]

M. Beruete, M. Navarro-Cía, and M. Sorolla-Ayza, “Understanding anomalous extraordinary transmission from equivalent circuit and grounded slab concepts,” IEEE Trans. Microw. Theory Tech. 59, 2180–2188 (2011).
[Crossref]

M. Beruete, M. Navarro-Cía, S. A. Kuznetsov, and M. Sorolla, “Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission,” Appl. Phys. Lett. 98, 014106 (2011).
[Crossref]

S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
[Crossref]

M. Beruete, M. Sorolla, M. Navarro-Cía, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express 15, 1107–1114 (2007).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Wireless. Compon. Lett. 15, 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref]

M. Beruete, U. Beaskoetxea, and T. Akalin, “Flat corrugated and bull’s-eye antennas,” in Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications (Springer, 2018), pp. 111–141.

Betzig, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49, 269–279 (1986).
[Crossref]

Boix, R.

M. Camacho, R. Boix, F. Medina, A. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

R. Florencio, R. Boix, and J. Encinar, “Enhanced MoM analysis of the scattering by periodic strip gratings in multilayered substrates,” IEEE Trans. Antennas Propag. 61, 5088–5099 (2013).
[Crossref]

Boix, R. R.

M. Camacho, R. R. Boix, S. A. Kuznetsov, M. Beruete, and M. Navarro-Cía, “Far-field and near-field physics of extraordinary THz transmitting hole-array antennas,” IEEE Trans. Antennas Propag. 67, 6029–6038 (2019).
[Crossref]

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes,” Opt. Express 25, 24670–24677 (2017).
[Crossref]

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref]

Camacho, M.

M. Camacho, R. R. Boix, S. A. Kuznetsov, M. Beruete, and M. Navarro-Cía, “Far-field and near-field physics of extraordinary THz transmitting hole-array antennas,” IEEE Trans. Antennas Propag. 67, 6029–6038 (2019).
[Crossref]

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes,” Opt. Express 25, 24670–24677 (2017).
[Crossref]

M. Camacho, R. Boix, F. Medina, A. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref]

Campillo, I.

S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
[Crossref]

M. Beruete, M. Sorolla, M. Navarro-Cía, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express 15, 1107–1114 (2007).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Wireless. Compon. Lett. 15, 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref]

Cao, H.

Degiron, A.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
[Crossref]

Dolado, J. S.

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Wireless. Compon. Lett. 15, 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref]

Dunbar, L. A.

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Eckert, R.

Encinar, J.

R. Florencio, R. Boix, and J. Encinar, “Enhanced MoM analysis of the scattering by periodic strip gratings in multilayered substrates,” IEEE Trans. Antennas Propag. 61, 5088–5099 (2013).
[Crossref]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
[Crossref]

Falcone, F.

Florencio, R.

R. Florencio, R. Boix, and J. Encinar, “Enhanced MoM analysis of the scattering by periodic strip gratings in multilayered substrates,” IEEE Trans. Antennas Propag. 61, 5088–5099 (2013).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

García-Vidal, F. J.

M. Guillaume, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[Crossref]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A 11, 125702 (2009).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
[Crossref]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A 8, S94–S97 (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

Gelfand, A. V.

S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
[Crossref]

Genet, C.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Goldsmith, P. F.

P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications (IEEE, 1998).

Guillaume, M.

Hangyo, M.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
[Crossref]

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

Harootunian, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49, 269–279 (1986).
[Crossref]

He, J. W.

J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang, and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photon. 2, 076102 (2017).
[Crossref]

Hibbins, A.

M. Camacho, R. Boix, F. Medina, A. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

Hibbins, A. P.

Isaacson, M.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49, 269–279 (1986).
[Crossref]

Ishimaru, A.

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).

Jackson, D. R.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6510 (2005).
[Crossref]

D. R. Jackson and A. A. Oliner, Modern Antenna Handbook (Wiley, 2017).

Jáuregui-López, I.

I. Jáuregui-López, P. Rodríguez-Ulibarri, S. A. Kuznetsov, N. A. Nikolaev, and M. Beruete, “THz sensing with anomalous extraordinary optical transmission hole arrays,” Sensors 18, 3848 (2018).
[Crossref]

Jia, H.

Klein, M. J. K.

Kondo, T.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

Kratschmer, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49, 269–279 (1986).
[Crossref]

Kubarev, V. V.

S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
[Crossref]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Kuznetsov, S. A.

M. Camacho, R. R. Boix, S. A. Kuznetsov, M. Beruete, and M. Navarro-Cía, “Far-field and near-field physics of extraordinary THz transmitting hole-array antennas,” IEEE Trans. Antennas Propag. 67, 6029–6038 (2019).
[Crossref]

M. Navarro-Cía, V. Pacheco-Peña, S. A. Kuznetsov, and M. Beruete, “Extraordinary THz transmission with a small beam spot: the leaky wave mechanism,” Adv. Opt. Mater. 6, 1701312 (2018).
[Crossref]

I. Jáuregui-López, P. Rodríguez-Ulibarri, S. A. Kuznetsov, N. A. Nikolaev, and M. Beruete, “THz sensing with anomalous extraordinary optical transmission hole arrays,” Sensors 18, 3848 (2018).
[Crossref]

M. Beruete, M. Navarro-Cía, S. A. Kuznetsov, and M. Sorolla, “Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission,” Appl. Phys. Lett. 98, 014106 (2011).
[Crossref]

M. Navarro-Cía, S. A. Kuznetsov, M. Aznabet, F. F. M. Beruete, and M. Sorolla-Ayza, “Route for bulk millimeter wave and terahertz metamaterial design,” IEEE J. Quantum Electron. 47, 375–385 (2011).
[Crossref]

S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
[Crossref]

Lewis, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49, 269–279 (1986).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Liu, H.

Livneh, N.

Lomakin, V.

M. Beruete, M. Sorolla, M. Navarro-Cía, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express 15, 1107–1114 (2007).
[Crossref]

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970–984 (2006).
[Crossref]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
[Crossref]

Lu, P. Y.

Maci, S.

U. Beaskoetxea, S. Maci, M. Navarro-Cía, and M. Beruete, “3D-printed 96 GHz bull’s-eye antenna with off-axis beaming,” IEEE Trans. Antennas Propag. 65, 17–25 (2017).
[Crossref]

U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
[Crossref]

Marqués, R.

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Antennas Propag. 56, 3108–3120 (2008).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Martín-Moreno, L.

M. Guillaume, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[Crossref]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A 11, 125702 (2009).
[Crossref]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
[Crossref]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A 8, S94–S97 (2006).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

Medina, F.

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes,” Opt. Express 25, 24670–24677 (2017).
[Crossref]

M. Camacho, R. Boix, F. Medina, A. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Antennas Propag. 56, 3108–3120 (2008).
[Crossref]

Mendis, R.

Mesa, F.

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Antennas Propag. 56, 3108–3120 (2008).
[Crossref]

Michielssen, E.

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970–984 (2006).
[Crossref]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
[Crossref]

Mittleman, D. M.

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
[Crossref]

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

Moreno, E.

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A 8, S94–S97 (2006).
[Crossref]

Nagashima, T.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13, 3535–3542 (2005).
[Crossref]

Navarro-Cía, M.

M. Camacho, R. R. Boix, S. A. Kuznetsov, M. Beruete, and M. Navarro-Cía, “Far-field and near-field physics of extraordinary THz transmitting hole-array antennas,” IEEE Trans. Antennas Propag. 67, 6029–6038 (2019).
[Crossref]

M. Navarro-Cía, V. Pacheco-Peña, S. A. Kuznetsov, and M. Beruete, “Extraordinary THz transmission with a small beam spot: the leaky wave mechanism,” Adv. Opt. Mater. 6, 1701312 (2018).
[Crossref]

U. Beaskoetxea, S. Maci, M. Navarro-Cía, and M. Beruete, “3D-printed 96 GHz bull’s-eye antenna with off-axis beaming,” IEEE Trans. Antennas Propag. 65, 17–25 (2017).
[Crossref]

U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
[Crossref]

M. Navarro-Cía, P. Rodríguez-Ulibarri, V. Torres, and M. Beruete, “Quarter-wave plate based on dielectric-enabled extraordinary resonant transmission,” IEEE Photon. Technol. Lett. 24, 945–947 (2012).
[Crossref]

M. Navarro-Cía, S. A. Kuznetsov, M. Aznabet, F. F. M. Beruete, and M. Sorolla-Ayza, “Route for bulk millimeter wave and terahertz metamaterial design,” IEEE J. Quantum Electron. 47, 375–385 (2011).
[Crossref]

M. Beruete, M. Navarro-Cía, and M. Sorolla-Ayza, “Understanding anomalous extraordinary transmission from equivalent circuit and grounded slab concepts,” IEEE Trans. Microw. Theory Tech. 59, 2180–2188 (2011).
[Crossref]

M. Beruete, M. Navarro-Cía, S. A. Kuznetsov, and M. Sorolla, “Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission,” Appl. Phys. Lett. 98, 014106 (2011).
[Crossref]

S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
[Crossref]

M. Beruete, M. Sorolla, M. Navarro-Cía, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express 15, 1107–1114 (2007).
[Crossref]

Nikitin, A. Y.

M. Guillaume, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[Crossref]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A 11, 125702 (2009).
[Crossref]

Nikolaev, N. A.

I. Jáuregui-López, P. Rodríguez-Ulibarri, S. A. Kuznetsov, N. A. Nikolaev, and M. Beruete, “THz sensing with anomalous extraordinary optical transmission hole arrays,” Sensors 18, 3848 (2018).
[Crossref]

Oliner, A. A.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6510 (2005).
[Crossref]

D. R. Jackson and A. A. Oliner, Modern Antenna Handbook (Wiley, 2017).

Orazbayev, B.

U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
[Crossref]

Pacheco-Peña, V.

M. Navarro-Cía, V. Pacheco-Peña, S. A. Kuznetsov, and M. Beruete, “Extraordinary THz transmission with a small beam spot: the leaky wave mechanism,” Adv. Opt. Mater. 6, 1701312 (2018).
[Crossref]

U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

Przybilla, F.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
[Crossref]

Rapaport, R.

Reichel, K. S.

Rodríguez-Ulibarri, P.

I. Jáuregui-López, P. Rodríguez-Ulibarri, S. A. Kuznetsov, N. A. Nikolaev, and M. Beruete, “THz sensing with anomalous extraordinary optical transmission hole arrays,” Sensors 18, 3848 (2018).
[Crossref]

M. Navarro-Cía, P. Rodríguez-Ulibarri, V. Torres, and M. Beruete, “Quarter-wave plate based on dielectric-enabled extraordinary resonant transmission,” IEEE Photon. Technol. Lett. 24, 945–947 (2012).
[Crossref]

Sambles, J. R.

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes,” Opt. Express 25, 24670–24677 (2017).
[Crossref]

M. Camacho, R. Boix, F. Medina, A. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
[Crossref]

Schwarz, I.

Sorolla, M.

M. Beruete, M. Navarro-Cía, S. A. Kuznetsov, and M. Sorolla, “Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission,” Appl. Phys. Lett. 98, 014106 (2011).
[Crossref]

S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
[Crossref]

M. Beruete, M. Sorolla, M. Navarro-Cía, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express 15, 1107–1114 (2007).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Wireless. Compon. Lett. 15, 116–118 (2005).
[Crossref]

M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[Crossref]

Sorolla-Ayza, M.

M. Navarro-Cía, S. A. Kuznetsov, M. Aznabet, F. F. M. Beruete, and M. Sorolla-Ayza, “Route for bulk millimeter wave and terahertz metamaterial design,” IEEE J. Quantum Electron. 47, 375–385 (2011).
[Crossref]

M. Beruete, M. Navarro-Cía, and M. Sorolla-Ayza, “Understanding anomalous extraordinary transmission from equivalent circuit and grounded slab concepts,” IEEE Trans. Microw. Theory Tech. 59, 2180–2188 (2011).
[Crossref]

Spassov, V.

Stanley, R. P.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Torres, V.

M. Navarro-Cía, P. Rodríguez-Ulibarri, V. Torres, and M. Beruete, “Quarter-wave plate based on dielectric-enabled extraordinary resonant transmission,” IEEE Photon. Technol. Lett. 24, 945–947 (2012).
[Crossref]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

Wang, S.

J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang, and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photon. 2, 076102 (2017).
[Crossref]

Wang, X. K.

J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang, and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photon. 2, 076102 (2017).
[Crossref]

Williams, J. T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6510 (2005).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Xie, Y.

Xie, Z. W.

J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang, and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photon. 2, 076102 (2017).
[Crossref]

Xue, Y. Z.

J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang, and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photon. 2, 076102 (2017).
[Crossref]

Zhang, Y.

J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang, and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photon. 2, 076102 (2017).
[Crossref]

Zhao, T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6510 (2005).
[Crossref]

Zhong, Y.

Adv. Opt. Mater. (1)

M. Navarro-Cía, V. Pacheco-Peña, S. A. Kuznetsov, and M. Beruete, “Extraordinary THz transmission with a small beam spot: the leaky wave mechanism,” Adv. Opt. Mater. 6, 1701312 (2018).
[Crossref]

APL Photon. (1)

J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang, and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photon. 2, 076102 (2017).
[Crossref]

Appl. Phys. Lett. (3)

M. Beruete, M. Navarro-Cía, S. A. Kuznetsov, and M. Sorolla, “Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission,” Appl. Phys. Lett. 98, 014106 (2011).
[Crossref]

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003).
[Crossref]

F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742–2744 (2004).
[Crossref]

Biophys. J. (1)

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49, 269–279 (1986).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

U. Beaskoetxea, V. Pacheco-Peña, B. Orazbayev, T. Akalin, S. Maci, M. Navarro-Cía, and M. Beruete, “77-GHz high-gain bull’s-eye antenna with sinusoidal profile,” IEEE Antennas Wireless Propag. Lett. 14, 205–208 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Navarro-Cía, S. A. Kuznetsov, M. Aznabet, F. F. M. Beruete, and M. Sorolla-Ayza, “Route for bulk millimeter wave and terahertz metamaterial design,” IEEE J. Quantum Electron. 47, 375–385 (2011).
[Crossref]

IEEE Microw. Wireless. Compon. Lett. (1)

M. Beruete, M. Sorolla, I. Campillo, and J. S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microw. Wireless. Compon. Lett. 15, 116–118 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Navarro-Cía, P. Rodríguez-Ulibarri, V. Torres, and M. Beruete, “Quarter-wave plate based on dielectric-enabled extraordinary resonant transmission,” IEEE Photon. Technol. Lett. 24, 945–947 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (5)

V. Lomakin and E. Michielssen, “Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes,” IEEE Trans. Antennas Propag. 54, 970–984 (2006).
[Crossref]

U. Beaskoetxea, S. Maci, M. Navarro-Cía, and M. Beruete, “3D-printed 96 GHz bull’s-eye antenna with off-axis beaming,” IEEE Trans. Antennas Propag. 65, 17–25 (2017).
[Crossref]

M. Camacho, R. R. Boix, S. A. Kuznetsov, M. Beruete, and M. Navarro-Cía, “Far-field and near-field physics of extraordinary THz transmitting hole-array antennas,” IEEE Trans. Antennas Propag. 67, 6029–6038 (2019).
[Crossref]

F. Medina, F. Mesa, and R. Marqués, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Antennas Propag. 56, 3108–3120 (2008).
[Crossref]

R. Florencio, R. Boix, and J. Encinar, “Enhanced MoM analysis of the scattering by periodic strip gratings in multilayered substrates,” IEEE Trans. Antennas Propag. 61, 5088–5099 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Beruete, M. Navarro-Cía, and M. Sorolla-Ayza, “Understanding anomalous extraordinary transmission from equivalent circuit and grounded slab concepts,” IEEE Trans. Microw. Theory Tech. 59, 2180–2188 (2011).
[Crossref]

J. Opt. A (2)

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A 8, S94–S97 (2006).
[Crossref]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes,” J. Opt. A 11, 125702 (2009).
[Crossref]

Nat. Phys. (1)

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

Opt. Express (8)

A. Agrawal, H. Cao, and A. Nahata, “Time-domain analysis of enhanced transmission through a single subwavelength aperture,” Opt. Express 13, 3535–3542 (2005).
[Crossref]

M. Beruete, M. Sorolla, M. Navarro-Cía, F. Falcone, I. Campillo, and V. Lomakin, “Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays,” Opt. Express 15, 1107–1114 (2007).
[Crossref]

M. Guillaume, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010).
[Crossref]

I. Schwarz, N. Livneh, and R. Rapaport, “General closed-form condition for enhanced transmission in subwavelength metallic gratings in both TE and TM polarizations,” Opt. Express 20, 426–439 (2012).
[Crossref]

Y. Xie, H. Liu, H. Jia, and Y. Zhong, “Surface-mode model of the extraordinary optical transmission without plasmons,” Opt. Express 23, 5749–5762 (2015).
[Crossref]

K. S. Reichel, P. Y. Lu, S. Backus, R. Mendis, and D. M. Mittleman, “Extraordinary optical transmission inside a waveguide: spatial mode dependence,” Opt. Express 24, 28221–28227 (2016).
[Crossref]

M. Camacho, R. R. Boix, F. Medina, A. P. Hibbins, and J. R. Sambles, “On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes,” Opt. Express 25, 24670–24677 (2017).
[Crossref]

S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express 17, 730–738 (2009).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (2)

M. Camacho, R. Boix, F. Medina, A. Hibbins, and J. R. Sambles, “Theoretical and experimental exploration of finite sample size effects on the propagation of surface waves supported by slot arrays,” Phys. Rev. B 95, 245425 (2017).
[Crossref]

V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005).
[Crossref]

Phys. Rev. E (1)

M. Camacho, R. R. Boix, and F. Medina, “Computationally efficient analysis of extraordinary optical transmission through infinite and truncated subwavelength hole arrays,” Phys. Rev. E 93, 063312 (2016).
[Crossref]

Radio Sci. (1)

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, “Beaming of light at broadside through a subwavelength hole: leaky wave model and open stopband effect,” Radio Sci. 40, RS6510 (2005).
[Crossref]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Science (2)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308, 670–672 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[Crossref]

Sensors (1)

I. Jáuregui-López, P. Rodríguez-Ulibarri, S. A. Kuznetsov, N. A. Nikolaev, and M. Beruete, “THz sensing with anomalous extraordinary optical transmission hole arrays,” Sensors 18, 3848 (2018).
[Crossref]

Other (5)

M. Beruete, U. Beaskoetxea, and T. Akalin, “Flat corrugated and bull’s-eye antennas,” in Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications (Springer, 2018), pp. 111–141.

P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications (IEEE, 1998).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).

D. R. Jackson and A. A. Oliner, Modern Antenna Handbook (Wiley, 2017).

R. Ulrich, ed., Proceedings of the Symposium on Optical and Acoustical Micro-Electronics (Polytechnic Press, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Schematic of the metallic subwavelength slit array with dielectric backing of thickness h, illuminated by the focused Gaussian beam with polarization parallel to the slits. The excited leaky waves are depicted by the wavy blue arrows propagating away from the illumination spot. Lattice period dx=0.6  mm, slit width s=0.22  mm, and dielectric thickness h=102 and 188 μm. The scatter angle θ is in the xz-plane.
Fig. 2.
Fig. 2. Normal transmission spectrum in dB for each of the six samples of thickness (a) 102±1  μm and (b) 188±1  μm, using the collimated (estimated beam diameter, 2wx=7.8  mm) measurement setup. The grey dashed lines indicate the emergence of the Wood’s anomalies. Notice that the second Wood’s anomaly emerges at different frequencies for thin and thick samples, in agreement with the method of moments (see Figs. 7, 8, and 13). Spectra simulated using CST Microwave Studio unit cell boundary conditions and Floquet ports have been overlayed as black dashed lines for comparison.
Fig. 3.
Fig. 3. Transmission amplitude as a function of the number of slits normalized by the beam diameter for the three different setup configurations, for sample thicknesses of (top) 102±1  μm and (bottom) 188±1  μm, at frequencies 0.48 THz and 0.44 THz, respectively.
Fig. 4.
Fig. 4. Simulated absolute value of the electric field along the structures, calculated in the transient solver of CST Microwave Studio, (a) for sample thickness of 102±1  μm for 7 slits, at ET frequency 0.48 THz and (b), (c) for sample thickness of 188±1  μm for 7 and 107 slits, respectively, at ET frequency 0.44 THz. One half of the array is presented. The end of the seven-slit array is indicated by the white dashed line.
Fig. 5.
Fig. 5. Spectrograms of the detected waveforms for samples with (a) 7 and (b) 107 slits of thickness 102±1  μm and sample with (c) 107 slits of thickness 188±1  μm. Measurements were taken for the collimated configuration.
Fig. 6.
Fig. 6. Radiation diagrams for each of the five samples of thickness 102±1  μm (top) and 188±1  μm (bottom), at frequencies 0.48 THz and 0.44 THz, respectively, using the collimated measurement setup.
Fig. 7.
Fig. 7. Color maps presenting the transmission amplitude in dB as a function of frequency and angle of detection for the three setup configurations, for samples with 107 slits of thicknesses (a) 102±1  μm and (b) 188±1  μm. The scale is the same for all maps, as indicated by the scale bar, to allow for direct comparison. The focused 50 mm lens setup results include an overlaid calculated emission for the diffraction or grating lobe, indicated by the black dashed line, while the space harmonics calculated using method of moments are indicated by the white dashed lines in the same plots, and labeled according to their respective orders. The first and second Wood’s anomalies are indicated by the arrows in the focused 100 mm lens setup results in (b).
Fig. 8.
Fig. 8. Dispersion diagrams calculated from the method of moments for dielectric thicknesses 102 μm (top) and 188 μm (bottom). The real part of the wavevector is presented on the abscissa axis, while the imaginary part is indicated by the color bar on the right. The wavevectors are normalized to the free space wavevector. The orders of the modes are labeled.
Fig. 9.
Fig. 9. Colour map illustrating the dependence of transmission on the slit width s, for samples with dx=0.6  mm and dielectric thicknesses (a) 102 μm and (b) 188 μm, simulated using CST Microwave Studio unit cell boundary conditions and Floquet ports. Note the different scales.
Fig. 10.
Fig. 10. Decay of electric field along one half of the 188 μm dielectric thick array for varying slit width s, simulated in CST Microwave Studio. The field has been normalized to the maximum field for each measurement. The dashed line illustrates the end of the periodic region of the structure.
Fig. 11.
Fig. 11. Spectra for varying periodicity dx, for samples with s=0.22  mm and dielectric thicknesses (a) 102 μm and (b) 188 μm, simulated using CST Microwave Studio unit cell boundary conditions and Floquet ports. Note the different scales.
Fig. 12.
Fig. 12. Schematic diagram of the (a) collimated and (b) focused configurations of the TDS setup. The open grey boxes illustrate the photoconductive antenna casings.
Fig. 13.
Fig. 13. Dispersion diagrams calculated from the method of moments for h=102  μm (top) and h=188  μm (bottom). The color represents the value of the determinant of the method of moments system in logarithm scale and the dashed lines indicate the modes, which are labeled according to their respective orders.
Fig. 14.
Fig. 14. Simulation of transmission through infinite periodic arrays with h=102  μm (top) and h=188  μm (bottom) using CST Microwave Studio unit cell boundary conditions and Floquet ports. The space harmonics calculated using method of moments are indicated by the white dashed lines. The inset presents a sketch of the simulation demonstrating the off-axis illumination and detection scheme. The blue and grey regions indicate the dielectric material and metal, respectively, while the red arrows indicate the direction of incident and transmitted radiation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s2s2G¯per(xx,yy)·Et(x,y)dxdy=0
G¯per(x,y)=m=G¯(xmdx,y)ejkx0mdx,