Abstract

The radical suppression of the photodarkening effect and laser performance deterioration via H2 loading were demonstrated in high-power Yb-doped fiber (YDF) amplifiers. The photodarkening loss at equilibrium was 114.4 dB/m at 702 nm in the pristine fiber, while it vanished in the H2-loaded fiber. To obtain a deeper understanding of the impact of photodarkening on laser properties, the evolution of the mode instability threshold and output power in fiber amplifiers was investigated. After pumping for 300 min, the mode instability threshold of the pristine fiber dropped from 770 to 612 W, and the periodic fluctuation of the output power became intense, finally reaching 100 W. To address the detrimental effects originating from photodarkening, H2 loading was applied in contrast experiments. The output power remained stable, and no sign of mode instability was observed in the H2-loaded fiber. Moreover, the transmittance at 638 nm confirmed the absence of the photodarkening effect. The results pave the way for the further development of high-power fiber lasers.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
532 nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers

Ruiting Cao, Xianfeng Lin, Yisha Chen, Yongshi Cheng, Yibo Wang, Yingbin Xing, Haiqing Li, Luyun Yang, Gui Chen, and Jinyan Li
Opt. Express 27(19) 26523-26531 (2019)

Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening

Cesar Jauregui, Hans-Jürgen Otto, F. Stutzki, J. Limpert, and A. Tünnermann
Opt. Express 23(16) 20203-20218 (2015)

Thermal analysis of Yb-doped high-power fiber amplifiers with Al:P co-doped cores

Cesar Jauregui, Fabian Stutzki, A. Tünnermann, and J. Limpert
Opt. Express 26(6) 7614-7624 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
    [Crossref]
  2. J. Nilsson and D. N. Payne, “Physics: high-power fiber lasers,” Science 332, 921–922 (2011).
    [Crossref]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [Crossref]
  4. B. Shiner, “The impact of fiber laser technology on the world wide material processing market,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper AF2J.1.
  5. C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).
    [Crossref]
  6. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. B. Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15, 1606–1611 (2007).
    [Crossref]
  7. J. J. Montiel, I. Ponsoda, M. J. Söderlund, J. P. Koplow, J. J. Koponen, and S. Honkanen, “Photodarkening-induced increase of fiber temperature,” Appl. Opt. 49, 4139–4143 (2010).
    [Crossref]
  8. L. Kong, J. Leng, P. Zhou, and Z. Jiang, “Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber,” Opt. Express 25, 2639–2648 (2017).
    [Crossref]
  9. Y. Feng, B. M. Zhang, and J. Nilsson, “Photodarkening-induced phase distortions and their effects in single-channel and coherently combined Yb-doped fiber chirped pulse amplification systems,” J. Lightwave Technol. 36, 5521–5527 (2018).
    [Crossref]
  10. H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23, 15265–15277 (2015).
    [Crossref]
  11. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19, 10180–10192 (2011).
    [Crossref]
  12. B. Ward, “Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers,” Opt. Express 24, 3488–3501 (2016).
    [Crossref]
  13. K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers,” Laser Phys. Lett. 14, 015102 (2017).
    [Crossref]
  14. N. Zhao, Y. Liu, M. Li, J. Li, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping,” Opt. Express 25, 18191–18196 (2017).
    [Crossref]
  15. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34, 1285–1287 (2009).
    [Crossref]
  16. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16, 15540–15545 (2008).
    [Crossref]
  17. S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
    [Crossref]
  18. Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
    [Crossref]
  19. K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17, 17855–17861 (2009).
    [Crossref]
  20. M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express 17, 12588–12593 (2009).
    [Crossref]
  21. R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532  nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers,” Opt. Express 27, 26523–26531 (2019).
    [Crossref]
  22. J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CTuQ5.
  23. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32, 1626–1628 (2007).
    [Crossref]
  24. M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 6873, 68731E (2008).
    [Crossref]
  25. R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
    [Crossref]
  26. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34, 109–111 (2009).
    [Crossref]
  27. G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
    [Crossref]
  28. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15, 14838–14843 (2007).
    [Crossref]
  29. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
    [Crossref]
  30. C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
    [Crossref]
  31. T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21, 8382–8392 (2013).
    [Crossref]
  32. P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express 16, 4688–4697 (2008).
    [Crossref]
  33. M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
    [Crossref]
  34. Y.-B. Xing, Y.-Z. Liu, N. Zhao, R.-T. Cao, Y.-B. Wang, Y. Yang, J.-G. Peng, H.-Q. Li, L.-Y. Yang, N.-L. Dai, and J.-Y. Li, “Radical passive bleaching of Tm-doped silica fiber with deuterium,” Opt. Lett. 43, 1075–1078 (2018).
    [Crossref]
  35. C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally-induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7, 59 (2018).
    [Crossref]
  36. L. Kong, M. Li, J. Leng, X. Wang, and P. Zhou, “Experimental investigation of the photodarkening induced core laser leakage in a 3  kW co-pumping fiber amplifier,” Proc. SPIE 10436, 104360N (2017).
    [Crossref]

2019 (2)

R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532  nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers,” Opt. Express 27, 26523–26531 (2019).
[Crossref]

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

2018 (5)

Y.-B. Xing, Y.-Z. Liu, N. Zhao, R.-T. Cao, Y.-B. Wang, Y. Yang, J.-G. Peng, H.-Q. Li, L.-Y. Yang, N.-L. Dai, and J.-Y. Li, “Radical passive bleaching of Tm-doped silica fiber with deuterium,” Opt. Lett. 43, 1075–1078 (2018).
[Crossref]

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally-induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7, 59 (2018).
[Crossref]

Y. Feng, B. M. Zhang, and J. Nilsson, “Photodarkening-induced phase distortions and their effects in single-channel and coherently combined Yb-doped fiber chirped pulse amplification systems,” J. Lightwave Technol. 36, 5521–5527 (2018).
[Crossref]

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

2017 (4)

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers,” Laser Phys. Lett. 14, 015102 (2017).
[Crossref]

N. Zhao, Y. Liu, M. Li, J. Li, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping,” Opt. Express 25, 18191–18196 (2017).
[Crossref]

L. Kong, J. Leng, P. Zhou, and Z. Jiang, “Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber,” Opt. Express 25, 2639–2648 (2017).
[Crossref]

L. Kong, M. Li, J. Leng, X. Wang, and P. Zhou, “Experimental investigation of the photodarkening induced core laser leakage in a 3  kW co-pumping fiber amplifier,” Proc. SPIE 10436, 104360N (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (1)

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).
[Crossref]

2013 (3)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21, 8382–8392 (2013).
[Crossref]

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

2011 (2)

J. Nilsson and D. N. Payne, “Physics: high-power fiber lasers,” Science 332, 921–922 (2011).
[Crossref]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19, 10180–10192 (2011).
[Crossref]

2010 (2)

2009 (4)

2008 (4)

2007 (3)

2000 (1)

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

Aleshkina, S. S.

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers,” Laser Phys. Lett. 14, 015102 (2017).
[Crossref]

Andrejco, M.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CTuQ5.

Barty, C. P. J.

Basu, C.

Beach, R. J.

Bobkov, K. K.

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers,” Laser Phys. Lett. 14, 015102 (2017).
[Crossref]

Boullet, J.

Boyland, A. J.

Bubnov, M. M.

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers,” Laser Phys. Lett. 14, 015102 (2017).
[Crossref]

Cao, R.

R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532  nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers,” Opt. Express 27, 26523–26531 (2019).
[Crossref]

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

Cao, R.-T.

Cardinal, T.

Carlson, C. G.

Chen, G.

R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532  nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers,” Opt. Express 27, 26523–26531 (2019).
[Crossref]

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Chen, Y.

Cheng, Y.

R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532  nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers,” Opt. Express 27, 26523–26531 (2019).
[Crossref]

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

Clarkson, W. A.

Croteau, A.

Dai, N.

Dai, N. L.

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Dai, N.-L.

Dawson, J. W.

Deschamps, T.

DiGiovanni, D.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CTuQ5.

Doua, R. B.

Dragic, P. D.

Engholm, M.

Ermeneux, S.

Feng, Y.

Galvanauskas, A.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).
[Crossref]

Gonnet, C.

Guillen, F.

Heebner, J. E.

Honkanen, S.

Hu, I.-N.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).
[Crossref]

Illas, F.

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

Jasapara, J.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CTuQ5.

Jauregui, C.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally-induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7, 59 (2018).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23, 15265–15277 (2015).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Jelger, P.

Jetschke, S.

Jiang, J.

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

Jiang, L.

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Jiang, Z.

L. Kong, J. Leng, P. Zhou, and Z. Jiang, “Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber,” Opt. Express 25, 2639–2648 (2017).
[Crossref]

Jiang, Z. W.

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Jing, F.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

Kirchhof, J.

Kong, L.

L. Kong, M. Li, J. Leng, X. Wang, and P. Zhou, “Experimental investigation of the photodarkening induced core laser leakage in a 3  kW co-pumping fiber amplifier,” Proc. SPIE 10436, 104360N (2017).
[Crossref]

L. Kong, J. Leng, P. Zhou, and Z. Jiang, “Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber,” Opt. Express 25, 2639–2648 (2017).
[Crossref]

Koplow, J. P.

Koponen, J. J.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).
[Crossref]

J. J. Montiel, I. Ponsoda, M. J. Söderlund, J. P. Koplow, J. J. Koponen, and S. Honkanen, “Photodarkening-induced increase of fiber temperature,” Appl. Opt. 49, 4139–4143 (2010).
[Crossref]

Laurell, F.

Leich, M.

Leng, J.

L. Kong, J. Leng, P. Zhou, and Z. Jiang, “Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber,” Opt. Express 25, 2639–2648 (2017).
[Crossref]

L. Kong, M. Li, J. Leng, X. Wang, and P. Zhou, “Experimental investigation of the photodarkening induced core laser leakage in a 3  kW co-pumping fiber amplifier,” Proc. SPIE 10436, 104360N (2017).
[Crossref]

Li, H.

Li, H. Q.

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Li, H.-Q.

Li, J.

Li, J. Y.

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Li, J.-Y.

Li, M.

L. Kong, M. Li, J. Leng, X. Wang, and P. Zhou, “Experimental investigation of the photodarkening induced core laser leakage in a 3  kW co-pumping fiber amplifier,” Proc. SPIE 10436, 104360N (2017).
[Crossref]

N. Zhao, Y. Liu, M. Li, J. Li, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping,” Opt. Express 25, 18191–18196 (2017).
[Crossref]

Li, Y.

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Likhachev, M. E.

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers,” Laser Phys. Lett. 14, 015102 (2017).
[Crossref]

Limpert, J.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally-induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7, 59 (2018).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23, 15265–15277 (2015).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Lin, A.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

Lin, X.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532  nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers,” Opt. Express 27, 26523–26531 (2019).
[Crossref]

Liu, S.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

Liu, Y.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

N. Zhao, Y. Liu, M. Li, J. Li, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping,” Opt. Express 25, 18191–18196 (2017).
[Crossref]

Liu, Y.-Z.

Lopez, A. N.

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

Lopez, N.

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

Manek-Hönninger, I.

Mattsson, K. E.

Messerly, M. J.

Modsching, N.

Montiel, J. J.

Ni, L.

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Nilsson, J.

Norin, L.

Ollier, N.

Otto, H.

Otto, H.-J.

Pacchioni, G.

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

Pax, P. H.

Payne, D.

Payne, D. N.

J. Nilsson and D. N. Payne, “Physics: high-power fiber lasers,” Science 332, 921–922 (2011).
[Crossref]

Peng, J.

Peng, J. G.

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Peng, J.-G.

Peng, K.

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Petit, L.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).
[Crossref]

Podgorski, M.

Ponsoda, I.

Reichel, V.

Richardson, D. J.

Röpke, U.

Sahu, J. K.

Salin, F.

Schwuchow, A.

Shiner, B.

B. Shiner, “The impact of fiber laser technology on the world wide material processing market,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper AF2J.1.

Shverdin, M. Y.

Siders, C. W.

Smith, A. V.

Smith, J. J.

Söderlund, M. J.

Sones, C.

Sridharan, A. K.

Stappaerts, E. A.

Stihler, C.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally-induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7, 59 (2018).
[Crossref]

Stutzki, F.

Sun, S.

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

Tünnermann, A.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally-induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7, 59 (2018).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23, 15265–15277 (2015).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Unger, S.

Vezin, H.

Vitiello, M.

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

Wang, J.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

Wang, X.

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

L. Kong, M. Li, J. Leng, X. Wang, and P. Zhou, “Experimental investigation of the photodarkening induced core laser leakage in a 3  kW co-pumping fiber amplifier,” Proc. SPIE 10436, 104360N (2017).
[Crossref]

Wang, Y.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532  nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers,” Opt. Express 27, 26523–26531 (2019).
[Crossref]

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Wang, Y. B.

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Wang, Y.-B.

Ward, B.

Windeler, R.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CTuQ5.

Xie, L.

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Xing, Y.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532  nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers,” Opt. Express 27, 26523–26531 (2019).
[Crossref]

Xing, Y.-B.

Yang, L.

Yang, L. Y.

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Yang, L.-Y.

Yang, Y.

Ye, C.

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).
[Crossref]

Yoo, S.

Yu, J.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Zhan, H.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

Zhang, B. M.

Zhao, N.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

Y.-B. Xing, Y.-Z. Liu, N. Zhao, R.-T. Cao, Y.-B. Wang, Y. Yang, J.-G. Peng, H.-Q. Li, L.-Y. Yang, N.-L. Dai, and J.-Y. Li, “Radical passive bleaching of Tm-doped silica fiber with deuterium,” Opt. Lett. 43, 1075–1078 (2018).
[Crossref]

N. Zhao, Y. Liu, M. Li, J. Li, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping,” Opt. Express 25, 18191–18196 (2017).
[Crossref]

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

Zhou, P.

L. Kong, M. Li, J. Leng, X. Wang, and P. Zhou, “Experimental investigation of the photodarkening induced core laser leakage in a 3  kW co-pumping fiber amplifier,” Proc. SPIE 10436, 104360N (2017).
[Crossref]

L. Kong, J. Leng, P. Zhou, and Z. Jiang, “Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber,” Opt. Express 25, 2639–2648 (2017).
[Crossref]

Zhu, R.

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Appl. Opt. (1)

Chin. Phys. Lett. (1)

G. Chen, L. Xie, Y. B. Wang, N. Zhao, H. Q. Li, Z. W. Jiang, J. G. Peng, L. Y. Yang, N. L. Dai, and J. Y. Li, “Photodarkening-induced absorption and fluorescence changes in Yb fibers,” Chin. Phys. Lett. 30, 104208 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Ye, L. Petit, J. J. Koponen, I.-N. Hu, and A. Galvanauskas, “Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20, 0903512 (2014).
[Crossref]

IEEE Photon. J. (2)

S. Liu, K. Peng, H. Zhan, L. Ni, X. Wang, Y. Wang, Y. Li, J. Yu, L. Jiang, R. Zhu, J. Wang, F. Jing, and A. Lin, “3 kW 20/400 Yb-doped aluminophosphosilicate fiber with high stability,” IEEE Photon. J. 10, 1503408 (2018).
[Crossref]

Y. Li, S. Liu, H. Zhan, K. Peng, S. Sun, J. Jiang, X. Wang, L. Ni, L. Jiang, J. Wang, F. Jing, and A. Lin, “Fiber design and fabrication of Yb/Ce codoped aluminosilicate laser fiber with high laser stability,” IEEE Photon. J. 10, 1502908 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photo-darkening induced thermal load in Yb-doped fiber lasers,” IEEE Photon. Technol. Lett. 31, 809–812 (2019).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

M. Vitiello, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, G. Pacchioni, A. N. Lopez, F. Illas, G. Pacchioni, N. Lopez, F. Illas, and G. Pacchioni, “H2 cracking at SiO2 defect centers,” J. Phys. Chem. A 104, 4674–4684 (2000).
[Crossref]

Laser Phys. Lett. (1)

K. K. Bobkov, M. M. Bubnov, S. S. Aleshkina, and M. E. Likhachev, “Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers,” Laser Phys. Lett. 14, 015102 (2017).
[Crossref]

Light Sci. Appl. (1)

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally-induced refractive index gratings in Yb-doped fibers,” Light Sci. Appl. 7, 59 (2018).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Opt. Express (15)

L. Kong, J. Leng, P. Zhou, and Z. Jiang, “Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber,” Opt. Express 25, 2639–2648 (2017).
[Crossref]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15, 14838–14843 (2007).
[Crossref]

P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express 16, 4688–4697 (2008).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
[Crossref]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16, 15540–15545 (2008).
[Crossref]

R. Cao, X. Lin, Y. Chen, Y. Cheng, Y. Wang, Y. Xing, H. Li, L. Yang, G. Chen, and J. Li, “532  nm pump induced photo-darkening inhibition and photo-bleaching in high power Yb-doped fiber amplifiers,” Opt. Express 27, 26523–26531 (2019).
[Crossref]

I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. B. Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15, 1606–1611 (2007).
[Crossref]

M. Leich, U. Röpke, S. Jetschke, S. Unger, V. Reichel, and J. Kirchhof, “Non-isothermal bleaching of photodarkened Yb-doped fibers,” Opt. Express 17, 12588–12593 (2009).
[Crossref]

K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17, 17855–17861 (2009).
[Crossref]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19, 10180–10192 (2011).
[Crossref]

T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier, “Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber,” Opt. Express 21, 8382–8392 (2013).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23, 15265–15277 (2015).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23, 20203–20218 (2015).
[Crossref]

B. Ward, “Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers,” Opt. Express 24, 3488–3501 (2016).
[Crossref]

N. Zhao, Y. Liu, M. Li, J. Li, J. Peng, L. Yang, N. Dai, H. Li, and J. Li, “Mitigation of photodarkening effect in Yb-doped fiber through Na+ ions doping,” Opt. Express 25, 18191–18196 (2017).
[Crossref]

Opt. Lett. (4)

Proc. SPIE (2)

L. Kong, M. Li, J. Leng, X. Wang, and P. Zhou, “Experimental investigation of the photodarkening induced core laser leakage in a 3  kW co-pumping fiber amplifier,” Proc. SPIE 10436, 104360N (2017).
[Crossref]

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 6873, 68731E (2008).
[Crossref]

Science (1)

J. Nilsson and D. N. Payne, “Physics: high-power fiber lasers,” Science 332, 921–922 (2011).
[Crossref]

Other (2)

B. Shiner, “The impact of fiber laser technology on the world wide material processing market,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2013), paper AF2J.1.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CTuQ5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. (a) Measurement scheme of PD loss; (b) structure of high-power MOPA system.
Fig. 2.
Fig. 2. Absorption spectra before and after 300 min pumping of (a) the pristine N1 fiber and (b) the H2-loaded N1 fiber.
Fig. 3.
Fig. 3. PD-induced excess loss and fitting curve at 633, 702, 810, and 1041 nm for (a) the pristine N1 fiber and (b) the H2-loaded N1 fiber.
Fig. 4.
Fig. 4. Time dependence of the output power of the pristine N2 fiber.
Fig. 5.
Fig. 5. Output power and STD as functions of pump power for the pristine N2 fiber.
Fig. 6.
Fig. 6. Time-domain signal and frequency-domain signal of the pristine N2 fiber at the initial state.
Fig. 7.
Fig. 7. Evolution of the MI threshold of the pristine N2 fiber.
Fig. 8.
Fig. 8. Relative transmittance at 638 nm of the pristine N2 fiber before and after 300 min pumping, and the calculated inversion along the fiber.
Fig. 9.
Fig. 9. Time dependence of output power in the H2-loaded N2 fiber and the pristine fiber.
Fig. 10.
Fig. 10. Output power and STD as functions of pump power for the H2-loaded N2 fiber.
Fig. 11.
Fig. 11. Time-domain signal and frequency-domain signal of the H2-loaded N2 fiber at the initial state.
Fig. 12.
Fig. 12. Relative transmittance at 638 nm of the pristine N2 fiber and the H2-loaded N2 fiber after 300 min pumping.
Fig. 13.
Fig. 13. Schematic representation of H2 cracking NBOHC and AlOHC.