Abstract

This paper reports the physical phenomenon of the temporal overlapping double femtosecond laser-induced ablation enhancement at different time delays. Detailed thermodynamic modeling demonstrates the ablation enhancement is highly dependent on the first pulse’s laser fluence. In the case of the first pulse laser fluence being higher than material’s ablation threshold, the ablation enhancement is attributed to optical absorption modification by the first pulse ablation. While the first pulse’s laser fluence is lower than the material’s ablation threshold, the first pulse-induced melting leads to much higher absorption of the second pulse. However, for the case of the first pulse’s laser fluence even lower than melting threshold, the ablation enhancement decreases obviously with time delay. The results of the temporal overlapping double femtosecond laser ablation of poly(ε-caprolactone) are in good agreement with the theoretical predictions.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy

Moritz Grehn, Thomas Seuthe, Michael Höfner, Nils Griga, Christoph Theiss, Alexandre Mermillod-Blondin, Markus Eberstein, Hans Eichler, and Jörn Bonse
Opt. Mater. Express 4(4) 689-700 (2014)

Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation

Sandra Höhm, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(20) 25959-25971 (2015)

Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon

Thibault J.-Y. Derrien, Jörg Krüger, Tatiana E. Itina, Sandra Höhm, Arkadi Rosenfeld, and Jörn Bonse
Opt. Express 21(24) 29643-29655 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tiinnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
    [Crossref]
  2. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
    [Crossref]
  3. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
    [Crossref]
  4. P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
    [Crossref]
  5. M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255, 5120–5124 (2009).
    [Crossref]
  6. D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89, 255504 (2002).
    [Crossref]
  7. R. Zhou, S. D. Lin, Y. Ding, H. Yang, K. O. Y. Keng, and M. H. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electron. Adv. 1, 18001401 (2018).
    [Crossref]
  8. F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, and R. Kling, “Controlling 2D laser nano structuring over large area with double femtosecond pulses,” Appl. Surf. Sci. 470, 677–686 (2019).
    [Crossref]
  9. S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
    [Crossref]
  10. Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China Phys. Mech. Astron. 62, 034211 (2019).
    [Crossref]
  11. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5, 26–41 (2011).
    [Crossref]
  12. A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
    [Crossref]
  13. T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304 (2009).
    [Crossref]
  14. Y. Qi, H. Qi, Q. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
    [Crossref]
  15. M. Qiao, J. Yan, and B. Gao, “Ablation of TiO2 surface with a double-pulse femtosecond laser,” Opt. Commun. 441, 49–54 (2019).
    [Crossref]
  16. T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
    [Crossref]
  17. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” J. Appl. Phys. A 85, 6803–6810 (1999).
    [Crossref]
  18. J. Krüger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light, Vol. 168 of Advances in Polymer Science (Springer, 2004), pp. 247–290.
    [Crossref]
  19. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
    [Crossref]
  20. T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86, 251103 (2005).
    [Crossref]
  21. I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
    [Crossref]
  22. A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
    [Crossref]
  23. E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
    [Crossref]
  24. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [Crossref]
  25. T. K. Dash and V. B. Konkimalla, “Poly-epsilon-caprolactone based formulations for drug delivery and tissue engineering: a review,” J. Control. Release 158, 15–33 (2012).
    [Crossref]
  26. K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
    [Crossref]
  27. K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26, 763–769 (2005).
    [Crossref]
  28. W. Knoll, “Optical properties of polymers,” in Materials Science and Technology (VCH, 1993), pp. 529–594.
  29. U. M. Fornefeld-Schwarz and P. Svejda, “Refractive indices and relative permittivities of liquid mixtures of gamma-butyrolactone, gamma-valerolactone, delta-valerolactone, or epsilon-caprolactone plus benzene, plus toluene, or plus ethylbenzene at 293.15  K and 313.15  K and atmospheric pressure,” J. Chem. Eng. Data 44, 597–604 (1999).
    [Crossref]
  30. S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
    [Crossref]

2019 (4)

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, and R. Kling, “Controlling 2D laser nano structuring over large area with double femtosecond pulses,” Appl. Surf. Sci. 470, 677–686 (2019).
[Crossref]

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China Phys. Mech. Astron. 62, 034211 (2019).
[Crossref]

M. Qiao, J. Yan, and B. Gao, “Ablation of TiO2 surface with a double-pulse femtosecond laser,” Opt. Commun. 441, 49–54 (2019).
[Crossref]

2018 (1)

R. Zhou, S. D. Lin, Y. Ding, H. Yang, K. O. Y. Keng, and M. H. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electron. Adv. 1, 18001401 (2018).
[Crossref]

2017 (1)

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

2016 (1)

E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
[Crossref]

2015 (1)

Y. Qi, H. Qi, Q. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

2012 (1)

T. K. Dash and V. B. Konkimalla, “Poly-epsilon-caprolactone based formulations for drug delivery and tissue engineering: a review,” J. Control. Release 158, 15–33 (2012).
[Crossref]

2011 (1)

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5, 26–41 (2011).
[Crossref]

2010 (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[Crossref]

2009 (2)

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304 (2009).
[Crossref]

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255, 5120–5124 (2009).
[Crossref]

2005 (4)

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
[Crossref]

T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86, 251103 (2005).
[Crossref]

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26, 763–769 (2005).
[Crossref]

2004 (1)

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
[Crossref]

2003 (1)

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[Crossref]

2002 (2)

D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89, 255504 (2002).
[Crossref]

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

1999 (2)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” J. Appl. Phys. A 85, 6803–6810 (1999).
[Crossref]

U. M. Fornefeld-Schwarz and P. Svejda, “Refractive indices and relative permittivities of liquid mixtures of gamma-butyrolactone, gamma-valerolactone, delta-valerolactone, or epsilon-caprolactone plus benzene, plus toluene, or plus ethylbenzene at 293.15  K and 313.15  K and atmospheric pressure,” J. Chem. Eng. Data 44, 597–604 (1999).
[Crossref]

1998 (2)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tiinnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

1989 (1)

S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Ageev, E. I.

E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
[Crossref]

Amoruso, S.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304 (2009).
[Crossref]

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Armas, M. S.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
[Crossref]

Banhart, F.

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5, 26–41 (2011).
[Crossref]

Banks, P. S.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
[Crossref]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” J. Appl. Phys. A 85, 6803–6810 (1999).
[Crossref]

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Braunlich, P.

S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Bruzzese, R.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304 (2009).
[Crossref]

Bychenkov, V. Y.

E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
[Crossref]

Campbell, E. M.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
[Crossref]

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Chen, L.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

Chen, Z.

Y. Qi, H. Qi, Q. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tiinnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Choi, T. Y.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

Chong, T. C.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[Crossref]

Chowdhury, I. H.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

Dash, T. K.

T. K. Dash and V. B. Konkimalla, “Poly-epsilon-caprolactone based formulations for drug delivery and tissue engineering: a review,” J. Control. Release 158, 15–33 (2012).
[Crossref]

Ding, Y.

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China Phys. Mech. Astron. 62, 034211 (2019).
[Crossref]

R. Zhou, S. D. Lin, Y. Ding, H. Yang, K. O. Y. Keng, and M. H. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electron. Adv. 1, 18001401 (2018).
[Crossref]

Dodell, A. L.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
[Crossref]

Donnelly, T.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304 (2009).
[Crossref]

Dutouquet, C.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
[Crossref]

ElKabbash, M.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” J. Appl. Phys. A 85, 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Fornefeld-Schwarz, U. M.

U. M. Fornefeld-Schwarz and P. Svejda, “Refractive indices and relative permittivities of liquid mixtures of gamma-butyrolactone, gamma-valerolactone, delta-valerolactone, or epsilon-caprolactone plus benzene, plus toluene, or plus ethylbenzene at 293.15  K and 313.15  K and atmospheric pressure,” J. Chem. Eng. Data 44, 597–604 (1999).
[Crossref]

Forsman, A. C.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
[Crossref]

Fraggelakis, F.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, and R. Kling, “Controlling 2D laser nano structuring over large area with double femtosecond pulses,” Appl. Surf. Sci. 470, 677–686 (2019).
[Crossref]

Gao, B.

M. Qiao, J. Yan, and B. Gao, “Ablation of TiO2 surface with a double-pulse femtosecond laser,” Opt. Commun. 441, 49–54 (2019).
[Crossref]

Goh, S. W.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26, 763–769 (2005).
[Crossref]

Grigoropoulos, C. P.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

Guo, C.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

Ho, G. W.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

Hong, M.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26, 763–769 (2005).
[Crossref]

Hong, M. H.

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China Phys. Mech. Astron. 62, 034211 (2019).
[Crossref]

R. Zhou, S. D. Lin, Y. Ding, H. Yang, K. O. Y. Keng, and M. H. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electron. Adv. 1, 18001401 (2018).
[Crossref]

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[Crossref]

Hu, Z.

Y. Qi, H. Qi, Q. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Hwang, D. J.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

Ionin, A. A.

E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
[Crossref]

Jalil, S. A.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

Ji, R.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Kamata, M.

T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86, 251103 (2005).
[Crossref]

Kang, N.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

Kautek, W.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

J. Krüger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light, Vol. 168 of Advances in Polymer Science (Springer, 2004), pp. 247–290.
[Crossref]

Keng, K. O. Y.

R. Zhou, S. D. Lin, Y. Ding, H. Yang, K. O. Y. Keng, and M. H. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electron. Adv. 1, 18001401 (2018).
[Crossref]

Khishchenko, K. V.

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255, 5120–5124 (2009).
[Crossref]

Kling, R.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, and R. Kling, “Controlling 2D laser nano structuring over large area with double femtosecond pulses,” Appl. Surf. Sci. 470, 677–686 (2019).
[Crossref]

Knoll, W.

W. Knoll, “Optical properties of polymers,” in Materials Science and Technology (VCH, 1993), pp. 529–594.

Konkimalla, V. B.

T. K. Dash and V. B. Konkimalla, “Poly-epsilon-caprolactone based formulations for drug delivery and tissue engineering: a review,” J. Control. Release 158, 15–33 (2012).
[Crossref]

Kotakoski, J.

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5, 26–41 (2011).
[Crossref]

Krasheninnikov, A. V.

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5, 26–41 (2011).
[Crossref]

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

Krüger, J.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

J. Krüger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light, Vol. 168 of Advances in Polymer Science (Springer, 2004), pp. 247–290.
[Crossref]

Kudryashov, S. I.

E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
[Crossref]

Lan, B.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26, 763–769 (2005).
[Crossref]

Lenzner, M.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

Levashov, P. R.

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255, 5120–5124 (2009).
[Crossref]

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[Crossref]

D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89, 255504 (2002).
[Crossref]

Lin, S. D.

R. Zhou, S. D. Lin, Y. Ding, H. Yang, K. O. Y. Keng, and M. H. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electron. Adv. 1, 18001401 (2018).
[Crossref]

Lopez, J.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, and R. Kling, “Controlling 2D laser nano structuring over large area with double femtosecond pulses,” Appl. Surf. Sci. 470, 677–686 (2019).
[Crossref]

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[Crossref]

Lunney, J. G.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304 (2009).
[Crossref]

Manek-Hönninger, I.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, and R. Kling, “Controlling 2D laser nano structuring over large area with double femtosecond pulses,” Appl. Surf. Sci. 470, 677–686 (2019).
[Crossref]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[Crossref]

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Mincuzzi, G.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, and R. Kling, “Controlling 2D laser nano structuring over large area with double femtosecond pulses,” Appl. Surf. Sci. 470, 677–686 (2019).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tiinnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Mourou, G.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

Nagata, T.

T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86, 251103 (2005).
[Crossref]

Ni, X.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304 (2009).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tiinnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Obara, M.

T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86, 251103 (2005).
[Crossref]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Perez, D.

D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89, 255504 (2002).
[Crossref]

Perry, M. D.

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
[Crossref]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” J. Appl. Phys. A 85, 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Petrov, A. A.

E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
[Crossref]

Povarnitsyn, M. E.

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255, 5120–5124 (2009).
[Crossref]

Qi, H.

Y. Qi, H. Qi, Q. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Qi, Y.

Y. Qi, H. Qi, Q. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Qiao, M.

M. Qiao, J. Yan, and B. Gao, “Ablation of TiO2 surface with a double-pulse femtosecond laser,” Opt. Commun. 441, 49–54 (2019).
[Crossref]

Ren, L.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” J. Appl. Phys. A 85, 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Samokhvalov, A. A.

E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
[Crossref]

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

Semerok, A.

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
[Crossref]

Shen, X. A.

S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Shi, L. P.

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Singh, S. C.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Spielmann, C.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” J. Appl. Phys. A 85, 6803–6810 (1999).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Svejda, P.

U. M. Fornefeld-Schwarz and P. Svejda, “Refractive indices and relative permittivities of liquid mixtures of gamma-butyrolactone, gamma-valerolactone, delta-valerolactone, or epsilon-caprolactone plus benzene, plus toluene, or plus ethylbenzene at 293.15  K and 313.15  K and atmospheric pressure,” J. Chem. Eng. Data 44, 597–604 (1999).
[Crossref]

Tan, C. F.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

Teoh, S. H.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26, 763–769 (2005).
[Crossref]

Thian, E. S.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

Tiaw, K. S.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26, 763–769 (2005).
[Crossref]

Tiinnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tiinnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Veiko, V. P.

E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tiinnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Wang, Q.

Y. Qi, H. Qi, Q. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Wang, X.

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304 (2009).
[Crossref]

Wang, Z.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26, 763–769 (2005).
[Crossref]

Weiner, A. M.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

Xu, K.

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

Xu, X.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

Yan, J.

M. Qiao, J. Yan, and B. Gao, “Ablation of TiO2 surface with a double-pulse femtosecond laser,” Opt. Commun. 441, 49–54 (2019).
[Crossref]

Yang, H.

R. Zhou, S. D. Lin, Y. Ding, H. Yang, K. O. Y. Keng, and M. H. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electron. Adv. 1, 18001401 (2018).
[Crossref]

Yang, J.

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

Yang, L. J.

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China Phys. Mech. Astron. 62, 034211 (2019).
[Crossref]

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” J. Appl. Phys. A 85, 6803–6810 (1999).
[Crossref]

Zhou, R.

R. Zhou, S. D. Lin, Y. Ding, H. Yang, K. O. Y. Keng, and M. H. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electron. Adv. 1, 18001401 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

K. Xu, Z. Wang, C. F. Tan, N. Kang, L. Chen, L. Ren, E. S. Thian, G. W. Ho, R. Ji, and M. Hong, “Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics,” ACS Appl. Mater. Interfaces 9, 26341–26349 (2017).
[Crossref]

ACS Nano (1)

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in graphene,” ACS Nano 5, 26–41 (2011).
[Crossref]

Appl. Phys. A (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tiinnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[Crossref]

Appl. Phys. Lett. (3)

T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86, 251103 (2005).
[Crossref]

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

E. I. Ageev, V. Y. Bychenkov, A. A. Ionin, S. I. Kudryashov, A. A. Petrov, A. A. Samokhvalov, and V. P. Veiko, “Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness,” Appl. Phys. Lett. 109, 211902 (2016).
[Crossref]

Appl. Surf. Sci. (4)

M. E. Povarnitsyn, K. V. Khishchenko, and P. R. Levashov, “Phase transitions in femtosecond laser ablation,” Appl. Surf. Sci. 255, 5120–5124 (2009).
[Crossref]

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, and R. Kling, “Controlling 2D laser nano structuring over large area with double femtosecond pulses,” Appl. Surf. Sci. 470, 677–686 (2019).
[Crossref]

S. A. Jalil, J. Yang, M. ElKabbash, S. C. Singh, and C. Guo, “Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams,” Appl. Surf. Sci. 471, 516–520 (2019).
[Crossref]

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

Biomaterials (1)

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26, 763–769 (2005).
[Crossref]

J. Appl. Phys. (2)

A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302 (2005).
[Crossref]

T. Donnelly, J. G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, and X. Ni, “Double pulse ultrafast laser ablation of nickel in vacuum,” J. Appl. Phys. 106, 013304 (2009).
[Crossref]

J. Appl. Phys. A (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” J. Appl. Phys. A 85, 6803–6810 (1999).
[Crossref]

J. Chem. Eng. Data (1)

U. M. Fornefeld-Schwarz and P. Svejda, “Refractive indices and relative permittivities of liquid mixtures of gamma-butyrolactone, gamma-valerolactone, delta-valerolactone, or epsilon-caprolactone plus benzene, plus toluene, or plus ethylbenzene at 293.15  K and 313.15  K and atmospheric pressure,” J. Chem. Eng. Data 44, 597–604 (1999).
[Crossref]

J. Control. Release (1)

T. K. Dash and V. B. Konkimalla, “Poly-epsilon-caprolactone based formulations for drug delivery and tissue engineering: a review,” J. Control. Release 158, 15–33 (2012).
[Crossref]

Laser Photon. Rev. (1)

T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4, 123–143 (2010).
[Crossref]

Opt. Commun. (1)

M. Qiao, J. Yan, and B. Gao, “Ablation of TiO2 surface with a double-pulse femtosecond laser,” Opt. Commun. 441, 49–54 (2019).
[Crossref]

Opt. Eng. (1)

S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Opt. Laser Technol. (1)

Y. Qi, H. Qi, Q. Wang, Z. Chen, and Z. Hu, “The influence of double pulse delay and ambient pressure on femtosecond laser ablation of silicon,” Opt. Laser Technol. 66, 68–77 (2015).
[Crossref]

Opto-Electron. Adv. (1)

R. Zhou, S. D. Lin, Y. Ding, H. Yang, K. O. Y. Keng, and M. H. Hong, “Enhancement of laser ablation via interacting spatial double-pulse effect,” Opto-Electron. Adv. 1, 18001401 (2018).
[Crossref]

Phys. Rev. Lett. (5)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

P. Lorazo, L. J. Lewis, and M. Meunier, “Short-pulse laser ablation of solids: from phase explosion to fragmentation,” Phys. Rev. Lett. 91, 225502 (2003).
[Crossref]

D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89, 255504 (2002).
[Crossref]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

Y. Ding, L. J. Yang, and M. H. Hong, “Enhancement of pulsed laser ablation assisted with continuous wave laser irradiation,” Sci. China Phys. Mech. Astron. 62, 034211 (2019).
[Crossref]

Thin Solid Films (1)

A. Semerok and C. Dutouquet, “Ultrashort double pulse laser ablation of metals,” Thin Solid Films 453–454, 501–505 (2004).
[Crossref]

Other (2)

W. Knoll, “Optical properties of polymers,” in Materials Science and Technology (VCH, 1993), pp. 529–594.

J. Krüger and W. Kautek, “Ultrashort pulse laser interaction with dielectrics and polymers,” in Polymers and Light, Vol. 168 of Advances in Polymer Science (Springer, 2004), pp. 247–290.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of double-pulse laser irradiated temperature field distributions at the FP laser fluence of (a) higher than ablation threshold, (b) lower than ablation threshold, and (c) lower than melting threshold.
Fig. 2.
Fig. 2. Schematic diagram of the experimental setup of temporal overlapping double-pulse laser ablation.
Fig. 3.
Fig. 3. Surface ablation on PCL film generated by single-pulse femtosecond laser irradiation at different laser fluences. (a) 80, (b) 96, (c) 112, (d) 128, (e) 144, and (f) 160  μJ/cm2; surface ablation on PCL film generated by double-pulse femtosecond laser irradiation at 264-fs time delay and different total laser fluences: (g) 80, (h) 96, (i) 112, (j) 128, (k) 144, and (l) 160  μJ/cm2.
Fig. 4.
Fig. 4. (a) Horizontal and (c) vertical cross section of surface ablation on PCL film generated by single-pulse femtosecond laser irradiation at different laser fluences; (b) horizontal and (d) vertical cross section of surface ablation on PCL film generated by double-pulse femtosecond laser irradiation at 264-fs time delay and different laser fluences. (e) Ablation volume as a function of laser fluence for single and double pulses.
Fig. 5.
Fig. 5. Ablation enhancement factor by double-pulse laser ablation on PCL film at different laser fluences. (a) FP, 40  μJ/cm2 and SP, 40  μJ/cm2; (b) FP, 48  μJ/cm2 and SP, 48  μJ/cm2; (c) FP, 56  μJ/cm2 and SP, 56  μJ/cm2; (d) FP, 64  μJ/cm2 and SP, 64  μJ/cm2; (e) FP, 72  μJ/cm2 and SP, 72  μJ/cm2; (f) FP, 80  μJ/cm2 and SP, 80  μJ/cm2.
Fig. 6.
Fig. 6. Surface ablation on PCL film generated by single-pulse femtosecond laser irradiation at different laser fluences. (a) 48, (b) 40, and (c) 32  μJ/cm2; (d), (e) ablation volumes at different laser fluence ratios for double-pulse irradiation on PCL film. The total laser fluence is kept at 112  μJ/cm2.
Fig. 7.
Fig. 7. Calculated evolution of free-electron density for the single pulse and double pulses (75 fs time delay) at a 150 fs, 800 nm pulse of different total peak intensities. (a) 2.5, (b) 5, (c) 7.5, and (d) 10  TW/cm2.
Fig. 8.
Fig. 8. Surface ablation generated by double-pulse femtosecond laser irradiation on PCL film at a total laser fluence of 160  μJ/cm2 (FP, 80  μJ/cm2 and SP, 80  μJ/cm2) and different time delays of (a) 0, (b) 66, (c) 132, (d) 198, (e) 330, (f) 396, (g) 462, (h) 528, and (i) 594 fs; (j) corresponding ablation volume as a function of time delay.
Fig. 9.
Fig. 9. Surface ablation generated by double-pulse femtosecond laser irradiation on PCL film at a total laser fluence of 112  μJ/cm2 (FP, 56  μJ/cm2 and SP, 56  μJ/cm2) and different time delays of (a) 0, (b) 66, (c) 132, (d) 198, (e) 330, (f) 396, (g) 462, (h) 528, and (i) 594 fs; (j) corresponding ablation volume as a function of time delay.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n(t)t=aI(t)n(t)+σkIk(t).
n1(t)t=aI1(t)n1(t)+σk1I1k(t),
n2(t)t=aI2(t)[n1(t)+n2(t)]+σk2I2k(t).