Abstract

We fabricated a three-dimensional microstructured optical waveguide (MOW) in a single-crystal using femtosecond-laser writing and phosphoric acid etching techniques, and observed excellent midinfrared waveguiding performance with low loss of 0.5  dB/cm. Tracks with a periodic arrangement were written inside the yttrium aluminum garnet (YAG) crystal via femtosecond laser inscription, and then etched by the phosphoric acid (H3PO4) to form hollow structures. The evolution of the microstructure of tracks was investigated in detail. The function of the MOW was analyzed by different numerical methods, indicating the proposed MOW can effectively operate in quasi-single-mode pattern in the midinfrared wavelength range, which agrees well with our experiment results.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing

Ruiyun He, Irene Hernández-Palmero, Carolina Romero, Javier R. Vázquez de Aldana, and Feng Chen
Opt. Express 22(25) 31293-31298 (2014)

Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance

Hongliang Liu, Yuechen Jia, Javier Rodríguez Vázquez de Aldana, Daniel Jaque, and Feng Chen
Opt. Express 20(17) 18620-18629 (2012)

Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching

An Pan, Bo Gao, Tao Chen, Jinhai Si, Cunxia Li, Feng Chen, and Xun Hou
Opt. Express 22(12) 15245-15250 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53, 071819 (2014).
    [Crossref]
  2. F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
    [Crossref]
  3. B. Jean and T. Bende, “Mid-IR laser applications in medicine,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer, 2003), pp. 511–546.
  4. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6  μm continuous-wave modulation hard target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
    [Crossref]
  5. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
    [Crossref]
  6. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
    [Crossref]
  7. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
    [Crossref]
  8. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
    [Crossref]
  9. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).
    [Crossref]
  10. D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
    [Crossref]
  11. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
    [Crossref]
  12. R. Airan and K. K. Ajoy, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19, 17820–17833 (2011).
    [Crossref]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  14. F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
    [Crossref]
  15. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
    [Crossref]
  16. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
    [Crossref]
  17. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
    [Crossref]
  18. A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
    [Crossref]
  19. D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, and A. K. Kar, “Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications,” Appl. Phys. Lett. 103, 041101 (2013).
    [Crossref]
  20. X. Q. Liu, B. F. Bai, Q. D. Chen, and H. B. Sun, “Etching-assisted femtosecond laser modification of hard materials,” Opto-Electron. Adv. 2, 190021 (2019).
    [Crossref]
  21. K. Hasse, G. Huber, and C. Kränkel, “Selective etching of fs-laser inscribed high aspect ratio microstructures in YAG,” Opt. Mater. Express 9, 3627–3637 (2019).
    [Crossref]
  22. S. W. Luo and H. Y. Tsai, “Fabrication of 3D photonic structure on glass materials by femtosecond laser modification with HF etching process,” J. Mater. Process. Tech. 213, 2262–2269 (2013).
    [Crossref]
  23. C. W. Cheng, J. S. Chen, P. X. Lee, and C. W. Chien, “Fabrication of microstructures in Foturan glass using infrared femtosecond laser pulses and chemical etching,” Opt. Laser. Eng. 48, 811–815 (2010).
    [Crossref]
  24. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  25. P. Ferraro, S. Grilli, and P. De Natale, Ferroelectric Crystals for Photonic Applications (Springer, 2009).
  26. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer, 1990).
  27. Y. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and K. K. Ajoy, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
    [Crossref]
  28. J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, and Y. Hu, “Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method,” Infrared Laser Eng. 39, 76–80 (2010).
  29. D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0  μm,” Appl. Opt. 37, 4933–4935 (1998).
    [Crossref]
  30. M. J. Steel and B. J. Eggleton, “Software speeds measurement and modeling of air-silica photonic crystals,” Photon. Spectra 39, 88–94 (2005).
  31. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref]
  32. J. M. Lv, Y. Z. Cheng, W. H. Yuan, X. T. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5, 1274–1280 (2015).
    [Crossref]
  33. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, and L. L. Wang, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
    [Crossref]
  34. D. Marcuse, “Loss analysis of single-mode fiber splices,” Tech. J. 56, 703–718 (1977).
    [Crossref]
  35. Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
    [Crossref]

2019 (3)

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
[Crossref]

X. Q. Liu, B. F. Bai, Q. D. Chen, and H. B. Sun, “Etching-assisted femtosecond laser modification of hard materials,” Opto-Electron. Adv. 2, 190021 (2019).
[Crossref]

K. Hasse, G. Huber, and C. Kränkel, “Selective etching of fs-laser inscribed high aspect ratio microstructures in YAG,” Opt. Mater. Express 9, 3627–3637 (2019).
[Crossref]

2015 (1)

2014 (4)

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53, 071819 (2014).
[Crossref]

2013 (3)

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, and A. K. Kar, “Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications,” Appl. Phys. Lett. 103, 041101 (2013).
[Crossref]

S. W. Luo and H. Y. Tsai, “Fabrication of 3D photonic structure on glass materials by femtosecond laser modification with HF etching process,” J. Mater. Process. Tech. 213, 2262–2269 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (2)

J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, and Y. Hu, “Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method,” Infrared Laser Eng. 39, 76–80 (2010).

C. W. Cheng, J. S. Chen, P. X. Lee, and C. W. Chien, “Fabrication of microstructures in Foturan glass using infrared femtosecond laser pulses and chemical etching,” Opt. Laser. Eng. 48, 811–815 (2010).
[Crossref]

2009 (3)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6  μm continuous-wave modulation hard target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[Crossref]

2008 (2)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

2007 (1)

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, and L. L. Wang, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[Crossref]

2006 (3)

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[Crossref]

2005 (2)

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref]

M. J. Steel and B. J. Eggleton, “Software speeds measurement and modeling of air-silica photonic crystals,” Photon. Spectra 39, 88–94 (2005).

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

2001 (1)

1998 (2)

D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0  μm,” Appl. Opt. 37, 4933–4935 (1998).
[Crossref]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).
[Crossref]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Tech. J. 56, 703–718 (1977).
[Crossref]

Airan, R.

Ajoy, K. K.

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

Aoki, I.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

Atuchin, V.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Azanova, I. S.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Bado, P.

Bai, B. F.

X. Q. Liu, B. F. Bai, Q. D. Chen, and H. B. Sun, “Etching-assisted femtosecond laser modification of hard materials,” Opto-Electron. Adv. 2, 190021 (2019).
[Crossref]

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

Beecher, S.

Bellouard, Y.

Bende, T.

B. Jean and T. Bende, “Mid-IR laser applications in medicine,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer, 2003), pp. 511–546.

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

Brown, G.

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Castillo, G. R.

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Chen, F.

J. M. Lv, Y. Z. Cheng, W. H. Yuan, X. T. Hao, and F. Chen, “Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal,” Opt. Mater. Express 5, 1274–1280 (2015).
[Crossref]

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Y. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and K. K. Ajoy, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[Crossref]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, and L. L. Wang, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[Crossref]

Chen, J. S.

C. W. Cheng, J. S. Chen, P. X. Lee, and C. W. Chien, “Fabrication of microstructures in Foturan glass using infrared femtosecond laser pulses and chemical etching,” Opt. Laser. Eng. 48, 811–815 (2010).
[Crossref]

Chen, Q. D.

X. Q. Liu, B. F. Bai, Q. D. Chen, and H. B. Sun, “Etching-assisted femtosecond laser modification of hard materials,” Opto-Electron. Adv. 2, 190021 (2019).
[Crossref]

Cheng, C.

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Cheng, C. W.

C. W. Cheng, J. S. Chen, P. X. Lee, and C. W. Chien, “Fabrication of microstructures in Foturan glass using infrared femtosecond laser pulses and chemical etching,” Opt. Laser. Eng. 48, 811–815 (2010).
[Crossref]

Cheng, Y. Z.

Chiappini, A.

G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53, 071819 (2014).
[Crossref]

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

Chien, C. W.

C. W. Cheng, J. S. Chen, P. X. Lee, and C. W. Chien, “Fabrication of microstructures in Foturan glass using infrared femtosecond laser pulses and chemical etching,” Opt. Laser. Eng. 48, 811–815 (2010).
[Crossref]

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, and A. K. Kar, “Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications,” Appl. Phys. Lett. 103, 041101 (2013).
[Crossref]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

Corrielli, G.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
[Crossref]

De Natale, P.

P. Ferraro, S. Grilli, and P. De Natale, Ferroelectric Crystals for Photonic Applications (Springer, 2009).

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

del Rosal Rabes, B.

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Díaz, F.

D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, and A. K. Kar, “Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications,” Appl. Phys. Lett. 103, 041101 (2013).
[Crossref]

Eggleton, B. J.

M. J. Steel and B. J. Eggleton, “Software speeds measurement and modeling of air-silica photonic crystals,” Photon. Spectra 39, 88–94 (2005).

Ferraro, P.

P. Ferraro, S. Grilli, and P. De Natale, Ferroelectric Crystals for Photonic Applications (Springer, 2009).

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[Crossref]

Grilli, S.

P. Ferraro, S. Grilli, and P. De Natale, Ferroelectric Crystals for Photonic Applications (Springer, 2009).

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Gu, M.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
[Crossref]

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

Hao, X. T.

Hasse, K.

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Hirano, Y.

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Hu, Y.

J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, and Y. Hu, “Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method,” Infrared Laser Eng. 39, 76–80 (2010).

Huber, G.

Imaki, M.

Jaque, D.

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, and A. K. Kar, “Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications,” Appl. Phys. Lett. 103, 041101 (2013).
[Crossref]

Jean, B.

B. Jean and T. Bende, “Mid-IR laser applications in medicine,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer, 2003), pp. 511–546.

Jia, Y. C.

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Jiao, Y.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, and L. L. Wang, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[Crossref]

Joannopoulos, J. D.

John, S.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
[Crossref]

Johnson, S. G.

Kalabin, I. E.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Kameyama, S.

Kaminskii, A. A.

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer, 1990).

Kar, A. K.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, and A. K. Kar, “Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications,” Appl. Phys. Lett. 103, 041101 (2013).
[Crossref]

Kawakami, S.

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[Crossref]

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).
[Crossref]

Kränkel, C.

Lee, P. X.

C. W. Cheng, J. S. Chen, P. X. Lee, and C. W. Chien, “Fabrication of microstructures in Foturan glass using infrared femtosecond laser pulses and chemical etching,” Opt. Laser. Eng. 48, 811–815 (2010).
[Crossref]

Liao, J. W.

J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, and Y. Hu, “Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method,” Infrared Laser Eng. 39, 76–80 (2010).

Liu, X. Q.

X. Q. Liu, B. F. Bai, Q. D. Chen, and H. B. Sun, “Etching-assisted femtosecond laser modification of hard materials,” Opto-Electron. Adv. 2, 190021 (2019).
[Crossref]

Luo, S. W.

S. W. Luo and H. Y. Tsai, “Fabrication of 3D photonic structure on glass materials by femtosecond laser modification with HF etching process,” J. Mater. Process. Tech. 213, 2262–2269 (2013).
[Crossref]

Lv, J. M.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Tech. J. 56, 703–718 (1977).
[Crossref]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

Min, Y. H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Nakajima, M.

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Osellame, R.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
[Crossref]

Otomo, A.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Page, R.

D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0  μm,” Appl. Opt. 37, 4933–4935 (1998).
[Crossref]

Paiè, P.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
[Crossref]

Paterson, L.

D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, and A. K. Kar, “Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications,” Appl. Phys. Lett. 103, 041101 (2013).
[Crossref]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

Qiu, F.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Ren, Y. Y.

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Righini, G. C.

G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53, 071819 (2014).
[Crossref]

Rodenas, A.

D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, and A. K. Kar, “Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications,” Appl. Phys. Lett. 103, 041101 (2013).
[Crossref]

Ródenas, A.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
[Crossref]

Y. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and K. K. Ajoy, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
[Crossref]

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

Said, A.

Sakaizawa, D.

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[Crossref]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[Crossref]

Shevtsov, D. I.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Small, D. L.

D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0  μm,” Appl. Opt. 37, 4933–4935 (1998).
[Crossref]

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Spring, A. M.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Steel, M. J.

M. J. Steel and B. J. Eggleton, “Software speeds measurement and modeling of air-silica photonic crystals,” Photon. Spectra 39, 88–94 (2005).

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Sun, H. B.

X. Q. Liu, B. F. Bai, Q. D. Chen, and H. B. Sun, “Etching-assisted femtosecond laser modification of hard materials,” Opto-Electron. Adv. 2, 190021 (2019).
[Crossref]

Tan, Y.

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Tang, J.

J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, and Y. Hu, “Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method,” Infrared Laser Eng. 39, 76–80 (2010).

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Taysin, I. F.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Tsai, H. Y.

S. W. Luo and H. Y. Tsai, “Fabrication of 3D photonic structure on glass materials by femtosecond laser modification with HF etching process,” J. Mater. Process. Tech. 213, 2262–2269 (2013).
[Crossref]

Ueno, S.

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Vazquez de Aldana, J. R.

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Vázquez de Aldana, J. R.

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Volynzev, A.

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Wang, K. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, and L. L. Wang, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[Crossref]

Wang, L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, and L. L. Wang, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[Crossref]

Wang, L. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, and L. L. Wang, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[Crossref]

Wang, X. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, and L. L. Wang, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[Crossref]

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[Crossref]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

Xu, Q.

J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, and Y. Hu, “Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method,” Infrared Laser Eng. 39, 76–80 (2010).

Yang, H. J.

J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, and Y. Hu, “Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method,” Infrared Laser Eng. 39, 76–80 (2010).

Yokoyama, S.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Yu, F.

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Yuan, S.

J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, and Y. Hu, “Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method,” Infrared Laser Eng. 39, 76–80 (2010).

Yuan, W. H.

Zelmon, D. E.

D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0  μm,” Appl. Opt. 37, 4933–4935 (1998).
[Crossref]

Appl. Phys. A (1)

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Appl. Phys. B (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131–150 (1998).
[Crossref]

Appl. Phys. Lett. (2)

D. Choudhury, A. Rodenas, L. Paterson, F. Díaz, D. Jaque, and A. K. Kar, “Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications,” Appl. Phys. Lett. 103, 041101 (2013).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, I. Aoki, A. Otomo, and S. Yokoyama, “Thin TiO2 core and electro-optic polymer cladding waveguide modulators,” Appl. Phys. Lett. 102, 233504 (2013).
[Crossref]

Appl. Opt. (1)

D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0  μm,” Appl. Opt. 37, 4933–4935 (1998).
[Crossref]

Infrared Laser Eng. (1)

J. Tang, H. J. Yang, Q. Xu, J. W. Liao, S. Yuan, and Y. Hu, “Analysis of the transfer characteristics of one-dimensional photonic crystal and its application with transfer matrix method,” Infrared Laser Eng. 39, 76–80 (2010).

J. Appl. Phys. (3)

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, and L. L. Wang, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[Crossref]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477–6482 (2002).
[Crossref]

J. Mater. Process. Tech. (1)

S. W. Luo and H. Y. Tsai, “Fabrication of 3D photonic structure on glass materials by femtosecond laser modification with HF etching process,” J. Mater. Process. Tech. 213, 2262–2269 (2013).
[Crossref]

Laser Photon. Rev. (3)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

F. Chen and J. R. Vazquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[Crossref]

Nat. Photonics (2)

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13, 105–109 (2019).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Opt. Eng. (1)

G. C. Righini and A. Chiappini, “Glass optical waveguides: a review of fabrication techniques,” Opt. Eng. 53, 071819 (2014).
[Crossref]

Opt. Express (3)

Opt. Laser. Eng. (1)

C. W. Cheng, J. S. Chen, P. X. Lee, and C. W. Chien, “Fabrication of microstructures in Foturan glass using infrared femtosecond laser pulses and chemical etching,” Opt. Laser. Eng. 48, 811–815 (2010).
[Crossref]

Opt. Lasers Eng. (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (2)

Opt. Photon. News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. H. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Opto-Electron. Adv. (1)

X. Q. Liu, B. F. Bai, Q. D. Chen, and H. B. Sun, “Etching-assisted femtosecond laser modification of hard materials,” Opto-Electron. Adv. 2, 190021 (2019).
[Crossref]

Photon. Spectra (1)

M. J. Steel and B. J. Eggleton, “Software speeds measurement and modeling of air-silica photonic crystals,” Photon. Spectra 39, 88–94 (2005).

Proc. SPIE (1)

D. I. Shevtsov, I. S. Azanova, I. F. Taysin, I. E. Kalabin, A. Volynzev, and V. Atuchin, “Deformations in Ti diffused proton-exchanged X-cut LiNbO3 waveguide layers,” Proc. SPIE 6258, 62580D (2006).
[Crossref]

Sci. Rep. (1)

Y. C. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4, 5988 (2014).
[Crossref]

Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Tech. J. 56, 703–718 (1977).
[Crossref]

Other (4)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

P. Ferraro, S. Grilli, and P. De Natale, Ferroelectric Crystals for Photonic Applications (Springer, 2009).

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer, 1990).

B. Jean and T. Bende, “Mid-IR laser applications in medicine,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer, 2003), pp. 511–546.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic processes of (a) fs-laser inscription and (b) H3PO4 acid etching for the microstructured optical waveguide in YAG crystal. The insets are the images of the two processes.
Fig. 2.
Fig. 2. (a) Microscopic images of the end-faces and top-view patterns at the etching time of 0, 3, 30, and 60 h and (b) the etched dimensions of microchannel depth as a function of the etching time.
Fig. 3.
Fig. 3. (a) Etched dimensions of microchannel width and length as a function of the etching time. (b) The schematic illustration of a tapered X-shaped microchannel formed inside YAG crystal at the lasing wavelength of 1064  nm. The microscopic images of the cross section (c) before polished and (d) after polished.
Fig. 4.
Fig. 4. (a) Calculated transmission spectrum for MOW; simulated intensity profiles (b) at 632.8 nm, (c) at 1550 nm, (d) at 4000 nm; and (e) simulated intensity profile at 4000 nm for waveguide not etched.
Fig. 5.
Fig. 5. Dispersion curves and mode structures of the proposed fiber. (a) Dispersion curves. The red line corresponds to the guided HE11 mode and the blue solid lines are the bands for cladding modes. The black circle represents the COMSOL simulation result at 4 μm. (b) The y component of electric field (Ey) at 4 μm obtained from MPB. The field increases from white to red. Periodic boundaries are applied. (c) Ey at 4 μm obtained from COMSOL. The field increases from blue to red. A perfectly matched layer is applied at the thin outmost layer of the structure.
Fig. 6.
Fig. 6. Measured near-field modal profiles along (a) HE11(1) and (b) HE11(2) polarization at 4 μm. (c) The polar image of propagation losses of MOW at 4 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T(ω)=|2[χ22(ω)+nχ11(ω)]i[nχ12(ω)χ21(ω)|2,
n21=2.28200λ2λ20.01185+3.27644λ2λ2282.734,