Abstract

We developed adjustable and movable droplet microlenses consisting of a liquid with a high refractive index. The microlenses were prepared via ultrasonic shaking in deionized water, and the diameter of the microlenses ranged from 1 to 50 μm. By stretching the microlenses, the focal length can be adjusted from 13 to 25 μm. With the assistance of an optical tweezer, controllable assembly and movement of microlens arrays were also realized. The results showed that an imaging system combined with droplet microlenses could image 80 nm beads under white light illumination. Using the droplet microlenses, fluorescence emission at 550 nm from CdSe@ZnS quantum dots was efficiently excited and collected. Moreover, Raman scattering signals from a silicon wafer were enhanced by 19 times. The presented droplet microlenses may offer new opportunities for flexible liquid devices in subwavelength imaging and detection.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Novel technology for microlenses for imaging applications

Vasyl Motsnyi, Ingrid De Wolf, Veronique Rochus, Xavier Rottenberg, Ozlem Cangar, Jan Van Olmen, Stefano Guerrieri, Piet De Moor, and Mustapha Zahir
Appl. Opt. 57(31) 9296-9300 (2018)

Self-assembled high NA microlens arrays using global dielectricphoretic energy wells

Jing-Yi Huang, Yen-Sheng Lu, and J. Andrew Yeh
Opt. Express 14(22) 10779-10784 (2006)

Preparation of plastic spherical microlenses by use of a fluoropolymer stencil and oil-bath heating

Hiromoto Tamura, Ryousuke Kojima, and Hiroaki Usui
Appl. Opt. 42(19) 4008-4015 (2003)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref]
  2. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
    [Crossref]
  3. J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16, 7976–7984 (2008).
    [Crossref]
  4. Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
    [Crossref]
  5. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
    [Crossref]
  6. W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2, e1600901 (2016).
    [Crossref]
  7. D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
    [Crossref]
  8. C. U. Murade, D. V. D. Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20, 18180–18187 (2012).
    [Crossref]
  9. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
    [Crossref]
  10. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30, 2641–2643 (2005).
    [Crossref]
  11. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
    [Crossref]
  12. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [Crossref]
  13. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005).
    [Crossref]
  14. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
    [Crossref]
  15. C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
    [Crossref]
  16. H. Aouani, P. Schön, S. Brasselet, H. Rigneault, and J. Wenger, “Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres,” Biomed. Opt. Express 1, 1075–1083 (2010).
    [Crossref]
  17. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
    [Crossref]
  18. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
    [Crossref]
  19. H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
    [Crossref]
  20. J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
    [Crossref]
  21. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
    [Crossref]
  22. A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
    [Crossref]
  23. A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49, 897–902 (2018).
    [Crossref]
  24. L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
    [Crossref]
  25. J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
    [Crossref]
  26. M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
    [Crossref]
  27. F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
    [Crossref]
  28. A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
    [Crossref]
  29. H. Yang, M. Cornaglia, and M. A. M. Gijs, “Photonic nanojet array for fast detection of single nanoparticles in a flow,” Nano Lett. 15, 1730–1735 (2015).
    [Crossref]
  30. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
    [Crossref]
  31. A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555–1557 (2002).
    [Crossref]
  32. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  33. L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
    [Crossref]
  34. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
    [Crossref]
  35. M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, and Y. Takaya, “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol. 1, 32–38 (2018).
    [Crossref]
  36. W. D. Bancroft, “The theory of emulsification, I,” J. Phys. Chem. 16, 275–309 (1912).
  37. H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
    [Crossref]
  38. P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
    [Crossref]
  39. X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
    [Crossref]
  40. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  41. Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704–1708 (2007).
    [Crossref]
  42. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
    [Crossref]
  43. Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, and X. G. Su, “Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays,” Spectrosc. Lett. 40, 113–127 (2007).
    [Crossref]
  44. M. Arivazhagan and D. A. Rexalin, “Vibrational spectral analysis and first hyperpolarizability studies of 1-bromonaphthalene based on ab initio and DFT methods,” Spectrochim. Acta Part A 83, 553–560 (2011).
    [Crossref]
  45. S. Kinge, M. Crego-Calama, and D. N. Reinhoudt, “Self-assembling nanoparticles at surfaces and interfaces,” Chem. Phys. Chem. 9, 20–42 (2018).
    [Crossref]

2018 (3)

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49, 897–902 (2018).
[Crossref]

M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, and Y. Takaya, “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol. 1, 32–38 (2018).
[Crossref]

S. Kinge, M. Crego-Calama, and D. N. Reinhoudt, “Self-assembling nanoparticles at surfaces and interfaces,” Chem. Phys. Chem. 9, 20–42 (2018).
[Crossref]

2017 (3)

P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
[Crossref]

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

2016 (5)

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2, e1600901 (2016).
[Crossref]

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

2015 (2)

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
[Crossref]

H. Yang, M. Cornaglia, and M. A. M. Gijs, “Photonic nanojet array for fast detection of single nanoparticles in a flow,” Nano Lett. 15, 1730–1735 (2015).
[Crossref]

2014 (2)

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

2013 (1)

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref]

2012 (3)

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
[Crossref]

C. U. Murade, D. V. D. Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20, 18180–18187 (2012).
[Crossref]

2011 (3)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

M. Arivazhagan and D. A. Rexalin, “Vibrational spectral analysis and first hyperpolarizability studies of 1-bromonaphthalene based on ab initio and DFT methods,” Spectrochim. Acta Part A 83, 553–560 (2011).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

2010 (2)

H. Aouani, P. Schön, S. Brasselet, H. Rigneault, and J. Wenger, “Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres,” Biomed. Opt. Express 1, 1075–1083 (2010).
[Crossref]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[Crossref]

2009 (3)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[Crossref]

2008 (4)

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
[Crossref]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
[Crossref]

J. Kasim, Y. Ting, Y. Y. Meng, L. J. Ping, A. See, L. L. Jong, and S. Z. Xiang, “Near-field Raman imaging using optically trapped dielectric microsphere,” Opt. Express 16, 7976–7984 (2008).
[Crossref]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[Crossref]

2007 (3)

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J. L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007).
[Crossref]

Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704–1708 (2007).
[Crossref]

Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, and X. G. Su, “Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays,” Spectrosc. Lett. 40, 113–127 (2007).
[Crossref]

2006 (1)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref]

2005 (2)

2004 (1)

2003 (1)

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

2002 (2)

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555–1557 (2002).
[Crossref]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

2001 (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref]

1961 (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

1912 (1)

W. D. Bancroft, “The theory of emulsification, I,” J. Phys. Chem. 16, 275–309 (1912).

Aouani, H.

H. Aouani, P. Schön, S. Brasselet, H. Rigneault, and J. Wenger, “Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres,” Biomed. Opt. Express 1, 1075–1083 (2010).
[Crossref]

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
[Crossref]

Arivazhagan, M.

M. Arivazhagan and D. A. Rexalin, “Vibrational spectral analysis and first hyperpolarizability studies of 1-bromonaphthalene based on ab initio and DFT methods,” Spectrochim. Acta Part A 83, 553–560 (2011).
[Crossref]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref]

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[Crossref]

Arya, A.

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49, 897–902 (2018).
[Crossref]

Astratov, V. N.

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

Auwerx, J.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Backman, V.

Bahari, B.

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

Bancroft, W. D.

W. D. Bancroft, “The theory of emulsification, I,” J. Phys. Chem. 16, 275–309 (1912).

Bharadwaj, P.

Bond, W. L.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Bonod, N.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Bose, R.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Brasselet, S.

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref]

Cárabe, A.

Carberry, D. M.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[Crossref]

Chen, Z.

Cho, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
[Crossref]

Choi, Y. W.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
[Crossref]

Cornaglia, M.

H. Yang, M. Cornaglia, and M. A. M. Gijs, “Photonic nanojet array for fast detection of single nanoparticles in a flow,” Nano Lett. 15, 1730–1735 (2015).
[Crossref]

Crego-Calama, M.

S. Kinge, M. Crego-Calama, and D. N. Reinhoudt, “Self-assembling nanoparticles at surfaces and interfaces,” Chem. Phys. Chem. 9, 20–42 (2018).
[Crossref]

Crégut, O.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Dantham, V. R.

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49, 897–902 (2018).
[Crossref]

Darafsheh, A.

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
[Crossref]

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

Das, G. M.

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49, 897–902 (2018).
[Crossref]

De Angelis, F.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

Deutsch, B.

Devilez, A.

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref]

Diaspro, A.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

Dong, P.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

Duocastella, M.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

Ende, D. V. D.

Fan, W.

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2, e1600901 (2016).
[Crossref]

Feng, C.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

Finlay, J. C.

Gachet, D.

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Gérard, D.

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
[Crossref]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008).
[Crossref]

Gibson, G. M.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[Crossref]

Gijs, M. A. M.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

H. Yang, M. Cornaglia, and M. A. M. Gijs, “Photonic nanojet array for fast detection of single nanoparticles in a flow,” Nano Lett. 15, 1730–1735 (2015).
[Crossref]

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Guan, W.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

Guardiola, C.

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Haacke, S.

Haddadpour, A.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

Hao, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Hirlimann, C.

Hong, B. H.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Huszka, G.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Hwang, I. C.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Ikin, L.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[Crossref]

Jacassi, A.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

Jaiswal, J. K.

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

Jiang, Y.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

Jong, L. L.

Jouravlev, M. V.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Kang, D.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
[Crossref]

Kante, B.

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

Kasim, J.

Katagiri, T.

Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704–1708 (2007).
[Crossref]

Kaufman, L. J.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Kim, J.

M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, and Y. Takaya, “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol. 1, 32–38 (2018).
[Crossref]

Kim, K. S.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kim, P.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kim, S. M.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
[Crossref]

Kim, W. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kim, Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Kinge, S.

S. Kinge, M. Crego-Calama, and D. N. Reinhoudt, “Self-assembling nanoparticles at surfaces and interfaces,” Chem. Phys. Chem. 9, 20–42 (2018).
[Crossref]

Kino, S.

Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704–1708 (2007).
[Crossref]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Krivitsky, L. A.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref]

Kuang, C.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Laha, R.

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49, 897–902 (2018).
[Crossref]

Lecler, S.

Lecong, N.

Lee, J. Y.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Lee, S.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

Lei, H. X.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Li, B. J.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Li, J.

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Li, T.

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

Li, W. J.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

Li, X.

Li, Y.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Li, Y. B.

Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, and X. G. Su, “Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays,” Spectrosc. Lett. 40, 113–127 (2007).
[Crossref]

Li, Y. C.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Li, Y. Z.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Liphardt, J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref]

Liu, L.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

Liu, L. L.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Liu, W.

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

Liu, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Liu, Z.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Luk’yanchuk, B.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Ma, Q.

Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, and X. G. Su, “Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays,” Spectrosc. Lett. 40, 113–127 (2007).
[Crossref]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref]

Marr, D. W. M.

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555–1557 (2002).
[Crossref]

Matsuura, Y.

Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704–1708 (2007).
[Crossref]

Mattoussi, H.

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

Mauro, J. M.

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[Crossref]

Meng, Y. Y.

Meyrueis, P.

Michihata, M.

M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, and Y. Takaya, “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol. 1, 32–38 (2018).
[Crossref]

Miles, M. J.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[Crossref]

Min, S. K.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Mizutani, Y.

M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, and Y. Takaya, “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol. 1, 32–38 (2018).
[Crossref]

Moullan, N.

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Mugele, F.

Murade, C. U.

Negro, L. D.

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

Novotny, L.

Oakey, J.

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555–1557 (2002).
[Crossref]

Padgett, M. J.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[Crossref]

Palovcak, A.

Pang, C.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
[Crossref]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref]

Pauzauskie, P. J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref]

Ping, L. J.

Popov, E.

Pramanik, M.

P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
[Crossref]

Radenovic, A.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref]

Rehspringer, J. L.

Reinhoudt, D. N.

S. Kinge, M. Crego-Calama, and D. N. Reinhoudt, “Self-assembling nanoparticles at surfaces and interfaces,” Chem. Phys. Chem. 9, 20–42 (2018).
[Crossref]

Rexalin, D. A.

M. Arivazhagan and D. A. Rexalin, “Vibrational spectral analysis and first hyperpolarizability studies of 1-bromonaphthalene based on ab initio and DFT methods,” Spectrochim. Acta Part A 83, 553–560 (2011).
[Crossref]

Rigneault, H.

Rozen, I.

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

Sato, H.

Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704–1708 (2007).
[Crossref]

Schön, P.

See, A.

Shi, Y. H.

Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, and X. G. Su, “Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays,” Spectrosc. Lett. 40, 113–127 (2007).
[Crossref]

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref]

Simon, S. M.

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

Song, T. Y.

Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, and X. G. Su, “Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays,” Spectrosc. Lett. 40, 113–127 (2007).
[Crossref]

Stout, B.

Su, X. G.

Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, and X. G. Su, “Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays,” Spectrosc. Lett. 40, 113–127 (2007).
[Crossref]

Suh, K. Y.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
[Crossref]

Taflove, A.

Takahashi, S.

M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, and Y. Takaya, “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol. 1, 32–38 (2018).
[Crossref]

Takakura, Y.

Takamasu, K.

M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, and Y. Takaya, “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol. 1, 32–38 (2018).
[Crossref]

Takaya, Y.

M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, and Y. Takaya, “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol. 1, 32–38 (2018).
[Crossref]

Tantussi, F.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

Tashiro, H.

Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704–1708 (2007).
[Crossref]

Terray, A.

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555–1557 (2002).
[Crossref]

Ting, Y.

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref]

Trouillon, R.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Um, H. S.

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
[Crossref]

Upputuri, P. K.

P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
[Crossref]

Veronis, G.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

Wang, F.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

Wang, J.

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

Wang, J. J.

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref]

Wang, X. Y.

Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, and X. G. Su, “Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays,” Spectrosc. Lett. 40, 113–127 (2007).
[Crossref]

Wang, Y.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

Wang, Z.

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2, e1600901 (2016).
[Crossref]

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Wen, Y.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

Wenger, J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Wong, C. W.

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

Wu, L.

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2, e1600901 (2016).
[Crossref]

Xiang, S. Z.

Xin, H. B.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Xing, C.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

Xu, J.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

Yan, B.

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2, e1600901 (2016).
[Crossref]

Yan, Y.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

Yang, H.

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

H. Yang, M. Cornaglia, and M. A. M. Gijs, “Photonic nanojet array for fast detection of single nanoparticles in a flow,” Nano Lett. 15, 1730–1735 (2015).
[Crossref]

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Yang, P.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref]

Yokoyama, E.

Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704–1708 (2007).
[Crossref]

Yu, H.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

Yu, P.

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

Zaccaria, R. P.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

Zeng, Y.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

Zhang, H.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Zhang, Y.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Zhao, J.

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

Zhao, Y.

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

C. Xing, Y. Yan, C. Feng, J. Xu, P. Dong, W. Guan, Y. Zeng, Y. Zhao, and Y. Jiang, “Flexible microsphere-embedded film for microsphere-enhanced Raman spectroscopy,” ACS Appl. Mater. Interfaces 9, 32896–32906 (2017).
[Crossref]

ACS Nano (2)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25  nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[Crossref]

Adv. Mater. (1)

D. Kang, C. Pang, S. M. Kim, H. S. Cho, H. S. Um, Y. W. Choi, and K. Y. Suh, “Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets,” Adv. Mater. 24, 1709–1715 (2012).
[Crossref]

Adv. Opt. Photon. (1)

Anal. Chem. (1)

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008).
[Crossref]

Appl. Phys. Lett. (3)

A. Darafsheh, G. F. Walsh, L. D. Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555–1557 (2002).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Biomed. Opt. Express (1)

Chem. Phys. Chem. (1)

S. Kinge, M. Crego-Calama, and D. N. Reinhoudt, “Self-assembling nanoparticles at surfaces and interfaces,” Chem. Phys. Chem. 9, 20–42 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Matsuura, S. Kino, E. Yokoyama, T. Katagiri, H. Sato, and H. Tashiro, “Flexible fiber-optics probes for Raman and FT-IR remote spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 13, 1704–1708 (2007).
[Crossref]

J. Phys. Chem. (1)

W. D. Bancroft, “The theory of emulsification, I,” J. Phys. Chem. 16, 275–309 (1912).

J. Raman Spectrosc. (1)

A. Arya, R. Laha, G. M. Das, and V. R. Dantham, “Enhancement of Raman scattering signal using photonic nanojet of portable and reusable single microstructures,” J. Raman Spectrosc. 49, 897–902 (2018).
[Crossref]

Light Sci. Appl. (1)

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Nano Lett. (3)

H. Yang, M. Cornaglia, and M. A. M. Gijs, “Photonic nanojet array for fast detection of single nanoparticles in a flow,” Nano Lett. 15, 1730–1735 (2015).
[Crossref]

J. Li, W. Liu, T. Li, I. Rozen, J. Zhao, B. Bahari, B. Kante, and J. Wang, “Swimming microrobot optical nanoscopy,” Nano Lett. 16, 6604–6609 (2016).
[Crossref]

H. Yang, R. Trouillon, G. Huszka, and M. A. M. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Nanomanuf. Metrol. (1)

M. Michihata, J. Kim, S. Takahashi, K. Takamasu, Y. Mizutani, and Y. Takaya, “Surface imaging technique by an optically trapped microsphere in air condition,” Nanomanuf. Metrol. 1, 32–38 (2018).
[Crossref]

Nat. Biotechnol. (1)

J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nat. Biotechnol. 21, 47–51 (2003).
[Crossref]

Nat. Commun. (2)

F. Wang, L. Liu, H. Yu, Y. Wen, P. Yu, Z. Liu, Y. Wang, and W. J. Li, “Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging,” Nat. Commun. 7, 13748 (2016).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Nat. Mater. (1)

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5, 97–101 (2006).
[Crossref]

Nat. Nanotechnol. (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008).
[Crossref]

Nature (1)

J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498–501 (2009).
[Crossref]

New J. Phys. (1)

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009).
[Crossref]

Opt. Commun. (2)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

P. K. Upputuri and M. Pramanik, “Microsphere-aided optical microscopy and its applications for super-resolution imaging,” Opt. Commun. 404, 32–41 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
[Crossref]

Sci. Adv. (1)

W. Fan, B. Yan, Z. Wang, and L. Wu, “Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies,” Sci. Adv. 2, e1600901 (2016).
[Crossref]

Sci. Rep. (2)

L. A. Krivitsky, J. J. Wang, Z. Wang, and B. Luk’yanchuk, “Locomotion of microspheres for super-resolution imaging,” Sci. Rep. 3, 3501 (2013).
[Crossref]

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 3474 (2017).
[Crossref]

Science (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001).
[Crossref]

Small (1)

H. Yang, N. Moullan, J. Auwerx, and M. A. M. Gijs, “Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope,” Small 10, 1712–1718 (2014).
[Crossref]

Spectrochim. Acta Part A (1)

M. Arivazhagan and D. A. Rexalin, “Vibrational spectral analysis and first hyperpolarizability studies of 1-bromonaphthalene based on ab initio and DFT methods,” Spectrochim. Acta Part A 83, 553–560 (2011).
[Crossref]

Spectrosc. Lett. (1)

Q. Ma, T. Y. Song, X. Y. Wang, Y. B. Li, Y. H. Shi, and X. G. Su, “Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays,” Spectrosc. Lett. 40, 113–127 (2007).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Supplementary Material (4)

NameDescription
» Visualization 1       Nine droplet microlenses were assembled into a 3×3 array.
» Visualization 2       A 4×7 array of microlenses was arranged in descending order.
» Visualization 3       Using the droplet microlenses array, the outlines of the PS nanoparticles became discernible in the field of view of the microscope.
» Visualization 4       Fluorescence enhancement of quantum dots using droplet microlens.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Droplet preparation and experimental setup. (a) Preparation process of the droplet microlenses. (b) Optical microscope images of the droplet microlenses showing they are spheroids of different sizes. (c) Schematic of the experimental setup. The inset shows a schematic of the microlens deformation.
Fig. 2.
Fig. 2. Focusing of the droplet microlenses in different sizes. (a) Optical microscope images of microlenses with diameters D of (a1) 8, (a2) 12, and (a3) 16 μm. (b) Simulated energy density distribution for each microlens. (c) L as a function of D at a fixed wavelength of 473 nm. (d) Waist radius (w) as a function of D at a fixed wavelength of 473 nm.
Fig. 3.
Fig. 3. Focusing of the droplet microlenses of different shapes. (a) Optical microscope images of microlenses with shapes of (a1) a sphere with a diameter D of 12 μm, (a2) an ellipsoid with a ratio between the semimajor and semiminor axes (A/B) of 1.3, and (a3) an ellipsoid with A/B=1.7. (b) Simulated energy density distribution for each microlens. (c) Focal length L and waist radius (w) of the output beams as functions of A/B at a fixed wavelength of 473 nm.
Fig. 4.
Fig. 4. Microlens array assembly and manipulation. (a) Schematic of the optical trapping and manipulation system. (b) Optical trapping of a single droplet microlens. (c) Optical trapping and manipulation of multiple droplet microlenses arranged in an array. (d) Optical microscope image of a 3×3 array of droplet microlenses with the same diameter D of 6.8±0.2  μm. (e), (f) Shifting of a 4×7 array of microlenses with D of 6.2–9.5 μm arranged in descending order.
Fig. 5.
Fig. 5. Subwavelength imaging. (a) Schematic of subwavelength imaging with the droplet microlens. (b) SEM image of the gratings of a commercial Blu-ray Disk (BD). Optical microscope images of the BD gratings with the assistance of droplet microlenses with diameters of (c) 4.8, (d) 7.7, and (e) 13.6 μm. (f) SEM image of the stack of PS nanoparticle layers formed by evaporation-induced assembly. Inset is a magnified view of the PS nanoparticles. (g) Size distribution of the PS nanoparticles. (h) Optical microscope image of the PS nanoparticles obtained with the assistance of a 2×2 microlens array. The inset shows the magnified imaging of the view field of the droplet microlens. (i) Intensity variation of (h) along the transverse cross section through the center of two light spots (α and β) from the PS nanoparticles (D=80  nm).
Fig. 6.
Fig. 6. Signal enhancement. (a) Optical microscope images of QD fluorescence enhancement. (a1) A QD cluster was located on the SiO2 slide, and then microlenses with diameters D of (a2) 11.8, (a3) 9.2, and (a4) 6.8 μm were separately moved right above the QD cluster. (b) Fluorescence images of the QD cluster captured (b1) without and (b2)–(b4) with the assistance of microlenses. (c) Profiles of the intensity distributions corresponding to the dark-field images. (d) Illustration of the model used to calculate the effective numerical aperture NAeff. (e) Schematic of the enhancement of Raman scattering signals from a silicon (Si) wafer. (f) Intensities of Raman scattering from the Si wafer without and with the assistance of the droplet microlenses with D of 45, 21, and 8 μm.
Fig. 7.
Fig. 7. Transmittance spectrum of 1-bromonaphthalene (C10H7Br) with the wavelength range from 300 to 900 nm.
Fig. 8.
Fig. 8. The diameter distribution of the droplet at f=80  kHz and t=5  min.
Fig. 9.
Fig. 9. Fluctuation region of Brownian motion of trapped microlens (D=1  μm) as a function of trapping power.
Fig. 10.
Fig. 10. Droplet microlens diameter versus intensity of Raman scattering signals. The fitting method is based on a polynomial fit.