Abstract

We report an advanced Fourier transform spectrometer (FTS) on silicon with significant improvement compared with our previous demonstration in [Nat. Commun. 9, 665 (2018)]. We retrieve a broadband spectrum (7 THz around 193 THz) with 0.11 THz or sub nm resolution, more than 3 times higher than previously demonstrated [Nat. Commun. 9, 665 (2018)]. Moreover, it effectively solves the issue of fabrication variation in waveguide width, which is a common issue in silicon photonics. The structure is a balanced Mach–Zehnder interferometer with 10 cm long serpentine waveguides. Quasi-continuous optical path difference between the two arms is induced by changing the effective index of one arm using an integrated heater. The serpentine arms utilize wide multi-mode waveguides at the straight sections to reduce propagation loss and narrow single-mode waveguides at the bending sections to keep the footprint compact and avoid modal crosstalk. The reduction of propagation loss leads to higher spectral efficiency, larger dynamic range, and better signal-to-noise ratio. Also, for the first time to our knowledge, we perform a thorough systematic analysis on how the fabrication variation on the waveguide widths can affect its performance. Additionally, we demonstrate that using wide waveguides efficiently leads to a fabrication-tolerant device. This work could further pave the way towards a mature silicon-based FTS operating with both broad bandwidth (over 60 nm) and high resolution suitable for integration with various mobile platforms.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Design of a compact and ultrahigh-resolution Fourier-transform spectrometer

B. Imran Akca
Opt. Express 25(2) 1487-1494 (2017)

High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides

Aitor V. Velasco, Pavel Cheben, Przemek J. Bock, André Delâge, Jens H. Schmid, Jean Lapointe, Siegfried Janz, María L. Calvo, Dan-Xia Xu, Mirosław Florjańczyk, and Martin Vachon
Opt. Lett. 38(5) 706-708 (2013)

CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform

Xiaomin Nie, Eva Ryckeboer, Gunther Roelkens, and Roel Baets
Opt. Express 25(8) A409-A418 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, and R. Goodacre, “Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning,” Appl. Environ. Microbiol. 68, 2822–2828 (2002).
    [Crossref]
  2. C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636–11645 (2005).
    [Crossref]
  3. M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2015).
    [Crossref]
  4. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
    [Crossref]
  5. P. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39, 970–976 (1949).
    [Crossref]
  6. A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
    [Crossref]
  7. A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
    [Crossref]
  8. B. I. Akca, “Design of a compact and ultrahigh-resolution Fourier-transform spectrometer,” Opt. Express 25, 1487–1494 (2017).
    [Crossref]
  9. H. Podmore, A. Scott, P. Cheben, A. V. Velasco, J. H. Schmid, M. Vachon, and R. Lee, “Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer,” Opt. Lett. 42, 1440–1443 (2017).
    [Crossref]
  10. X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform,” Opt. Express 25, A409–A418 (2017).
    [Crossref]
  11. M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
    [Crossref]
  12. S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
    [Crossref]
  13. M.-C. Tien, J. F. Bauters, M. J. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19, 13551–13556 (2011).
    [Crossref]
  14. H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
    [Crossref]
  15. D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
    [Crossref]
  16. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [Crossref]
  17. A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
    [Crossref]
  18. A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.
  19. S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun. 284, 2141–2144 (2011).
    [Crossref]
  20. Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25, 9712–9733 (2017).
    [Crossref]

2019 (1)

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

2018 (3)

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
[Crossref]

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

2017 (4)

2016 (1)

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

2015 (1)

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2015).
[Crossref]

2013 (2)

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
[Crossref]

2011 (2)

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun. 284, 2141–2144 (2011).
[Crossref]

M.-C. Tien, J. F. Bauters, M. J. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19, 13551–13556 (2011).
[Crossref]

2007 (1)

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

2005 (2)

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636–11645 (2005).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

2002 (1)

D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, and R. Goodacre, “Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning,” Appl. Environ. Microbiol. 68, 2822–2828 (2002).
[Crossref]

1949 (1)

Akca, B. I.

Baets, R.

Bauters, J. F.

Beckx, S.

Benech, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Bienstman, P.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Blaize, S.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Blumenthal, D. J.

Bock, P. J.

Bogaerts, W.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun. 284, 2141–2144 (2011).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

Bono, D.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Bowers, J. E.

Broadhurst, D.

D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, and R. Goodacre, “Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning,” Appl. Environ. Microbiol. 68, 2822–2828 (2002).
[Crossref]

Cai, H.

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

Calvo, M. L.

Cheben, P.

Chen, K. K.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

Chin, L. K.

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

Chrostowski, L.

Cunin, F.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636–11645 (2005).
[Crossref]

De Heyn, P.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Delâge, A.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2015).
[Crossref]

A. V. Velasco, P. Cheben, P. J. Bock, A. Delâge, J. H. Schmid, J. Lapointe, S. Janz, M. L. Calvo, D.-X. Xu, M. Florjańczyk, and M. Vachon, “High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides,” Opt. Lett. 38, 706–708 (2013).
[Crossref]

Dong, J.

Duan, N.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

Dumon, P.

Ellis, D. I.

D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, and R. Goodacre, “Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning,” Appl. Environ. Microbiol. 68, 2822–2828 (2002).
[Crossref]

Fainman, Y.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

Fang, Q.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

Favela, D.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Fedeli, J. M.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Fellgett, P.

Florjanczyk, M.

Flueckiger, J.

Frateschi, N. C.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

Goodacre, R.

D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, and R. Goodacre, “Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning,” Appl. Environ. Microbiol. 68, 2822–2828 (2002).
[Crossref]

Grieco, A.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

Gu, T.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Heck, M. J.

Hu, J.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Hu, X.

Janz, S.

Jhoja, J.

Kell, D. B.

D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, and R. Goodacre, “Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning,” Appl. Environ. Microbiol. 68, 2822–2828 (2002).
[Crossref]

Kern, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Khokhar, A. Z.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2015).
[Crossref]

Kita, D. M.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Klein, J.

Kwong, D.

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

Lapointe, J.

Le Coarer, E.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Leblond, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Lee, R.

Lérondel, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Li, A.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

Li, C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

Lim, A. E.-J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

Lin, H.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Lin, Z. P.

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

Liow, T.-Y.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

Liu, A.

Liu, A. Q.

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

Liu, P. Y.

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

Lu, Z.

Luyssaert, B.

Mashanovich, G. Z.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2015).
[Crossref]

Michon, J.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Miranda, B.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Miskelly, G. M.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636–11645 (2005).
[Crossref]

Morand, A.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Nedeljkovic, M.

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2015).
[Crossref]

Nie, X.

Pacholski, C.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636–11645 (2005).
[Crossref]

Podmore, H.

Pond, J.

Qie, J.

Qiu, H.

Roelkens, G.

Rowland, J. J.

D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, and R. Goodacre, “Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning,” Appl. Environ. Microbiol. 68, 2822–2828 (2002).
[Crossref]

Royer, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Ryckeboer, E.

Sailor, M. J.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636–11645 (2005).
[Crossref]

Sartor, M.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636–11645 (2005).
[Crossref]

Schmid, J. H.

Scott, A.

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun. 284, 2141–2144 (2011).
[Crossref]

Song, J.

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

Souza, M. C.

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

Spencer, D. T.

Stefanon, I.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Taillaert, D.

Tern, R. P.-C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

Tien, M.-C.

Tu, X.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

Vachon, M.

Van Campenhout, J.

Van Laer, R.

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun. 284, 2141–2144 (2011).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Van Vaerenbergh, T.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Velasco, A. V.

Wang, X.

Wiaux, V.

Xiao, X.

Xing, Y.

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

Xu, D.-X.

Yao, Y.

Yu, Y.

Zhang, X.

Zhang, Y.

Zheng, S. N.

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

Zhou, F.

Zou, J.

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

Appl. Environ. Microbiol. (1)

D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, and R. Goodacre, “Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning,” Appl. Environ. Microbiol. 68, 2822–2828 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delâge, P. Cheben, and G. Z. Mashanovich, “Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip,” IEEE Photon. Technol. Lett. 28, 528–531 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636–11645 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Laser Photon. Rev. (1)

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photon. Rev. 10, 420–431 (2016).
[Crossref]

Nat. Commun. (3)

M. C. Souza, A. Grieco, N. C. Frateschi, and Y. Fainman, “Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction,” Nat. Commun. 9, 665 (2018).
[Crossref]

S. N. Zheng, J. Zou, H. Cai, J. Song, L. K. Chin, P. Y. Liu, Z. P. Lin, D. Kwong, and A. Q. Liu, “Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution,” Nat. Commun. 10, 1 (2019).
[Crossref]

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Nat. Photonics (1)

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[Crossref]

Opt. Commun. (1)

S. K. Selvaraja, W. Bogaerts, and D. Van Thourhout, “Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement,” Opt. Commun. 284, 2141–2144 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Other (1)

A. Li, Y. Xing, R. Van Laer, R. Baets, and W. Bogaerts, “Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering,” in 13th International Conference on Group IV Photonics (GFP) (IEEE, 2016), pp. 160–161.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic and (b) microscopic image of the fabricated device. (c) Zoom view of the waveguides and heater. The waveguide is designed to have a serpentine shape to reduce the footprint, and the heater has a width of 17 μm that covers five waveguides in order to maintain low resistance.
Fig. 2.
Fig. 2. Simulated Ey intensity of the TE mode in (a) a 0.5 μm wide waveguide and (b) a 1 μm wide waveguide. The thickness is 220 nm.
Fig. 3.
Fig. 3. Simulated interferograms and recovered spectra from two different devices: (a), (b) a balanced MZI with waveguide length of 3 cm; (c), (d) a balanced MZI with waveguide length of 10 cm. For both devices, the maximum temperature change is 60 K. Their individual spectral resolutions are 0.42 THz and 0.13 THz, respectively.
Fig. 4.
Fig. 4. Simulated interferogram and recovered spectrum from two different devices: (a), (b) a balanced MZI with slightly different waveguide widths for the two arms (0.5 μm and 0.52 μm); (c), (d) a balanced MZI with slightly different waveguide widths for the two arms (1 μm and 1.02 μm). The 20 nm width difference corresponds with typical fabrication variation. For both devices, the arm length is 10 cm and maximum temperature change is 60 K.
Fig. 5.
Fig. 5. Cutback method to characterize two different types of strip waveguides with 0.5 μm width and 1 μm width.
Fig. 6.
Fig. 6. Experimental results of a balanced FTS with identical arm widths of 1 μm. (a) Raw data of the interferogram as a function of power injection to the heaters. The sign in the x axis refers to the actuation of different heaters. (b) Plot of the post-processed interferogram ready for Fourier transformation. (c) The reconstructed spectrum compared with the original input spectrum.
Fig. 7.
Fig. 7. Experimental results of impacts of fabrication variation on a balanced FTS. (a), (b) Interferogram and spectrum reconstruction of a balanced FTS with arm widths of 1 μm and 1.02 μm. (c), (d) Interferogram and spectrum reconstruction of a balanced FTS with arm widths of 0.5 μm and 0.52 μm. The 20 nm difference in the two arms represents the fabrication variation in CMOS technology. Clearly, the device using a large waveguide width is tolerant to this amount of variation, while the 0.5 μm device fails to reconstruct the spectrum.