Abstract

The photonic spin Hall effect plays an important role in photonic information technologies, especially in on-chip spin Hall devices. However, conventional devices suffer from low efficiency or narrow bandwidth, which prevents their practical application. Here, we introduce a spin Hall device using inverse design to achieve both high efficiency and broadband. Spin-dependent light separation is enabled by a 2.4 μm circular device with 100 nm pixels. The photonic spin Hall element is fabricated on a silicon-on-insulator wafer compatible with a standard integrated photonic circuit. The spin light is detected and emitted with an efficiency of up to 22% and 35%, respectively, over a 200 nm bandwidth at optical wavelength.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Photonic spin Hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy

Amr Shaltout, Jingjing Liu, Alexander Kildishev, and Vladimir Shalaev
Optica 2(10) 860-863 (2015)

Photonic spin Hall effect based on broadband high-efficiency reflective metasurfaces

Zhanyi Zhang, Haigang Liang, Tao He, Zhanshan Wang, and Xinbin Cheng
Appl. Opt. 59(5) A63-A68 (2020)

High efficiency active wavefront manipulation of spin photonics based on a graphene metasurface

Xiangxing Bai, Linlong Tang, Wei Yao, Qing Zang, Jialu Li, Shuang Liu, Wenqiang Lu, Yang Liu, Xiudong Sun, and Yueguang Lu
Opt. Express 27(16) 22475-22484 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6, 51–70 (2017).
    [Crossref]
  2. X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
    [Crossref]
  3. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  4. K. Y. Bliokh and Y. P. Bliokh, “Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect,” Phys. Rev. E 70, 026605 (2004).
    [Crossref]
  5. A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
    [Crossref]
  6. F. Fedorov, “K teorii polnogo otrazheniya,” Dokl. Akad. Nauk SSSR 105, 465–468 (1955).
  7. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
    [Crossref]
  8. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
    [Crossref]
  9. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
    [Crossref]
  10. F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9, 776–778 (2015).
    [Crossref]
  11. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref]
  12. L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
    [Crossref]
  13. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  14. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
    [Crossref]
  15. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  16. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
    [Crossref]
  17. R. Y. Chiao and Y. S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
    [Crossref]
  18. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
    [Crossref]
  19. Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26, 1424–1426 (2001).
    [Crossref]
  20. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27, 1141–1143 (2002).
    [Crossref]
  21. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
    [Crossref]
  22. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
    [Crossref]
  23. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
    [Crossref]
  24. N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
    [Crossref]
  25. L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
    [Crossref]
  26. G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15, 5739–5743 (2015).
    [Crossref]
  27. N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38, 4358–4361 (2013).
    [Crossref]
  28. N. Shitrit, I. Yulevich, V. Kleiner, and E. Hasman, “Spin-controlled plasmonics via optical Rashba effect,” Appl. Phys. Lett. 103, 211114 (2013).
    [Crossref]
  29. Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
    [Crossref]
  30. Y. J. Bao, Q. Jiang, Y. M. Kang, X. Zhu, and Z. Y. Fang, “Enhanced optical performance of multifocal metalens with conic shapes,” Light Sci. Appl. 6, e17071 (2017).
    [Crossref]
  31. Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Y. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95, 081406 (2017).
    [Crossref]
  32. X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6, e16276 (2017).
    [Crossref]
  33. N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11, 2038–2042 (2011).
    [Crossref]
  34. X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
    [Crossref]
  35. W. Shu, Y. Ke, Y. Liu, X. Ling, H. Luo, and X. Yin, “Radial spin Hall effect of light,” Phys. Rev. A 93, 013839 (2016).
    [Crossref]
  36. F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna,” Laser Photon. Rev. 8, L27–L31 (2014).
    [Crossref]
  37. F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photon. 1, 762–767 (2014).
    [Crossref]
  38. S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
    [Crossref]
  39. D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photon. 5, 1365–1369 (2018).
    [Crossref]
  40. B. Shen, P. Wan, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  41. L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuckovic, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
    [Crossref]
  42. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
    [Crossref]
  43. Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
    [Crossref]

2018 (3)

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photon. 5, 1365–1369 (2018).
[Crossref]

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

2017 (7)

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuckovic, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6, 51–70 (2017).
[Crossref]

X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

Y. J. Bao, Q. Jiang, Y. M. Kang, X. Zhu, and Z. Y. Fang, “Enhanced optical performance of multifocal metalens with conic shapes,” Light Sci. Appl. 6, e17071 (2017).
[Crossref]

Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Y. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95, 081406 (2017).
[Crossref]

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6, e16276 (2017).
[Crossref]

2016 (2)

W. Shu, Y. Ke, Y. Liu, X. Ling, H. Luo, and X. Yin, “Radial spin Hall effect of light,” Phys. Rev. A 93, 013839 (2016).
[Crossref]

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

2015 (7)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9, 776–778 (2015).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15, 5739–5743 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

B. Shen, P. Wan, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

2014 (4)

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna,” Laser Photon. Rev. 8, L27–L31 (2014).
[Crossref]

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photon. 1, 762–767 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

2013 (6)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38, 4358–4361 (2013).
[Crossref]

N. Shitrit, I. Yulevich, V. Kleiner, and E. Hasman, “Spin-controlled plasmonics via optical Rashba effect,” Appl. Phys. Lett. 103, 211114 (2013).
[Crossref]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
[Crossref]

2012 (1)

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

2011 (2)

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11, 2038–2042 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

2006 (1)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

2004 (2)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect,” Phys. Rev. E 70, 026605 (2004).
[Crossref]

2003 (1)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

2002 (1)

2001 (1)

1992 (1)

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref]

1987 (1)

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
[Crossref]

1986 (1)

R. Y. Chiao and Y. S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref]

1955 (1)

F. Fedorov, “K teorii polnogo otrazheniya,” Dokl. Akad. Nauk SSSR 105, 465–468 (1955).

Abbey, B.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Balaur, E.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

Bao, Y. J.

Y. J. Bao, Q. Jiang, Y. M. Kang, X. Zhu, and Z. Y. Fang, “Enhanced optical performance of multifocal metalens with conic shapes,” Light Sci. Appl. 6, e17071 (2017).
[Crossref]

Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Y. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95, 081406 (2017).
[Crossref]

Barber-Sanz, I.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photon. 1, 762–767 (2014).
[Crossref]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Bartal, G.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15, 5739–5743 (2015).
[Crossref]

Bellieres, L.

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna,” Laser Photon. Rev. 8, L27–L31 (2014).
[Crossref]

Berry, M. V.

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
[Crossref]

Biener, G.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27, 1141–1143 (2002).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect,” Phys. Rev. E 70, 026605 (2004).
[Crossref]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect,” Phys. Rev. E 70, 026605 (2004).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Bomzon, Z.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Bretner, I.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11, 2038–2042 (2011).
[Crossref]

Cadusch, J. J.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Cardano, F.

F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9, 776–778 (2015).
[Crossref]

Chen, S.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Chiao, R. Y.

R. Y. Chiao and Y. S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref]

David, A.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15, 5739–5743 (2015).
[Crossref]

Dooghin, A. V.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref]

Du, L.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

Du, L. P.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Fan, D.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Fang, Z. Y.

Y. J. Bao, Q. Jiang, Y. M. Kang, X. Zhu, and Z. Y. Fang, “Enhanced optical performance of multifocal metalens with conic shapes,” Light Sci. Appl. 6, e17071 (2017).
[Crossref]

Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Y. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95, 081406 (2017).
[Crossref]

Fedorov, F.

F. Fedorov, “K teorii polnogo otrazheniya,” Dokl. Akad. Nauk SSSR 105, 465–468 (1955).

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gjonaj, B.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15, 5739–5743 (2015).
[Crossref]

Gorodetski, Y.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11, 2038–2042 (2011).
[Crossref]

Griol, A.

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna,” Laser Photon. Rev. 8, L27–L31 (2014).
[Crossref]

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photon. 1, 762–767 (2014).
[Crossref]

Gu, J.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

Han, J.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

Hasman, E.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
[Crossref]

N. Shitrit, I. Yulevich, V. Kleiner, and E. Hasman, “Spin-controlled plasmonics via optical Rashba effect,” Appl. Phys. Lett. 103, 211114 (2013).
[Crossref]

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38, 4358–4361 (2013).
[Crossref]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11, 2038–2042 (2011).
[Crossref]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27, 1141–1143 (2002).
[Crossref]

Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26, 1424–1426 (2001).
[Crossref]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Huang, K.

X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Jiang, Q.

Y. J. Bao, Q. Jiang, Y. M. Kang, X. Zhu, and Z. Y. Fang, “Enhanced optical performance of multifocal metalens with conic shapes,” Light Sci. Appl. 6, e17071 (2017).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Jin, W.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Kang, Y. M.

Y. J. Bao, Q. Jiang, Y. M. Kang, X. Zhu, and Z. Y. Fang, “Enhanced optical performance of multifocal metalens with conic shapes,” Light Sci. Appl. 6, e17071 (2017).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Ke, Y.

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6, 51–70 (2017).
[Crossref]

W. Shu, Y. Ke, Y. Liu, X. Ling, H. Luo, and X. Yin, “Radial spin Hall effect of light,” Phys. Rev. A 93, 013839 (2016).
[Crossref]

Khoram, E.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photon. 5, 1365–1369 (2018).
[Crossref]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Kleiner, V.

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38, 4358–4361 (2013).
[Crossref]

N. Shitrit, I. Yulevich, V. Kleiner, and E. Hasman, “Spin-controlled plasmonics via optical Rashba effect,” Appl. Phys. Lett. 103, 211114 (2013).
[Crossref]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
[Crossref]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11, 2038–2042 (2011).
[Crossref]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27, 1141–1143 (2002).
[Crossref]

Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26, 1424–1426 (2001).
[Crossref]

Kou, S. S.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

Kundikova, N. D.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Lei, T.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Li, F.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Li, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Li, J.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

Li, X.

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6, e16276 (2017).
[Crossref]

Li, Z. H.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Liberman, V. S.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref]

Lin, J.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Lin, Z.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Ling, X.

W. Shu, Y. Ke, Y. Liu, X. Ling, H. Luo, and X. Yin, “Radial spin Hall effect of light,” Phys. Rev. A 93, 013839 (2016).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Ling, X. H.

X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]

Liu, D.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photon. 5, 1365–1369 (2018).
[Crossref]

Liu, W.

Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Y. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95, 081406 (2017).
[Crossref]

Liu, Y.

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6, 51–70 (2017).
[Crossref]

W. Shu, Y. Ke, Y. Liu, X. Ling, H. Luo, and X. Yin, “Radial spin Hall effect of light,” Phys. Rev. A 93, 013839 (2016).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Liu, Y. C.

X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Luo, H.

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6, 51–70 (2017).
[Crossref]

W. Shu, Y. Ke, Y. Liu, X. Ling, H. Luo, and X. Yin, “Radial spin Hall effect of light,” Phys. Rev. A 93, 013839 (2016).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Luo, H. L.

X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]

Luo, X. G.

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6, e16276 (2017).
[Crossref]

Ma, X. L.

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6, e16276 (2017).
[Crossref]

Maayani, S.

Maguid, E.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
[Crossref]

Marrucci, L.

F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9, 776–778 (2015).
[Crossref]

Martí, J.

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna,” Laser Photon. Rev. 8, L27–L31 (2014).
[Crossref]

Martínez, A.

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna,” Laser Photon. Rev. 8, L27–L31 (2014).
[Crossref]

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photon. 1, 762–767 (2014).
[Crossref]

Mei, S.

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Menon, R.

B. Shen, P. Wan, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Min, C. J.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Molesky, S.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

Niv, A.

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

Orenstein, M.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15, 5739–5743 (2015).
[Crossref]

Ouyang, C.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

Ozeri, D.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
[Crossref]

Petykiewicz, J.

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuckovic, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Piggott, A. Y.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuckovic, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Polson, R.

B. Shen, P. Wan, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Pu, M. B.

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6, e16276 (2017).
[Crossref]

Puerto, D.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photon. 1, 762–767 (2014).
[Crossref]

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna,” Laser Photon. Rev. 8, L27–L31 (2014).
[Crossref]

Qiu, C. W.

X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Qiu, H. D.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Roberts, A.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

Rodriguez, A. W.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna,” Laser Photon. Rev. 8, L27–L31 (2014).
[Crossref]

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photon. 1, 762–767 (2014).
[Crossref]

Sapra, N. V.

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuckovic, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

Shen, B.

B. Shen, P. Wan, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Shitrit, N.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
[Crossref]

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38, 4358–4361 (2013).
[Crossref]

N. Shitrit, I. Yulevich, V. Kleiner, and E. Hasman, “Spin-controlled plasmonics via optical Rashba effect,” Appl. Phys. Lett. 103, 211114 (2013).
[Crossref]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11, 2038–2042 (2011).
[Crossref]

Shu, W.

W. Shu, Y. Ke, Y. Liu, X. Ling, H. Luo, and X. Yin, “Radial spin Hall effect of light,” Phys. Rev. A 93, 013839 (2016).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Spektor, G.

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15, 5739–5743 (2015).
[Crossref]

Su, L.

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuckovic, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Tan, Y.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photon. 5, 1365–1369 (2018).
[Crossref]

Tang, D.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Tian, Z.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

Veksler, D.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
[Crossref]

N. Shitrit, S. Maayani, D. Veksler, V. Kleiner, and E. Hasman, “Rashba-type plasmonic metasurface,” Opt. Lett. 38, 4358–4361 (2013).
[Crossref]

Vuckovic, J.

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuckovic, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Wan, P.

B. Shen, P. Wan, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Wang, H.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Wen, S.

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6, 51–70 (2017).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Wen, S. C.

X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Wu, Y. S.

R. Y. Chiao and Y. S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref]

Xie, Z. W.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Xu, Q.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

Xu, Y.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Yi, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Yin, X.

W. Shu, Y. Ke, Y. Liu, X. Ling, H. Luo, and X. Yin, “Radial spin Hall effect of light,” Phys. Rev. A 93, 013839 (2016).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Yu, Z.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photon. 5, 1365–1369 (2018).
[Crossref]

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Yuan, X. C.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Yuan, X.-C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

Yuan, X.-C. C.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

Yulevich, I.

N. Shitrit, I. Yulevich, V. Kleiner, and E. Hasman, “Spin-controlled plasmonics via optical Rashba effect,” Appl. Phys. Lett. 103, 211114 (2013).
[Crossref]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Zel’dovich, B. Y.

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Zhang, L.

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Zhang, S.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Zhang, W.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

Zhang, X.

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Zhang, Z. C.

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Zhou, L.

Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Y. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95, 081406 (2017).
[Crossref]

Zhou, X.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Zhou, X. X.

X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]

Zhu, X.

Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Y. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95, 081406 (2017).
[Crossref]

Y. J. Bao, Q. Jiang, Y. M. Kang, X. Zhu, and Z. Y. Fang, “Enhanced optical performance of multifocal metalens with conic shapes,” Light Sci. Appl. 6, e17071 (2017).
[Crossref]

Zu, S.

Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Y. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95, 081406 (2017).
[Crossref]

ACS Photon. (3)

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martínez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photon. 1, 762–767 (2014).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photon. 5, 1365–1369 (2018).
[Crossref]

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vuckovic, “Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer,” ACS Photon. 5, 301–305 (2017).
[Crossref]

Adv. Opt. Mater. (1)

L. Zhang, S. Mei, K. Huang, and C. W. Qiu, “Advances in full control of electromagnetic waves with metasurfaces,” Adv. Opt. Mater. 4, 818–833 (2016).
[Crossref]

Appl. Phys. Lett. (2)

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[Crossref]

N. Shitrit, I. Yulevich, V. Kleiner, and E. Hasman, “Spin-controlled plasmonics via optical Rashba effect,” Appl. Phys. Lett. 103, 211114 (2013).
[Crossref]

Dokl. Akad. Nauk SSSR (1)

F. Fedorov, “K teorii polnogo otrazheniya,” Dokl. Akad. Nauk SSSR 105, 465–468 (1955).

J. Mod. Opt. (1)

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
[Crossref]

Laser Photon. Rev. (2)

Q. Xu, X. Zhang, Y. Xu, C. Ouyang, Z. Tian, J. Gu, J. Li, S. Zhang, J. Han, and W. Zhang, “Polarization-controlled surface plasmon holography,” Laser Photon. Rev. 11, 1600212 (2017).
[Crossref]

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna,” Laser Photon. Rev. 8, L27–L31 (2014).
[Crossref]

Light Sci. Appl. (4)

Z. W. Xie, T. Lei, F. Li, H. D. Qiu, Z. C. Zhang, H. Wang, C. J. Min, L. P. Du, Z. H. Li, and X. C. Yuan, “Ultra-broadband on-chip twisted light emitter for optical communications,” Light Sci. Appl. 7, 18001 (2018).
[Crossref]

Y. J. Bao, Q. Jiang, Y. M. Kang, X. Zhu, and Z. Y. Fang, “Enhanced optical performance of multifocal metalens with conic shapes,” Light Sci. Appl. 6, e17071 (2017).
[Crossref]

X. G. Luo, M. B. Pu, X. Li, and X. L. Ma, “Broadband spin Hall effect of light in single nanoapertures,” Light Sci. Appl. 6, e16276 (2017).
[Crossref]

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu, S. Chen, H. Luo, S. Wen, and D. Fan, “Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence,” Light Sci. Appl. 4, e290 (2015).
[Crossref]

Nano Lett. (3)

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11, 2038–2042 (2011).
[Crossref]

G. Spektor, A. David, B. Gjonaj, G. Bartal, and M. Orenstein, “Metafocusing by a metaspiral plasmonic lens,” Nano Lett. 15, 5739–5743 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12, 5750–5755 (2012).
[Crossref]

Nanophotonics (1)

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6, 51–70 (2017).
[Crossref]

Nat. Commun. (1)

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts, B. Abbey, X.-C. C. Yuan, D. Tang, and J. Lin, “Broadband chirality-coded meta-aperture for photon-spin resolving,” Nat. Commun. 6, 10051 (2015).
[Crossref]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

Nat. Photonics (6)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

F. Cardano and L. Marrucci, “Spin-orbit photonics,” Nat. Photonics 9, 776–778 (2015).
[Crossref]

B. Shen, P. Wan, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, “Inverse design in nanophotonics,” Nat. Photonics 12, 659–670 (2018).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vuckovic, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9, 374–377 (2015).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (2)

W. Shu, Y. Ke, Y. Liu, X. Ling, H. Luo, and X. Yin, “Radial spin Hall effect of light,” Phys. Rev. A 93, 013839 (2016).
[Crossref]

A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Y. Zel’dovich, “Optical magnus effect,” Phys. Rev. A 45, 8204–8208 (1992).
[Crossref]

Phys. Rev. B (1)

Y. J. Bao, S. Zu, W. Liu, L. Zhou, X. Zhu, and Z. Y. Fang, “Revealing the spin optics in conic-shaped metasurfaces,” Phys. Rev. B 95, 081406 (2017).
[Crossref]

Phys. Rev. E (1)

K. Y. Bliokh and Y. P. Bliokh, “Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect,” Phys. Rev. E 70, 026605 (2004).
[Crossref]

Phys. Rev. Lett. (3)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93, 083901 (2004).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96, 073903 (2006).
[Crossref]

R. Y. Chiao and Y. S. Wu, “Manifestations of Berry’s topological phase for the photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[Crossref]

Rep. Prog. Phys. (1)

X. H. Ling, X. X. Zhou, K. Huang, Y. C. Liu, C. W. Qiu, H. L. Luo, and S. C. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80, 066401 (2017).
[Crossref]

Science (5)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340, 331–334 (2013).
[Crossref]

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, “Spin-optical metamaterial route to spin-controlled photonics,” Science 340, 724–726 (2013).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Principles and structural design of the on-chip broadband photonic spin element. (a) Schematic of the on-chip broadband photonic spin element. The device is designed using a typical SOI configuration. The top silicon layer is 220 nm thick, the thickness of the silica layer is 2 μm, and the substrate thickness is 675 μm. The waveguide width is 440 nm. Incident light is coupled into different waveguides according to its spin states. (b) The device area is set as a black box. The phase response of the two arms is anti-symmetric for horizontal polarization and symmetric for vertical polarization. Therefore, when the incident beam is LCP (RCP), the coupled light in the left (right) arm is enhanced, and the light in the right (left) arm is cancelled out. (c) The design area is a circular area with a diameter of 2.4 μm composed of 288 pixels, each of which is a nano-arc area that can be filled either with a silicon or air block. The material distribution is optimized via inverse design. The green blocks indicate the optimized structures and are filled with silicon, while the other blocks are filled with air. (d) SEM image of the fabricated device. The scale bar is 1 μm.
Fig. 2.
Fig. 2. Simulated electromagnetic field intensity and amplitude profiles when the device is illuminated with different polarizations. (a)–(e) Intensity profiles when the polarizations of the incident beam are LCP, RCP, 0°, 90°, and 45°, respectively. (f)–(j) Corresponding amplitude profiles.
Fig. 3.
Fig. 3. Experimental measurements for using the device as an ellipsometer. (a) Experimental setup. The red arrows indicate the propagating direction of the light. PC, polarization controller; NIR, near-infrared; BS, beam splitter; CCD, charge-coupled device; QWP, quarter-wave plate; LP, linear polarizer. (b) and (c) Measured output power from the left and right arms (ports 1 and 2) of the device, respectively, when the incident beam is LCP, RCP, and LP. (d) Measured output power from the left/right arm (port 1/2) of the device when the polarization of the incident beam varies from circular to linear. (e) Comparison between measured (hollow dots) and theoretically predicted (colored solid line) ellipticities.
Fig. 4.
Fig. 4. Broadband properties. (a) Simulated results for using the device as a photonic spin detector. The 3 dB bandwidth is over 200 nm. (b) Simulated results for using the device as a photonic spin emitter. The working bandwidth is from 1300 to 1900 nm.
Fig. 5.
Fig. 5. Experimental measurements for generating circularly polarized light. (a) Experimental setup. The red arrows indicate the path flow of the light. PC, polarization controller; NIR, near-infrared; BS, beam splitter; CCD, charge-coupled device; QWP, quarter-wave plate; LP, linear polarizer. (b) Normalized measured power of the two generated circular polarizations. The lines in warm (cold) colors represent measured power when the incident light comes from the left (right) arm of the device [port 1 (port 2)] at the wavelengths 1528, 1550, 1575, and 1608 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ = P LCP P RCP P LCP + P RCP ,

Metrics