Abstract

We present, to the best of our knowledge, the first implementation of full-field quantum optical coherence tomography (FF-QOCT). In our system, we are able to obtain full three-dimensional (3D) information about the internal structure of a sample under study by relying on transversely resolved Hong–Ou–Mandel (HOM) interferometry with the help of an intensified CCD (ICCD) camera. Our system requires a single axial scan, obtaining full-field transverse single-photon intensity in coincidence with the detection of the sibling photon for each value of the signal-idler temporal delay. We believe that this capability constitutes a significant step forward toward the implementation of QOCT as a practical biomedical imaging technique.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors

Magued B. Nasr, Olga Minaeva, Gregory N. Goltsman, Alexander V. Sergienko, Bahaa E. A. Saleh, and Malvin C. Teich
Opt. Express 16(19) 15104-15108 (2008)

Thermal-light full-field optical coherence tomography

L. Vabre, A. Dubois, and A. C. Boccara
Opt. Lett. 27(7) 530-532 (2002)

Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography

Magued B. Nasr, Bahaa E. A. Saleh, Alexander V. Sergienko, and Malvin C. Teich
Opt. Express 12(7) 1353-1362 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  2. P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
    [Crossref]
  3. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [Crossref]
  4. P. Tang, J. Xu, and R. Wang, “Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography,” Appl. Phys. Lett. 113, 231101 (2018).
    [Crossref]
  5. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
    [Crossref]
  6. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref]
  7. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
    [Crossref]
  8. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
    [Crossref]
  9. M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
    [Crossref]
  10. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
    [Crossref]
  11. A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
    [Crossref]
  12. A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
    [Crossref]
  13. M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
    [Crossref]
  14. M. Okano, R. Okamoto, A. Tanaka, S. Subashchandran, and S. Takeuchi, “Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals,” Opt. Express 20, 13977–13987 (2012).
    [Crossref]
  15. S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
    [Crossref]
  16. P. Wachulak, A. Bartnik, and H. Fiedorowicz, “Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source,” Sci. Rep. 8, 8494 (2018).
    [Crossref]
  17. A. Vallés, G. Jiménez, L. J. Salazar-Serrano, and J. P. Torres, “Optical sectioning in induced coherence tomography with frequency-entangled photons,” Phys. Rev. A 97, 023824 (2018).
    [Crossref]
  18. A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3, 025008 (2018).
    [Crossref]
  19. P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
    [Crossref]
  20. D. Lopez-Mago and L. Novotny, “Quantum-optical coherence tomography with collinear entangled photons,” Opt. Lett. 37, 4077–4079 (2012).
    [Crossref]
  21. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [Crossref]
  22. E. Beaurepaire, A. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [Crossref]
  23. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874–2883 (2004).
    [Crossref]
  24. R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
    [Crossref]
  25. P. A. Moreau, E. Toninelli, P. A. Morris, R. S. Aspden, T. Gregory, G. Spalding, R. W. Boyd, and M. J. Padgett, “Resolution limits of quantum ghost imaging,” Opt. Express 26, 7528–7536 (2018).
    [Crossref]
  26. R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
    [Crossref]
  27. M. Jachura and R. Chrapkiewicz, “Shot-by-shot imaging of Hong-Ou-Mandel interference with an intensified SCMOS camera,” Opt. Lett. 40, 1540–1543 (2015).
    [Crossref]
  28. R. Chrapkiewicz, M. Jachura, K. Banaszek, and W. Wasilewski, “Hologram of a single photon,” Nat. Photonics 10, 576–579 (2016).
    [Crossref]
  29. I. Dhand, A. Khalid, H. Lu, and B. C. Sanders, “Accurate and precise characterization of linear optical interferometers,” J. Opt. 18, 035204 (2016).
    [Crossref]
  30. P. P. Rohde and T. C. Ralph, “Modelling photo-detectors in quantum optics,” J. Mod. Opt. 53, 1589–1603 (2006).
    [Crossref]
  31. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref]

2019 (1)

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

2018 (5)

P. A. Moreau, E. Toninelli, P. A. Morris, R. S. Aspden, T. Gregory, G. Spalding, R. W. Boyd, and M. J. Padgett, “Resolution limits of quantum ghost imaging,” Opt. Express 26, 7528–7536 (2018).
[Crossref]

P. Tang, J. Xu, and R. Wang, “Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography,” Appl. Phys. Lett. 113, 231101 (2018).
[Crossref]

P. Wachulak, A. Bartnik, and H. Fiedorowicz, “Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source,” Sci. Rep. 8, 8494 (2018).
[Crossref]

A. Vallés, G. Jiménez, L. J. Salazar-Serrano, and J. P. Torres, “Optical sectioning in induced coherence tomography with frequency-entangled photons,” Phys. Rev. A 97, 023824 (2018).
[Crossref]

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3, 025008 (2018).
[Crossref]

2016 (3)

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

R. Chrapkiewicz, M. Jachura, K. Banaszek, and W. Wasilewski, “Hologram of a single photon,” Nat. Photonics 10, 576–579 (2016).
[Crossref]

I. Dhand, A. Khalid, H. Lu, and B. C. Sanders, “Accurate and precise characterization of linear optical interferometers,” J. Opt. 18, 035204 (2016).
[Crossref]

2015 (2)

M. Jachura and R. Chrapkiewicz, “Shot-by-shot imaging of Hong-Ou-Mandel interference with an intensified SCMOS camera,” Opt. Lett. 40, 1540–1543 (2015).
[Crossref]

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

2013 (2)

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref]

2012 (2)

2009 (1)

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

2006 (1)

P. P. Rohde and T. C. Ralph, “Modelling photo-detectors in quantum optics,” J. Mod. Opt. 53, 1589–1603 (2006).
[Crossref]

2005 (1)

P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[Crossref]

2004 (1)

2003 (1)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

2002 (2)

1999 (1)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref]

1998 (1)

1996 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

1992 (3)

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

An, C.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3, 025008 (2018).
[Crossref]

Angulo-Martínez, A. M.

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

Apolonski, A.

Aspden, R. S.

P. A. Moreau, E. Toninelli, P. A. Morris, R. S. Aspden, T. Gregory, G. Spalding, R. W. Boyd, and M. J. Padgett, “Resolution limits of quantum ghost imaging,” Opt. Express 26, 7528–7536 (2018).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Banaszek, K.

R. Chrapkiewicz, M. Jachura, K. Banaszek, and W. Wasilewski, “Hologram of a single photon,” Nat. Photonics 10, 576–579 (2016).
[Crossref]

Bartnik, A.

P. Wachulak, A. Bartnik, and H. Fiedorowicz, “Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source,” Sci. Rep. 8, 8494 (2018).
[Crossref]

Baumgartner, A.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref]

Beaurepaire, E.

Bizheva, K.

Blanchot, L.

Blinne, A.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Boccara, A.

Boccara, C.

Boyd, R. W.

P. A. Moreau, E. Toninelli, P. A. Morris, R. S. Aspden, T. Gregory, G. Spalding, R. W. Boyd, and M. J. Padgett, “Resolution limits of quantum ghost imaging,” Opt. Express 26, 7528–7536 (2018).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Castro-Olvera, G.

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Chiao, R.

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref]

Chrapkiewicz, R.

R. Chrapkiewicz, M. Jachura, K. Banaszek, and W. Wasilewski, “Hologram of a single photon,” Nat. Photonics 10, 576–579 (2016).
[Crossref]

M. Jachura and R. Chrapkiewicz, “Shot-by-shot imaging of Hong-Ou-Mandel interference with an intensified SCMOS camera,” Opt. Lett. 40, 1540–1543 (2015).
[Crossref]

Corkum, P.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Cruz-Ramírez, H.

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

Davis, K. M.

Dhand, I.

I. Dhand, A. Khalid, H. Lu, and B. C. Sanders, “Accurate and precise characterization of linear optical interferometers,” J. Opt. 18, 035204 (2016).
[Crossref]

Drexler, W.

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref]

Dubois, A.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Fercher, A. F.

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Fickler, R.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref]

Fiedorowicz, H.

P. Wachulak, A. Bartnik, and H. Fiedorowicz, “Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source,” Sci. Rep. 8, 8494 (2018).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Förster, E.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Franson, J. D.

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref]

Frumker, E.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Fuchs, S.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Garduno-Mejía, J.

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

Glaser, L.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Goode, D. P.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Graciano, P. Y.

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Gregory, T.

Grieve, K.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Hermann, B.

Hilbert, V.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Hirao, K.

Hitzenberger, C. K.

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Jachura, M.

R. Chrapkiewicz, M. Jachura, K. Banaszek, and W. Wasilewski, “Hologram of a single photon,” Nat. Photonics 10, 576–579 (2016).
[Crossref]

M. Jachura and R. Chrapkiewicz, “Shot-by-shot imaging of Hong-Ou-Mandel interference with an intensified SCMOS camera,” Opt. Lett. 40, 1540–1543 (2015).
[Crossref]

Jiménez, G.

A. Vallés, G. Jiménez, L. J. Salazar-Serrano, and J. P. Torres, “Optical sectioning in induced coherence tomography with frequency-entangled photons,” Phys. Rev. A 97, 023824 (2018).
[Crossref]

Kalashnikov, D. A.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3, 025008 (2018).
[Crossref]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Khalid, A.

I. Dhand, A. Khalid, H. Lu, and B. C. Sanders, “Accurate and precise characterization of linear optical interferometers,” J. Opt. 18, 035204 (2016).
[Crossref]

Knight, J. C.

Krenn, M.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref]

Krivitsky, L. A.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3, 025008 (2018).
[Crossref]

Kurimura, S.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

Kwiat, P. G.

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref]

Lapkiewicz, R.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref]

Lebec, M.

Lecaque, R.

Lim, H. H.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Lopez-Mago, D.

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

D. Lopez-Mago and L. Novotny, “Quantum-optical coherence tomography with collinear entangled photons,” Opt. Lett. 37, 4077–4079 (2012).
[Crossref]

Lu, H.

I. Dhand, A. Khalid, H. Lu, and B. C. Sanders, “Accurate and precise characterization of linear optical interferometers,” J. Opt. 18, 035204 (2016).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Miura, K.

Moneron, G.

Moreau, P. A.

Morris, P. A.

Nasr, M. B.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Nguyen, N.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Nishizawa, N.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

Novotny, L.

Okamoto, R.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

M. Okano, R. Okamoto, A. Tanaka, S. Subashchandran, and S. Takeuchi, “Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals,” Opt. Express 20, 13977–13987 (2012).
[Crossref]

Okano, M.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

M. Okano, R. Okamoto, A. Tanaka, S. Subashchandran, and S. Takeuchi, “Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals,” Opt. Express 20, 13977–13987 (2012).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Padgett, M. J.

P. A. Moreau, E. Toninelli, P. A. Morris, R. S. Aspden, T. Gregory, G. Spalding, R. W. Boyd, and M. J. Padgett, “Resolution limits of quantum ghost imaging,” Opt. Express 26, 7528–7536 (2018).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Paterova, A. V.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3, 025008 (2018).
[Crossref]

Paulus, G. G.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Ralph, T. C.

P. P. Rohde and T. C. Ralph, “Modelling photo-detectors in quantum optics,” J. Mod. Opt. 53, 1589–1603 (2006).
[Crossref]

Ramelow, S.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref]

Ramírez-Alarcón, R.

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

Reinhard, B. M.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Rödel, C.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Rohde, P. P.

P. P. Rohde and T. C. Ralph, “Modelling photo-detectors in quantum optics,” J. Mod. Opt. 53, 1589–1603 (2006).
[Crossref]

Rong, G.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Rosete-Aguilar, M.

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

Russell, P. S. J.

Saint-Jalmes, H.

Salazar-Serrano, L. J.

A. Vallés, G. Jiménez, L. J. Salazar-Serrano, and J. P. Torres, “Optical sectioning in induced coherence tomography with frequency-entangled photons,” Phys. Rev. A 97, 023824 (2018).
[Crossref]

Saleh, B. E. A.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Sanders, B. C.

I. Dhand, A. Khalid, H. Lu, and B. C. Sanders, “Accurate and precise characterization of linear optical interferometers,” J. Opt. 18, 035204 (2016).
[Crossref]

Sattmann, H.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Sergienko, A. V.

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Spalding, G.

Steinberg, A. M.

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Subashchandran, S.

Sugimoto, N.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Takeuchi, S.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

M. Okano, R. Okamoto, A. Tanaka, S. Subashchandran, and S. Takeuchi, “Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals,” Opt. Express 20, 13977–13987 (2012).
[Crossref]

Tanaka, A.

Tang, P.

P. Tang, J. Xu, and R. Wang, “Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography,” Appl. Phys. Lett. 113, 231101 (2018).
[Crossref]

Tasca, D. S.

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Teich, M. C.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

Tomlins, P.

P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[Crossref]

Toninelli, E.

Torres, J. P.

A. Vallés, G. Jiménez, L. J. Salazar-Serrano, and J. P. Torres, “Optical sectioning in induced coherence tomography with frequency-entangled photons,” Phys. Rev. A 97, 023824 (2018).
[Crossref]

U’Ren, A. B.

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

Unterhuber, A.

Vabre, L.

Vallés, A.

A. Vallés, G. Jiménez, L. J. Salazar-Serrano, and J. P. Torres, “Optical sectioning in induced coherence tomography with frequency-entangled photons,” Phys. Rev. A 97, 023824 (2018).
[Crossref]

Vetterlein, M.

Viefaus, J.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Wachulak, P.

P. Wachulak, A. Bartnik, and H. Fiedorowicz, “Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source,” Sci. Rep. 8, 8494 (2018).
[Crossref]

Wadsworth, W. J.

Wang, R.

P. Tang, J. Xu, and R. Wang, “Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography,” Appl. Phys. Lett. 113, 231101 (2018).
[Crossref]

P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[Crossref]

Wasilewski, W.

R. Chrapkiewicz, M. Jachura, K. Banaszek, and W. Wasilewski, “Hologram of a single photon,” Nat. Photonics 10, 576–579 (2016).
[Crossref]

Wünsche, M.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Xu, J.

P. Tang, J. Xu, and R. Wang, “Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography,” Appl. Phys. Lett. 113, 231101 (2018).
[Crossref]

Yang, H.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3, 025008 (2018).
[Crossref]

Yang, L.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Zastrau, U.

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

Zeilinger, A.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Tang, J. Xu, and R. Wang, “Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography,” Appl. Phys. Lett. 113, 231101 (2018).
[Crossref]

J. Biomed. Opt. (1)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt. 4, 144–151 (1999).
[Crossref]

J. Mod. Opt. (1)

P. P. Rohde and T. C. Ralph, “Modelling photo-detectors in quantum optics,” J. Mod. Opt. 53, 1589–1603 (2006).
[Crossref]

J. Opt. (1)

I. Dhand, A. Khalid, H. Lu, and B. C. Sanders, “Accurate and precise characterization of linear optical interferometers,” J. Opt. 18, 035204 (2016).
[Crossref]

J. Phys. D (1)

P. Tomlins and R. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[Crossref]

Nat. Photonics (1)

R. Chrapkiewicz, M. Jachura, K. Banaszek, and W. Wasilewski, “Hologram of a single photon,” Nat. Photonics 10, 576–579 (2016).
[Crossref]

New J. Phys. (1)

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Opt. Commun. (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154–1159 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. A (4)

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer,” Phys. Rev. A 45, 6659–6665 (1992).
[Crossref]

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002).
[Crossref]

A. Vallés, G. Jiménez, L. J. Salazar-Serrano, and J. P. Torres, “Optical sectioning in induced coherence tomography with frequency-entangled photons,” Phys. Rev. A 97, 023824 (2018).
[Crossref]

Phys. Rev. Lett. (3)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

A. M. Steinberg, P. G. Kwiat, and R. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[Crossref]

Quantum Sci. Technol. (1)

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3, 025008 (2018).
[Crossref]

Sci. Rep. (5)

P. Y. Graciano, A. M. Angulo-Martínez, D. Lopez-Mago, G. Castro-Olvera, M. Rosete-Aguilar, J. Garduno-Mejía, R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren, “Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs,” Sci. Rep. 9, 8954 (2019).
[Crossref]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep. 3, 1914 (2013).
[Crossref]

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref]

S. Fuchs, C. Rödel, A. Blinne, U. Zastrau, M. Wünsche, V. Hilbert, L. Glaser, J. Viefaus, E. Frumker, P. Corkum, E. Förster, and G. G. Paulus, “Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft X-ray radiation,” Sci. Rep. 6, 20658 (2016).
[Crossref]

P. Wachulak, A. Bartnik, and H. Fiedorowicz, “Optical coherence tomography (OCT) with 2 nm axial resolution using a compact laser plasma soft X-ray source,” Sci. Rep. 8, 8494 (2018).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Standard configuration for QOCT based on HOM interference. (b) Typical QOCT interferogram, based on an A-scan, for a two-layer sample with reflectivities R1 and R2.
Fig. 2.
Fig. 2. (a) FF-QOCT setup. (b) Schematic of the sample used showing the empty frame and the frame with the letter ψ imprinted on the front surface, along with the sample structure observed with a microscope. (c) Image-preserving OD.
Fig. 3.
Fig. 3. For a single-layer sample (mirror): (a) and (c) experimental HOM dip for photon-pair source in configuration A (filtered), in panel (a), and for configuration B (unfiltered) in panel (c). The insets in panels (a) and (c) show the single-photon spectral distribution S(ω) measured at the single-mode fiber outputs. Both distributions are approximately rectangular in shape with bandwidths 10  nm and 50  nm, respectively. For the empty frame in the sample: (b) and (d) experimental QOCT interferogram for configuration A (filtered), in panel (b), and for configuration B (unfiltered) in panel (d). The continuous lines are corresponding theory curves.
Fig. 4.
Fig. 4. QOCT interferogram obtained for the sample when illuminating the empty frame (purple dots) and the frame containing the letter ψ imprinted (green dots).
Fig. 5.
Fig. 5. For the frame with the letter ψ imprinted: (a) panels (i)–(vi) correspond to single-shot C-scans obtained for the axial positions indicated with dashed red lines in panel (b), with the insets showing the same measurement taken for the frame without the letter ψ. (b) QOCT interferogram obtained with the gated ICCD camera (summing up pixels) at each axial point of a single A-scan acquisition sequence (blue dots), and with two APD detectors as in Fig. 4 (green dots). (c) Same data as in (a) arranged as a stack, also including data for z=132  μm.
Fig. 6.
Fig. 6. (a) Schematic representation of the sample with two regions, type-I and type-II, presenting different reflectivities: R1 and R1 (R1<R1) for the front surface and homogeneous reflectivity R2 for the back surface. (b) Calculated QOCT interferogram for type-I (green solid) and type-II (blue dashed) regions considering reflectivites, R1=0.45, R1=0.2×R1, and R2=0.80. (c) Plots of the visibility contrast parameters, χ1 and χ2, for the front and back surfaces explaining the observed behavior in panels (ii) and (v) in Fig. 5(a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H(ω)=r1+r2ei2ωnL/c,
C(τ)1γV1s(2τ)γV2s(2τ2T)γVmids(2τT),
V1=R1R1+R2;V2=R2R1+R2;Vmid=2R1R2R1+R2cos(ω0T),

Metrics