Abstract

A multifunctional photo-thermal therapeutic nano-platform Y2O3:  Nd3+/Yb3+/Er3+@SiO2@Cu2S (YR-Si-Cu2S) was designed through a core–shell structure, expressing the function of bio-tissue imaging, real-time temperature detection, and photo-thermal therapy under 808 nm light excitation. In this system, the core Y2O3:  Nd3+/Yb3+/Er3+ (YR) takes the responsibility of emitting optical information and monitoring temperature, while the shell Cu2S nano-particles carry most of the photo-thermal conversion function. The temperature sensing characteristic was achieved by the fluorescence intensity ratio using the thermally coupled energy levels (TCLs) S3/24/H211/2 of Er3+, and its higher accuracy for real-time temperature measurement in the bio-tissue than that of an infrared thermal camera was also proved by sub-tissue experiments. Furthermore, the photo-thermal effect of the present nano-system Y2O3:  Nd3+/Yb3+/Er3+@SiO2@Cu2S was confirmed by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) ablation. Results indicate that YR-Si-Cu2S has application prospect in temperature-controlled photo-thermal treatment and imaging in bio-tissues.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Controlling the multicolor upconversion luminescence in CaF2 nanocrystals doped with Yb3+, Er3+ and Nd3+ ions under the excitation of a 808 nm laser

Xiaofan Zhao, Zining Yang, Xu Yang, Rui Wang, Maohui Yuan, Kai Han, Zongfu Jiang, Hongyan Wang, and Xiaojun Xu
Opt. Mater. Express 9(12) 4578-4587 (2019)

Spectroscopic and energy transfer investigation of Nd∕Yb in Y2O3 transparent ceramics

A. Lupei, V. Lupei, A. Ikesue, and C. Gheorghe
J. Opt. Soc. Am. B 27(5) 1002-1010 (2010)

NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe

Lili Tong, Xiangping Li, Jinsu Zhang, Sai Xu, Jiashi Sun, Hui Zheng, Yanqiu Zhang, Xiangqing Zhang, Ruinian Hua, Haiping Xia, and Baojiu Chen
Opt. Express 25(14) 16047-16058 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
    [Crossref]
  2. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science 284, 1318–1322 (1999).
    [Crossref]
  3. S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, “Light controllable surface coating for effective photothermal killing of bacteria,” ACS Appl. Mater. Interface 7, 15600–15606 (2015).
    [Crossref]
  4. Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
    [Crossref]
  5. Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, and C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy,” ACS Appl. Mater. Interface 8, 15904–15910 (2016).
    [Crossref]
  6. H. Suo, X. Zhao, Z. Zhang, and C. Guo, “808 nm light-triggered thermometer-heater up-converting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2,” ACS Appl. Mater. Interface 9, 43438–43448 (2017).
    [Crossref]
  7. G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Ågren, and P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties,” Nanoscale 3, 2003–2008 (2011).
    [Crossref]
  8. Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
    [Crossref]
  9. E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
    [Crossref]
  10. G. Tian, X. Zhang, Z. J. Gu, and Y. L. Zhao, “Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy,” Adv. Mater. 27, 7692–7712 (2015).
    [Crossref]
  11. W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017).
    [Crossref]
  12. H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
    [Crossref]
  13. U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
    [Crossref]
  14. O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
    [Crossref]
  15. M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, and J. Zhong, “Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry,” J. Mater. Chem. C 7, 2971–2977 (2019).
    [Crossref]
  16. C. D. S. Brites, S. Balabhadra, and L. D. Carlos, “Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry,” Adv. Opt. Mater. 7, 1801239 (2019).
    [Crossref]
  17. C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in luminescent thermometry,” in Handbook on the Physics and Chemistry of Rare Earths (Elsevier, 2016), Vol. 49, pp. 339–427.
  18. Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
    [Crossref]
  19. M. Abbas, Q. Zou, S. Li, and X. Yan, “Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy,” Adv. Mater. 29, 1605021 (2017).
    [Crossref]
  20. R. Lv, P. Yang, F. He, S. Gai, G. Yang, and J. Lin, “Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging,” Chem. Mater. 27, 483–496 (2015).
    [Crossref]
  21. Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, and C. Guo, “NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation,” ACS Appl. Mater. Interface 10, 14570–14576 (2018).
    [Crossref]
  22. X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, and S. Kaskel, “Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy,” Small 13, 1602225 (2017).
    [Crossref]
  23. H. S. Jung, P. Verwilst, A. Sharma, and J. Shin, “Organic molecule-based photothermal agents: an expanding photothermal therapy universe,” Chem. Soc. Rev. 47, 2280–2297 (2018).
    [Crossref]
  24. J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
    [Crossref]
  25. C. Xu, F. H. F. Chen Valdovinos, D. Jiang, S. Goel, and B. Yu, “Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy,” Biomaterials 165, 56–65 (2018).
    [Crossref]
  26. S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, and I. Pal, “Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy,” Biochim. Biophys. Acta 1861, 3039–3052 (2017).
    [Crossref]
  27. Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
    [Crossref]
  28. Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, and N. He, “Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy,” Sci. Rep. 7, 41571 (2017).
    [Crossref]
  29. L. Wang, J. Cao, Y. Lu, X. Li, S. Xu, Q. Zhang, Z. Yang, and M. Peng, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photon. Res. 7, 300–310 (2019).
    [Crossref]
  30. L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
    [Crossref]
  31. J. Zhang, J. Yu, and Y. Zhang, “Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer,” Nano Lett. 11, 4774–4779 (2011).
    [Crossref]
  32. Z. Xu, Y. Gao, S. Huang, J. Lin, and J. Fang, “A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier,” Dalton Trans. 40, 4846–4854 (2011).
    [Crossref]
  33. B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
    [Crossref]
  34. D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, and M. T. Swihart, “Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy,” J. Mater. Chem. B 5, 4934–4942 (2017).
    [Crossref]
  35. M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” J. Am. Chem. Soc. 125, 16050–16057 (2003).
    [Crossref]
  36. H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
    [Crossref]
  37. C. Joshi, A. Dwived, and S. B. Rai, “Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3: Er3+/Yb3+ nano-crystalline phosphor,” Spectrochim. Acta A 129, 451–456 (2014).
    [Crossref]
  38. V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3: Yb3+, Er3+ nanophosphors,” J. Appl. Phys. 115, 203106 (2014).
    [Crossref]

2019 (3)

M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, and J. Zhong, “Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry,” J. Mater. Chem. C 7, 2971–2977 (2019).
[Crossref]

C. D. S. Brites, S. Balabhadra, and L. D. Carlos, “Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry,” Adv. Opt. Mater. 7, 1801239 (2019).
[Crossref]

L. Wang, J. Cao, Y. Lu, X. Li, S. Xu, Q. Zhang, Z. Yang, and M. Peng, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photon. Res. 7, 300–310 (2019).
[Crossref]

2018 (6)

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, and C. Guo, “NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation,” ACS Appl. Mater. Interface 10, 14570–14576 (2018).
[Crossref]

H. S. Jung, P. Verwilst, A. Sharma, and J. Shin, “Organic molecule-based photothermal agents: an expanding photothermal therapy universe,” Chem. Soc. Rev. 47, 2280–2297 (2018).
[Crossref]

C. Xu, F. H. F. Chen Valdovinos, D. Jiang, S. Goel, and B. Yu, “Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy,” Biomaterials 165, 56–65 (2018).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
[Crossref]

Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
[Crossref]

2017 (10)

H. Suo, X. Zhao, Z. Zhang, and C. Guo, “808 nm light-triggered thermometer-heater up-converting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2,” ACS Appl. Mater. Interface 9, 43438–43448 (2017).
[Crossref]

W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017).
[Crossref]

Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
[Crossref]

M. Abbas, Q. Zou, S. Li, and X. Yan, “Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy,” Adv. Mater. 29, 1605021 (2017).
[Crossref]

S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, and I. Pal, “Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy,” Biochim. Biophys. Acta 1861, 3039–3052 (2017).
[Crossref]

Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
[Crossref]

Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, and N. He, “Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy,” Sci. Rep. 7, 41571 (2017).
[Crossref]

J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
[Crossref]

X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, and S. Kaskel, “Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy,” Small 13, 1602225 (2017).
[Crossref]

D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, and M. T. Swihart, “Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy,” J. Mater. Chem. B 5, 4934–4942 (2017).
[Crossref]

2016 (4)

B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
[Crossref]

Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, and C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy,” ACS Appl. Mater. Interface 8, 15904–15910 (2016).
[Crossref]

E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

2015 (4)

G. Tian, X. Zhang, Z. J. Gu, and Y. L. Zhao, “Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy,” Adv. Mater. 27, 7692–7712 (2015).
[Crossref]

S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, “Light controllable surface coating for effective photothermal killing of bacteria,” ACS Appl. Mater. Interface 7, 15600–15606 (2015).
[Crossref]

R. Lv, P. Yang, F. He, S. Gai, G. Yang, and J. Lin, “Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging,” Chem. Mater. 27, 483–496 (2015).
[Crossref]

O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
[Crossref]

2014 (2)

C. Joshi, A. Dwived, and S. B. Rai, “Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3: Er3+/Yb3+ nano-crystalline phosphor,” Spectrochim. Acta A 129, 451–456 (2014).
[Crossref]

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3: Yb3+, Er3+ nanophosphors,” J. Appl. Phys. 115, 203106 (2014).
[Crossref]

2013 (2)

U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
[Crossref]

2011 (3)

G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Ågren, and P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties,” Nanoscale 3, 2003–2008 (2011).
[Crossref]

J. Zhang, J. Yu, and Y. Zhang, “Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer,” Nano Lett. 11, 4774–4779 (2011).
[Crossref]

Z. Xu, Y. Gao, S. Huang, J. Lin, and J. Fang, “A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier,” Dalton Trans. 40, 4846–4854 (2011).
[Crossref]

2008 (1)

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
[Crossref]

2003 (1)

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” J. Am. Chem. Soc. 125, 16050–16057 (2003).
[Crossref]

1999 (1)

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science 284, 1318–1322 (1999).
[Crossref]

Abbas, M.

M. Abbas, Q. Zou, S. Li, and X. Yan, “Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy,” Adv. Mater. 29, 1605021 (2017).
[Crossref]

Ågren, H.

G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Ågren, and P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties,” Nanoscale 3, 2003–2008 (2011).
[Crossref]

Aguilo, M.

O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
[Crossref]

Ai, K.

W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017).
[Crossref]

Balabhadra, S.

C. D. S. Brites, S. Balabhadra, and L. D. Carlos, “Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry,” Adv. Opt. Mater. 7, 1801239 (2019).
[Crossref]

Balk, D.

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
[Crossref]

Barrera, E. W.

O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
[Crossref]

Benayas, A.

U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Brites, C. D.

E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
[Crossref]

Brites, C. D. S.

C. D. S. Brites, S. Balabhadra, and L. D. Carlos, “Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry,” Adv. Opt. Mater. 7, 1801239 (2019).
[Crossref]

C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in luminescent thermometry,” in Handbook on the Physics and Chemistry of Rare Earths (Elsevier, 2016), Vol. 49, pp. 339–427.

Bu, W.

Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
[Crossref]

Cao, J.

Cao, R.

Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, and N. He, “Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy,” Sci. Rep. 7, 41571 (2017).
[Crossref]

Cao, Z.

Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
[Crossref]

Carlos, L. D.

C. D. S. Brites, S. Balabhadra, and L. D. Carlos, “Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry,” Adv. Opt. Mater. 7, 1801239 (2019).
[Crossref]

C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in luminescent thermometry,” in Handbook on the Physics and Chemistry of Rare Earths (Elsevier, 2016), Vol. 49, pp. 339–427.

Carvajal, J. J.

O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
[Crossref]

Chen, F.

Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
[Crossref]

Chen, G.

G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Ågren, and P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties,” Nanoscale 3, 2003–2008 (2011).
[Crossref]

Chen, J.

J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
[Crossref]

Chen, P.

J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
[Crossref]

Chen Valdovinos, F. H. F.

C. Xu, F. H. F. Chen Valdovinos, D. Jiang, S. Goel, and B. Yu, “Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy,” Biomaterials 165, 56–65 (2018).
[Crossref]

Cheng, Z.

B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
[Crossref]

Costerton, J. W.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science 284, 1318–1322 (1999).
[Crossref]

Daszak, P.

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
[Crossref]

Dey, K. K.

S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, and I. Pal, “Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy,” Biochim. Biophys. Acta 1861, 3039–3052 (2017).
[Crossref]

Díaz, F.

O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
[Crossref]

Dramicanin, M. D.

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3: Yb3+, Er3+ nanophosphors,” J. Appl. Phys. 115, 203106 (2014).
[Crossref]

Duan, H.

J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
[Crossref]

Dwived, A.

C. Joshi, A. Dwived, and S. B. Rai, “Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3: Er3+/Yb3+ nano-crystalline phosphor,” Spectrochim. Acta A 129, 451–456 (2014).
[Crossref]

Fan, L.

Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, and C. Guo, “NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation,” ACS Appl. Mater. Interface 10, 14570–14576 (2018).
[Crossref]

Fang, J.

Z. Xu, Y. Gao, S. Huang, J. Lin, and J. Fang, “A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier,” Dalton Trans. 40, 4846–4854 (2011).
[Crossref]

Feng, L.

Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
[Crossref]

Fernández, N.

E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
[Crossref]

Gai, S.

R. Lv, P. Yang, F. He, S. Gai, G. Yang, and J. Lin, “Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging,” Chem. Mater. 27, 483–496 (2015).
[Crossref]

Gao, G.

M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, and J. Zhong, “Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry,” J. Mater. Chem. C 7, 2971–2977 (2019).
[Crossref]

Gao, Y.

Z. Xu, Y. Gao, S. Huang, J. Lin, and J. Fang, “A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier,” Dalton Trans. 40, 4846–4854 (2011).
[Crossref]

Ge, W.

Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
[Crossref]

Ghezelbash, A.

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” J. Am. Chem. Soc. 125, 16050–16057 (2003).
[Crossref]

Gittleman, J. L.

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
[Crossref]

Goel, S.

C. Xu, F. H. F. Chen Valdovinos, D. Jiang, S. Goel, and B. Yu, “Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy,” Biomaterials 165, 56–65 (2018).
[Crossref]

Goldys, E. M.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

Greenberg, E. P.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science 284, 1318–1322 (1999).
[Crossref]

Grothe, J.

X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, and S. Kaskel, “Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy,” Small 13, 1602225 (2017).
[Crossref]

Gu, Z. J.

G. Tian, X. Zhang, Z. J. Gu, and Y. L. Zhao, “Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy,” Adv. Mater. 27, 7692–7712 (2015).
[Crossref]

Guedes, I.

U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Guo, C.

Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, and C. Guo, “NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation,” ACS Appl. Mater. Interface 10, 14570–14576 (2018).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, and C. Guo, “808 nm light-triggered thermometer-heater up-converting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2,” ACS Appl. Mater. Interface 9, 43438–43448 (2017).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

Guo, F.

Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
[Crossref]

Guo, P.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

Hanrath, T.

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” J. Am. Chem. Soc. 125, 16050–16057 (2003).
[Crossref]

He, F.

R. Lv, P. Yang, F. He, S. Gai, G. Yang, and J. Lin, “Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging,” Chem. Mater. 27, 483–496 (2015).
[Crossref]

He, N.

Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, and N. He, “Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy,” Sci. Rep. 7, 41571 (2017).
[Crossref]

He, W.

W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017).
[Crossref]

Hou, Z.

B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
[Crossref]

Hu, K.

Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
[Crossref]

Hu, X.

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Hua, Y.

Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
[Crossref]

Huang, F.

Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, and N. He, “Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy,” Sci. Rep. 7, 41571 (2017).
[Crossref]

Huang, P.

X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, and S. Kaskel, “Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy,” Small 13, 1602225 (2017).
[Crossref]

Huang, S.

Z. Xu, Y. Gao, S. Huang, J. Lin, and J. Fang, “A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier,” Dalton Trans. 40, 4846–4854 (2011).
[Crossref]

In, I.

S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, “Light controllable surface coating for effective photothermal killing of bacteria,” ACS Appl. Mater. Interface 7, 15600–15606 (2015).
[Crossref]

Jacinto da Silva, C.

U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Jaque, D.

U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Jeong, C. J.

S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, “Light controllable surface coating for effective photothermal killing of bacteria,” ACS Appl. Mater. Interface 7, 15600–15606 (2015).
[Crossref]

Jiang, C.

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017).
[Crossref]

Jiang, D.

C. Xu, F. H. F. Chen Valdovinos, D. Jiang, S. Goel, and B. Yu, “Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy,” Biomaterials 165, 56–65 (2018).
[Crossref]

Jin, D.

B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
[Crossref]

Jones, K. E.

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
[Crossref]

Joshi, C.

C. Joshi, A. Dwived, and S. B. Rai, “Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3: Er3+/Yb3+ nano-crystalline phosphor,” Spectrochim. Acta A 129, 451–456 (2014).
[Crossref]

Jung, H. S.

H. S. Jung, P. Verwilst, A. Sharma, and J. Shin, “Organic molecule-based photothermal agents: an expanding photothermal therapy universe,” Chem. Soc. Rev. 47, 2280–2297 (2018).
[Crossref]

Kagola, U. K.

E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
[Crossref]

Kang, E. B.

S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, “Light controllable surface coating for effective photothermal killing of bacteria,” ACS Appl. Mater. Interface 7, 15600–15606 (2015).
[Crossref]

Kaskel, S.

X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, and S. Kaskel, “Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy,” Small 13, 1602225 (2017).
[Crossref]

Kim, S. H.

S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, “Light controllable surface coating for effective photothermal killing of bacteria,” ACS Appl. Mater. Interface 7, 15600–15606 (2015).
[Crossref]

Korgel, B. A.

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” J. Am. Chem. Soc. 125, 16050–16057 (2003).
[Crossref]

Law, W. C.

G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Ågren, and P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties,” Nanoscale 3, 2003–2008 (2011).
[Crossref]

Lee, F.

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” J. Am. Chem. Soc. 125, 16050–16057 (2003).
[Crossref]

Levy, M. A.

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
[Crossref]

Li, C.

B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
[Crossref]

Li, D.

Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
[Crossref]

Li, L.

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Li, S.

M. Abbas, Q. Zou, S. Li, and X. Yan, “Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy,” Adv. Mater. 29, 1605021 (2017).
[Crossref]

Li, T.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

Li, X.

Li, Y.

Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
[Crossref]

W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017).
[Crossref]

Li, Z.

Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, and C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy,” ACS Appl. Mater. Interface 8, 15904–15910 (2016).
[Crossref]

Lin, J.

B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
[Crossref]

R. Lv, P. Yang, F. He, S. Gai, G. Yang, and J. Lin, “Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging,” Chem. Mater. 27, 483–496 (2015).
[Crossref]

Z. Xu, Y. Gao, S. Huang, J. Lin, and J. Fang, “A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier,” Dalton Trans. 40, 4846–4854 (2011).
[Crossref]

Lin, M.

M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, and J. Zhong, “Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry,” J. Mater. Chem. C 7, 2971–2977 (2019).
[Crossref]

Lin, Z.

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Liu, B.

B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
[Crossref]

Liu, L.

Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
[Crossref]

Liu, M.

D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, and M. T. Swihart, “Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy,” J. Mater. Chem. B 5, 4934–4942 (2017).
[Crossref]

Liu, X.

D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, and M. T. Swihart, “Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy,” J. Mater. Chem. B 5, 4934–4942 (2017).
[Crossref]

Liu, Y.

D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, and M. T. Swihart, “Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy,” J. Mater. Chem. B 5, 4934–4942 (2017).
[Crossref]

Lojpur, V.

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3: Yb3+, Er3+ nanophosphors,” J. Appl. Phys. 115, 203106 (2014).
[Crossref]

Lu, L.

W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017).
[Crossref]

Lu, Y.

L. Wang, J. Cao, Y. Lu, X. Li, S. Xu, Q. Zhang, Z. Yang, and M. Peng, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photon. Res. 7, 300–310 (2019).
[Crossref]

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Lu, Z.

Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, and N. He, “Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy,” Sci. Rep. 7, 41571 (2017).
[Crossref]

Lv, R.

R. Lv, P. Yang, F. He, S. Gai, G. Yang, and J. Lin, “Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging,” Chem. Mater. 27, 483–496 (2015).
[Crossref]

Ma, C.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

Ma, K.

X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, and S. Kaskel, “Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy,” Small 13, 1602225 (2017).
[Crossref]

Ma, R.

Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
[Crossref]

Maestro, L. M.

U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Maiti, C.

S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, and I. Pal, “Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy,” Biochim. Biophys. Acta 1861, 3039–3052 (2017).
[Crossref]

Mao, C.

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Massons, J.

O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
[Crossref]

Miao, Z. H.

Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, and C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy,” ACS Appl. Mater. Interface 8, 15904–15910 (2016).
[Crossref]

Millán, A.

C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in luminescent thermometry,” in Handbook on the Physics and Chemistry of Rare Earths (Elsevier, 2016), Vol. 49, pp. 339–427.

Nikolic, G.

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3: Yb3+, Er3+ nanophosphors,” J. Appl. Phys. 115, 203106 (2014).
[Crossref]

Niu, X.

X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, and S. Kaskel, “Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy,” Small 13, 1602225 (2017).
[Crossref]

Ohulchanskyy, T. Y.

G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Ågren, and P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties,” Nanoscale 3, 2003–2008 (2011).
[Crossref]

Pal, I.

S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, and I. Pal, “Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy,” Biochim. Biophys. Acta 1861, 3039–3052 (2017).
[Crossref]

Pang, X.

Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
[Crossref]

Parida, S.

S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, and I. Pal, “Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy,” Biochim. Biophys. Acta 1861, 3039–3052 (2017).
[Crossref]

Park, S. Y.

S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, “Light controllable surface coating for effective photothermal killing of bacteria,” ACS Appl. Mater. Interface 7, 15600–15606 (2015).
[Crossref]

Patel, N. G.

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
[Crossref]

Peng, M.

L. Wang, J. Cao, Y. Lu, X. Li, S. Xu, Q. Zhang, Z. Yang, and M. Peng, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photon. Res. 7, 300–310 (2019).
[Crossref]

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Prasad, P. N.

D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, and M. T. Swihart, “Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy,” J. Mater. Chem. B 5, 4934–4942 (2017).
[Crossref]

G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Ågren, and P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties,” Nanoscale 3, 2003–2008 (2011).
[Crossref]

Pu, K.

J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
[Crossref]

Pujol, M. C.

O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
[Crossref]

Rai, S. B.

C. Joshi, A. Dwived, and S. B. Rai, “Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3: Er3+/Yb3+ nano-crystalline phosphor,” Spectrochim. Acta A 129, 451–456 (2014).
[Crossref]

Rajesh, Y.

S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, and I. Pal, “Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy,” Biochim. Biophys. Acta 1861, 3039–3052 (2017).
[Crossref]

Richards, B. S.

M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, and J. Zhong, “Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry,” J. Mater. Chem. C 7, 2971–2977 (2019).
[Crossref]

Rocha, U.

E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
[Crossref]

U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Santos, W. Q.

E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
[Crossref]

Sanz-Rodríguez, F.

E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
[Crossref]

Saunders, A. E.

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” J. Am. Chem. Soc. 125, 16050–16057 (2003).
[Crossref]

Savchuk, O. A.

O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
[Crossref]

Sharker, S. M.

S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, “Light controllable surface coating for effective photothermal killing of bacteria,” ACS Appl. Mater. Interface 7, 15600–15606 (2015).
[Crossref]

Sharma, A.

H. S. Jung, P. Verwilst, A. Sharma, and J. Shin, “Organic molecule-based photothermal agents: an expanding photothermal therapy universe,” Chem. Soc. Rev. 47, 2280–2297 (2018).
[Crossref]

Shen, S.

Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
[Crossref]

Shi, R.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
[Crossref]

Shin, J.

H. S. Jung, P. Verwilst, A. Sharma, and J. Shin, “Organic molecule-based photothermal agents: an expanding photothermal therapy universe,” Chem. Soc. Rev. 47, 2280–2297 (2018).
[Crossref]

Sigman, M. B.

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” J. Am. Chem. Soc. 125, 16050–16057 (2003).
[Crossref]

Silva, W. F.

U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Song, X.

W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017).
[Crossref]

Stewart, P. S.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science 284, 1318–1322 (1999).
[Crossref]

Storeygard, A.

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
[Crossref]

Sun, D.

Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, and C. Guo, “NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation,” ACS Appl. Mater. Interface 10, 14570–14576 (2018).
[Crossref]

Sun, Q.

Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
[Crossref]

Suo, H.

Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, and C. Guo, “NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation,” ACS Appl. Mater. Interface 10, 14570–14576 (2018).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, and C. Guo, “808 nm light-triggered thermometer-heater up-converting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2,” ACS Appl. Mater. Interface 9, 43438–43448 (2017).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

Swihart, M. T.

D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, and M. T. Swihart, “Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy,” J. Mater. Chem. B 5, 4934–4942 (2017).
[Crossref]

Tan, G.

Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, and N. He, “Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy,” Sci. Rep. 7, 41571 (2017).
[Crossref]

Tan, X.

Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
[Crossref]

Tian, G.

G. Tian, X. Zhang, Z. J. Gu, and Y. L. Zhao, “Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy,” Adv. Mater. 27, 7692–7712 (2015).
[Crossref]

Tian, J.

J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
[Crossref]

Verwilst, P.

H. S. Jung, P. Verwilst, A. Sharma, and J. Shin, “Organic molecule-based photothermal agents: an expanding photothermal therapy universe,” Chem. Soc. Rev. 47, 2280–2297 (2018).
[Crossref]

Wang, H.

Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, and C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy,” ACS Appl. Mater. Interface 8, 15904–15910 (2016).
[Crossref]

Wang, J.

Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
[Crossref]

Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
[Crossref]

Wang, L.

Wang, Z.

M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, and J. Zhong, “Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry,” J. Mater. Chem. C 7, 2971–2977 (2019).
[Crossref]

Wu, Y.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
[Crossref]

Xia, H.

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Xiang, J.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
[Crossref]

Xiao, Q.

Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
[Crossref]

Xie, L.

M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, and J. Zhong, “Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry,” J. Mater. Chem. C 7, 2971–2977 (2019).
[Crossref]

Xie, Z.

B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
[Crossref]

Ximendes, E. C.

E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
[Crossref]

Xu, C.

C. Xu, F. H. F. Chen Valdovinos, D. Jiang, S. Goel, and B. Yu, “Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy,” Biomaterials 165, 56–65 (2018).
[Crossref]

Xu, C. Y.

Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, and C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy,” ACS Appl. Mater. Interface 8, 15904–15910 (2016).
[Crossref]

Xu, S.

Xu, Z.

Z. Xu, Y. Gao, S. Huang, J. Lin, and J. Fang, “A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier,” Dalton Trans. 40, 4846–4854 (2011).
[Crossref]

Yan, X.

M. Abbas, Q. Zou, S. Li, and X. Yan, “Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy,” Adv. Mater. 29, 1605021 (2017).
[Crossref]

Yan, Y.

Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
[Crossref]

Yang, G.

R. Lv, P. Yang, F. He, S. Gai, G. Yang, and J. Lin, “Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging,” Chem. Mater. 27, 483–496 (2015).
[Crossref]

Yang, H.

Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, and C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy,” ACS Appl. Mater. Interface 8, 15904–15910 (2016).
[Crossref]

Yang, P.

R. Lv, P. Yang, F. He, S. Gai, G. Yang, and J. Lin, “Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging,” Chem. Mater. 27, 483–496 (2015).
[Crossref]

Yang, X.

Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
[Crossref]

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Yang, Z.

Yao, X.

X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, and S. Kaskel, “Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy,” Small 13, 1602225 (2017).
[Crossref]

You, Q.

Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
[Crossref]

Yu, B.

C. Xu, F. H. F. Chen Valdovinos, D. Jiang, S. Goel, and B. Yu, “Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy,” Biomaterials 165, 56–65 (2018).
[Crossref]

Yu, J.

J. Zhang, J. Yu, and Y. Zhang, “Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer,” Nano Lett. 11, 4774–4779 (2011).
[Crossref]

Zhang, G.

Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
[Crossref]

Zhang, J.

J. Zhang, J. Yu, and Y. Zhang, “Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer,” Nano Lett. 11, 4774–4779 (2011).
[Crossref]

Zhang, L.

Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, and N. He, “Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy,” Sci. Rep. 7, 41571 (2017).
[Crossref]

Zhang, Q.

L. Wang, J. Cao, Y. Lu, X. Li, S. Xu, Q. Zhang, Z. Yang, and M. Peng, “In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser,” Photon. Res. 7, 300–310 (2019).
[Crossref]

Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
[Crossref]

Zhang, S.

Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
[Crossref]

Zhang, X.

G. Tian, X. Zhang, Z. J. Gu, and Y. L. Zhao, “Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy,” Adv. Mater. 27, 7692–7712 (2015).
[Crossref]

Zhang, Y.

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

J. Zhang, J. Yu, and Y. Zhang, “Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer,” Nano Lett. 11, 4774–4779 (2011).
[Crossref]

Zhang, Z.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
[Crossref]

Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, and C. Guo, “NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation,” ACS Appl. Mater. Interface 10, 14570–14576 (2018).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, and C. Guo, “808 nm light-triggered thermometer-heater up-converting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2,” ACS Appl. Mater. Interface 9, 43438–43448 (2017).
[Crossref]

Zhao, X.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
[Crossref]

Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, and C. Guo, “NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation,” ACS Appl. Mater. Interface 10, 14570–14576 (2018).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, and C. Guo, “808 nm light-triggered thermometer-heater up-converting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2,” ACS Appl. Mater. Interface 9, 43438–43448 (2017).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

Zhao, Y. L.

G. Tian, X. Zhang, Z. J. Gu, and Y. L. Zhao, “Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy,” Adv. Mater. 27, 7692–7712 (2015).
[Crossref]

Zhen, L.

Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, and C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy,” ACS Appl. Mater. Interface 8, 15904–15910 (2016).
[Crossref]

Zheng, J.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

Zheng, X.

J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
[Crossref]

Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
[Crossref]

Zhong, J.

M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, and J. Zhong, “Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry,” J. Mater. Chem. C 7, 2971–2977 (2019).
[Crossref]

Zhou, B.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

Zhou, Z.

Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
[Crossref]

Zhu, D.

D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, and M. T. Swihart, “Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy,” J. Mater. Chem. B 5, 4934–4942 (2017).
[Crossref]

Zhu, H.

J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
[Crossref]

Zhu, Y.

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Zou, Q.

M. Abbas, Q. Zou, S. Li, and X. Yan, “Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy,” Adv. Mater. 29, 1605021 (2017).
[Crossref]

Zou, Y.

Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
[Crossref]

ACS Appl. Mater. Interface (5)

S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, “Light controllable surface coating for effective photothermal killing of bacteria,” ACS Appl. Mater. Interface 7, 15600–15606 (2015).
[Crossref]

Z. H. Miao, H. Wang, H. Yang, Z. Li, L. Zhen, and C. Y. Xu, “Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy,” ACS Appl. Mater. Interface 8, 15904–15910 (2016).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, and C. Guo, “808 nm light-triggered thermometer-heater up-converting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2,” ACS Appl. Mater. Interface 9, 43438–43448 (2017).
[Crossref]

Z. Zhang, H. Suo, X. Zhao, D. Sun, L. Fan, and C. Guo, “NIR-to-NIR deep penetrating nanoplatforms Y2O3:Nd3+/Yb3+@SiO2@Cu2S towards highly efficient photothermal ablation,” ACS Appl. Mater. Interface 10, 14570–14576 (2018).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interface 8, 30312–30319 (2016).
[Crossref]

ACS Nano (1)

U. Rocha, C. Jacinto da Silva, W. F. Silva, I. Guedes, A. Benayas, L. M. Maestro, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7, 1188–1199 (2013).
[Crossref]

Adv. Funct. Mater. (1)

L. Li, Y. Lu, C. Jiang, Y. Zhu, X. Yang, X. Hu, Z. Lin, Y. Zhang, M. Peng, H. Xia, and C. Mao, “Actively targeted deep tissue imaging and photothermalchemo therapy of breast cancer by antibody functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles,” Adv. Funct. Mater. 28, 1704623 (2018).
[Crossref]

Adv. Mater. (2)

M. Abbas, Q. Zou, S. Li, and X. Yan, “Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy,” Adv. Mater. 29, 1605021 (2017).
[Crossref]

G. Tian, X. Zhang, Z. J. Gu, and Y. L. Zhao, “Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy,” Adv. Mater. 27, 7692–7712 (2015).
[Crossref]

Adv. Opt. Mater. (1)

C. D. S. Brites, S. Balabhadra, and L. D. Carlos, “Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry,” Adv. Opt. Mater. 7, 1801239 (2019).
[Crossref]

Biochim. Biophys. Acta (1)

S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, and I. Pal, “Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy,” Biochim. Biophys. Acta 1861, 3039–3052 (2017).
[Crossref]

Biomaterials (5)

Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, and F. Guo, “A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped Ce6-doped mesoporous silica nanorods,” Biomaterials 122, 188–200 (2017).
[Crossref]

C. Xu, F. H. F. Chen Valdovinos, D. Jiang, S. Goel, and B. Yu, “Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy,” Biomaterials 165, 56–65 (2018).
[Crossref]

Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, and Q. Zhang, “Autophagy inhibition enabled efficient photo-thermal therapy at a mild temperature,” Biomaterials 141, 116–124 (2017).
[Crossref]

W. He, K. Ai, C. Jiang, Y. Li, X. Song, and L. Lu, “Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy,” Biomaterials 132, 37–47 (2017).
[Crossref]

Z. Cao, L. Feng, G. Zhang, J. Wang, S. Shen, D. Li, and X. Yang, “Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging,” Biomaterials 155, 103–111 (2018).
[Crossref]

Chem. Mater. (1)

R. Lv, P. Yang, F. He, S. Gai, G. Yang, and J. Lin, “Hollow structured Y2O3:Yb/Er-CuxS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging,” Chem. Mater. 27, 483–496 (2015).
[Crossref]

Chem. Soc. Rev. (1)

H. S. Jung, P. Verwilst, A. Sharma, and J. Shin, “Organic molecule-based photothermal agents: an expanding photothermal therapy universe,” Chem. Soc. Rev. 47, 2280–2297 (2018).
[Crossref]

Dalton Trans. (2)

Z. Xu, Y. Gao, S. Huang, J. Lin, and J. Fang, “A luminescent and mesoporous core-shell structured Gd2O3:Eu3+@nSiO2@mSiO2 nanocomposite as a drug carrier,” Dalton Trans. 40, 4846–4854 (2011).
[Crossref]

B. Liu, C. Li, Z. Xie, Z. Hou, Z. Cheng, D. Jin, and J. Lin, “808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite,” Dalton Trans. 45, 13061–13069 (2016).
[Crossref]

J. Am. Chem. Soc. (2)

Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen, and Y. Hua, “A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy,” J. Am. Chem. Soc. 135, 13041–13048 (2013).
[Crossref]

M. B. Sigman, A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, and B. A. Korgel, “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” J. Am. Chem. Soc. 125, 16050–16057 (2003).
[Crossref]

J. Appl. Phys. (1)

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3: Yb3+, Er3+ nanophosphors,” J. Appl. Phys. 115, 203106 (2014).
[Crossref]

J. Mater. Chem. B (1)

D. Zhu, M. Liu, X. Liu, Y. Liu, P. N. Prasad, and M. T. Swihart, “Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy,” J. Mater. Chem. B 5, 4934–4942 (2017).
[Crossref]

J. Mater. Chem. C (1)

M. Lin, L. Xie, Z. Wang, B. S. Richards, G. Gao, and J. Zhong, “Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry,” J. Mater. Chem. C 7, 2971–2977 (2019).
[Crossref]

J. Phys. Chem. C (1)

O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo, and F. Díaz, “Ho, Yb: KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry,” J. Phys. Chem. C 119, 18546–18558 (2015).
[Crossref]

Nano Lett. (2)

E. C. Ximendes, W. Q. Santos, U. Rocha, U. K. Kagola, F. Sanz-Rodríguez, N. Fernández, and C. D. Brites, “Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers,” Nano Lett. 16, 1695–1703 (2016).
[Crossref]

J. Zhang, J. Yu, and Y. Zhang, “Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer,” Nano Lett. 11, 4774–4779 (2011).
[Crossref]

Nanoscale (2)

G. Chen, T. Y. Ohulchanskyy, W. C. Law, H. Ågren, and P. N. Prasad, “Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties,” Nanoscale 3, 2003–2008 (2011).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10, 9245–9251 (2018).
[Crossref]

Nature (1)

K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak, “Global trends in emerging infectious diseases,” Nature 451, 990–993 (2008).
[Crossref]

Photon. Res. (1)

Sci. Rep. (1)

Z. Lu, F. Huang, R. Cao, L. Zhang, G. Tan, and N. He, “Long blood residence and large tumor uptake of ruthenium sulfide nanoclusters for highly efficient cancer photothermal therapy,” Sci. Rep. 7, 41571 (2017).
[Crossref]

Science (1)

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science 284, 1318–1322 (1999).
[Crossref]

Small (2)

J. Tian, H. Zhu, J. Chen, X. Zheng, H. Duan, K. Pu, and P. Chen, “Cobalt phosphide double-shelled nanocages: broadband light-harvesting nanostructures for efficient photothermal therapy and self-powered photoelectrochemical biosensing,” Small 13, 1700798 (2017).
[Crossref]

X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, and S. Kaskel, “Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy,” Small 13, 1602225 (2017).
[Crossref]

Spectrochim. Acta A (1)

C. Joshi, A. Dwived, and S. B. Rai, “Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3: Er3+/Yb3+ nano-crystalline phosphor,” Spectrochim. Acta A 129, 451–456 (2014).
[Crossref]

Other (1)

C. D. S. Brites, A. Millán, and L. D. Carlos, “Lanthanides in luminescent thermometry,” in Handbook on the Physics and Chemistry of Rare Earths (Elsevier, 2016), Vol. 49, pp. 339–427.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (A) XRD patterns of precursors, YR, YR-Si, and YR-Si-Cu2S; (B) FTIR spectra of each step of the synthesized samples of precursor, YR, YR-Si, YR-Si-NH2, and YR-Si-Cu2S; (C) Zeta potential of YR-Si, YR-Si-NH2, and Cu2S; (D) XPS profile of Cu 2p of Cu2S films.
Fig. 2.
Fig. 2. (A) Schematic diagram of YR-Si-Cu2S; TEM images of (B) YR, (C) YR-Si, and (D) YR-Si-Cu2S; (E) single particle of YR-Si-Cu2S and high magnification of different zones of f and g are shown in (F) and (G), respectively. (H) HAADF-STEM image and cross-section compositional line profiles of samples and elemental mapping images in (I).
Fig. 3.
Fig. 3. (A) NIR emission spectra of YR, YR-Si, and YR-Si-Cu2S under 808 nm; (B) UV-vis-NIR absorption spectra of PBS buffer solution, Cu2S, YR-Si, and YR-Si-Cu2S dispersed in PBS; (C) schematic diagram of the NIR light penetration depth in different thicknesses of pork tissue; (D) measured NIR emission intensity as a function of injection depth in pork under 808 nm; and (E) NIR emission intensity ratio of I980/I9001150 in YR-Si-Cu2S with different injection depth.
Fig. 4.
Fig. 4. Power-dependent temperature of (A) YR, YR-Si, YR-Si-Cu2S and (B) Y-Si-Cu2S as a function of time under 808 nm; (C) normalized UC emission spectra of Y-Si at about 537 nm with the increasing temperature to 420 K; (D) absolute/relative sensitivities of Y-Si at different temperatures; and (E) schematic of temperature measurement using FIR and thermal camera. The inset in (E) is surface and sub-tissue temperatures with different 808 nm powers.
Fig. 5.
Fig. 5. (A) Photos of E. coli and S. aureus ablation; (B) bacteria viability of E. coli and S. aureus colonies with different incubated conditions under 808 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sa=dRdT=R(ΔEKT2),
Sr=dRR×dT=ΔEKT2,
R=IHIS=N(2H11/2)N(4S3/2)=gHσHωHgSσSωSexp(ΔEKT)=Cexp(ΔEKT),

Metrics