Abstract

A compact single-shot complementary metal-oxide semiconductor (CMOS) spectral sensor for the visible range (wavelength 400–700 nm) is presented. The sensor consists of two-dimensional silicon nitride-based photonic crystal (PC) slabs atop CMOS photodetectors. The PC slabs are fabricated using one-step lithography and amenable to monolithic integration into CMOS image sensors. Featuring a small footprint of 300  μm×350  μm, the sensor can successfully measure the spectra over the 400–700 wavelength range with a best resolution of 1 nm. The footprint of the sensor may be further reduced to enable hyperspectral imaging with high spatial resolution.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Estimating visible through near-infrared spectral reflectance from a sensor radiance spectrum

Kartik Chandra and Glenn Healey
J. Opt. Soc. Am. A 21(10) 1825-1833 (2004)

Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters

Yan Yu, Qin Chen, Long Wen, Xin Hu, and Hui-Fang Zhang
Opt. Express 23(17) 21994-22003 (2015)

Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors

Zhongping Lee, Shaoling Shang, Chuanmin Hu, and Giuseppe Zibordi
Appl. Opt. 53(15) 3301-3310 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
    [Crossref]
  2. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
    [Crossref]
  3. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
    [Crossref]
  4. J. Oliver, W. Lee, S. Park, and H.-N. Lee, “Improving resolution of miniature spectrometers by exploiting sparse nature of signals,” Opt. Express 20, 2613–2625 (2012).
    [Crossref]
  5. J. Oliver, W.-B. Lee, and H.-N. Lee, “Filters with random transmittance for improving resolution in filter-array-based spectrometers,” Opt. Express 21, 3969–3989 (2013).
    [Crossref]
  6. N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
    [Crossref]
  7. N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702 (2012).
    [Crossref]
  8. N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express 18, 8277–8285 (2010).
    [Crossref]
  9. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
    [Crossref]
  10. D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
    [Crossref]
  11. T. Pügner, J. Knobbe, and H. Grüger, “Near-infrared grating spectrometer for mobile phone applications,” Appl. Spectrosc. 70, 734–745 (2016).
    [Crossref]
  12. E. D. Nelson and M. L. Fredman, “Hadamard spectroscopy,” J. Opt. Soc. Am. 60, 1664–1669 (1970).
    [Crossref]
  13. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930–11936 (2008).
    [Crossref]
  14. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
    [Crossref]
  15. R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53, 197–202 (2004).
    [Crossref]
  16. M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, “Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers,” Opt. Express 15, 18176–18189 (2007).
    [Crossref]
  17. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32, 632–634 (2007).
    [Crossref]
  18. Z. Wang and Z. Yu, “Spectral analysis based on compressive sensing in nanophotonic structures,” Opt. Express 22, 25608–25614 (2014).
    [Crossref]
  19. Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
    [Crossref]
  20. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [Crossref]
  21. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
    [Crossref]
  22. U. Kurokawa, B. I. Choi, and C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
    [Crossref]
  23. Y. August and A. Stern, “Compressive sensing spectrometry based on liquid crystal devices,” Opt. Lett. 38, 4996–4999 (2013).
    [Crossref]

2019 (1)

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

2018 (1)

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

2016 (1)

2015 (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

2014 (2)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Z. Wang and Z. Yu, “Spectral analysis based on compressive sensing in nanophotonic structures,” Opt. Express 22, 25608–25614 (2014).
[Crossref]

2013 (4)

Y. August and A. Stern, “Compressive sensing spectrometry based on liquid crystal devices,” Opt. Lett. 38, 4996–4999 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

J. Oliver, W.-B. Lee, and H.-N. Lee, “Filters with random transmittance for improving resolution in filter-array-based spectrometers,” Opt. Express 21, 3969–3989 (2013).
[Crossref]

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

2012 (3)

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702 (2012).
[Crossref]

J. Oliver, W. Lee, S. Park, and H.-N. Lee, “Improving resolution of miniature spectrometers by exploiting sparse nature of signals,” Opt. Express 20, 2613–2625 (2012).
[Crossref]

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

2011 (2)

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express 19, 12356–12364 (2011).
[Crossref]

U. Kurokawa, B. I. Choi, and C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

2010 (1)

2008 (2)

A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930–11936 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

2007 (2)

2006 (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

2004 (1)

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53, 197–202 (2004).
[Crossref]

1970 (1)

Adibi, A.

August, Y.

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Bono, D.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Chamanzar, M.

Chang, C.

U. Kurokawa, B. I. Choi, and C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Cheben, P.

Chen, A.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Chen, L.

Chen, X.

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Cheng, W.

Choi, B. I.

U. Kurokawa, B. I. Choi, and C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Cox, M. P.

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Edrees, H. M.

Eftekhar, A. A.

Englund, D.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Favela, D.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Florjanczyk, M.

Fredman, M. L.

Gan, X.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Gao, L. S.

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702 (2012).
[Crossref]

Grüger, H.

Gu, T.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Hagen, N. A.

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702 (2012).
[Crossref]

Hatami, F.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Hu, J.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

James, A.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Janz, S.

Jia, Z.

Joe, G.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Kats, M. A.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Kester, R. T.

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702 (2012).
[Crossref]

Kita, D. M.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Knobbe, J.

Kudenov, M. W.

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

Kurokawa, U.

U. Kurokawa, B. I. Choi, and C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Kymissis, I.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express 18, 8277–8285 (2010).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Lee, H.-N.

Lee, W.

Lee, W.-B.

Li, M.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32, 632–634 (2007).
[Crossref]

Li, Q.

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Lin, H.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Lipson, M.

Lu, W.

Luk, T. S.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Michon, J.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Miranda, B.

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Momeni, B.

Nelson, E. D.

Nitkowski, A.

Nogan, J.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Oliver, J.

Park, S.

Pervez, N.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Pervez, N. K.

Pügner, T.

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Ross, W.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Scott, A.

Shahsafi, A.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Solheim, B.

Soltani, M.

Stern, A.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Tkaczyk, T. S.

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702 (2012).
[Crossref]

Wang, H.

Wang, K. X.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Wang, S.-W.

Wang, Z.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Z. Wang and Z. Yu, “Spectral analysis based on compressive sensing in nanophotonic structures,” Opt. Express 22, 25608–25614 (2014).
[Crossref]

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53, 197–202 (2004).
[Crossref]

Xia, C.

Xia, Z.

Xu, D.-X.

Yegnanarayanan, S.

Yi, S.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Yu, Z.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Z. Wang and Z. Yu, “Spectral analysis based on compressive sensing in nanophotonic structures,” Opt. Express 22, 25608–25614 (2014).
[Crossref]

Zhang, T.

Zheng, W.

Zhou, M.

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

ACS Nano (1)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8, 6955–6961 (2014).
[Crossref]

Appl. Phys. Lett. (1)

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity array,” Appl. Phys. Lett. 100, 231104 (2012).
[Crossref]

Appl. Spectrosc. (1)

IEEE Sens. J. (1)

U. Kurokawa, B. I. Choi, and C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

R. F. Wolffenbuttel, “State-of-the-art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53, 197–202 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (2)

D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, and J. Hu, “High-performance and scalable on-chip digital Fourier transform spectroscopy,” Nat. Commun. 9, 4405 (2018).
[Crossref]

Z. Wang, S. Yi, A. Chen, M. Zhou, T. S. Luk, A. James, J. Nogan, W. Ross, G. Joe, A. Shahsafi, K. X. Wang, M. A. Kats, and Z. Yu, “Single-shot on-chip spectral sensors based on photonic crystal slabs,” Nat. Commun. 10, 1020 (2019).
[Crossref]

Nat. Photonics (1)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Nature (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Opt. Eng. (2)

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[Crossref]

N. A. Hagen, L. S. Gao, T. S. Tkaczyk, and R. T. Kester, “Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702 (2012).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Sensor operating principle and device images. (a) Sensor operating principle and schematics. The spectral sensor consists of an array of PC slabs atop a CMOS image sensor. The transmission spectra of the PC slabs differ significantly from each other and form a sampling basis T. For an incident light, the pixel values of the sensor and the sampling basis T are used to infer the unknown spectrum of the light. (b) Device photograph. The sensor consists of an array of PC slabs fabricated on a SiNx/quartz substrate, placed on a CMOS image sensor. (c) Optical micrograph of a PC slab array.
Fig. 2.
Fig. 2. Transmission of PC slabs fabricated using different materials. (a) The real parts and imaginary parts of refractive indices for α-Si, SiNx, SiC, and SiO2 deposited using chemical vapor deposition. (b) Representative transmission spectra for SiNx, SiO2, and SiC by numerical simulation. (c) Mapping of correlation coefficients between each pair of the 42 simulated transmission spectra in different wavelength ranges. Blue indicates weak or negative correlation; red indicates strong positive correlation. For each mapping plot, the value on the secondary diagonal is the mean value of this matrix.
Fig. 3.
Fig. 3. Simulated spectra reconstruction results. (a) Reconstruction of a three-peak spectrum in different spectral ranges using three different materials. SiC-based PC exhibits large error in the 400–500-nm range. (b) and (c) Reconstruction of a more complex spectrum using fewer PC slabs. The SiNx PC slab achieves significantly higher reconstruction accuracy than SiO2 and SiC when the PC number is reduced to 12. The reconstruction error presented here is calculated using I0IR1/I01, where I0 is the simulated spectrum, IR is the reconstructed spectrum, and x1 indicates the L-1 norm of x. In (a) and (b), the solid lines indicate original simulated spectra, while circles represent recovered spectra.
Fig. 4.
Fig. 4. Experimental results. (a) Image captured by the PC-slab-mounted CMOS image sensor at an illuminating wavelength of 450 nm. (b) Scanning electron microscopy image of a PC slab. (c) Normalized transmission spectrum of the PC in (b) as measured using the CMOS image sensor. The as-measured data are divided by the measured light power at each wavelength to achieve the corrected data for spectral reconstruction. (d) Sensing of monochromatic light using the single-shot sensor. (e)–(h) Spectral sensing using 42 and 9 PC slabs. (e) and (f) Sensing of narrowband (bandwidth 10  nm) spectra at 450 and 600 nm, respectively. (g) and (h) Sensing of broader band (bandwidth 40  nm) spectra at 500 nm. The spectrum of (g) is achieved using a bandpass filter, while the spectrum of (h) is from a stack of colorful plastic films.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P=λ1λni(λ)t(λ)q(λ)dλλ=λ1λniλtλqλ=T1×nIn×1.