Abstract

We present an accurate, easy-to-use large-signal SPICE circuit model for depletion-type silicon ring modulators (Si RMs). Our model includes both the electrical and optical characteristics of the Si RM and consists of circuit elements whose values change depending on modulation voltages. The accuracy of our model is confirmed by comparing the SPICE simulation results of 25 Gb/s non-return-to-zero (NRZ) modulation with the measurement. The model is used for performance optimization of monolithically integrated Si photonic NRZ and pulse-amplitude-modulation 4 transmitters in the standard SPICE circuit design environment.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Verilog-A behavioral model for resonance-modulated silicon micro-ring modulator

Jinsoo Rhim, Yoojin Ban, Byung-Min Yu, Jeong-Min Lee, and Woo-Young Choi
Opt. Express 23(7) 8762-8772 (2015)

Monolithic 56  Gb/s silicon photonic pulse-amplitude modulation transmitter

Chi Xiong, Douglas M. Gill, Jonathan E. Proesel, Jason S. Orcutt, Wilfried Haensch, and William M. J. Green
Optica 3(10) 1060-1065 (2016)

Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s

Heiner Zwickel, Stefan Wolf, Clemens Kieninger, Yasar Kutuvantavida, Matthias Lauermann, Timothy de Keulenaer, Arno Vyncke, Renato Vaernewyck, Jingdong Luo, Alex K.-Y. Jen, Wolfgang Freude, Johan Bauwelinck, Sebastian Randel, and Christian Koos
Opt. Express 25(20) 23784-23800 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
    [Crossref]
  2. B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
    [Crossref]
  3. J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM-4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37, 110–115 (2019).
    [Crossref]
  4. Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
    [Crossref]
  5. A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
    [Crossref]
  6. R. Dube-Demers, J. St-Yves, A. Bois, Q. Zhong, M. Caverley, Y. Wang, L. Chrostowski, S. LaRochelle, D. V. Plant, and W. Shi, “Analytical modeling of silicon microring and microdisk modulators with electrical and optical dynamics,” J. Lightwave Technol. 33, 4240–4252 (2015).
    [Crossref]
  7. J. Rhim, Y. Ban, B.-M. Yu, J.-M. Lee, and W.-Y. Choi, “Verilog-A behavioral model for resonance-modulated silicon micro-ring modulator,” Opt. Express 23, 8762–8772 (2015).
    [Crossref]
  8. M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
    [Crossref]
  9. M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.
  10. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [Crossref]
  11. Y. Ban, J. M. Lee, B. M. Yu, S. H. Cho, and W. Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in IEEE Optical Interconnects Conference (OI’14) (2014), pp. 47–48.
  12. Optilab PR-23-M, 23  GHz Linear Photoreceiver Module, 2018, https://www.oequest.com/getDatasheet/id/10580-10580.pdf .
  13. D. Knoll, S. Lischke, A. Awny, and L. Zimmermann, “SiGe BiCMOS for optoelectronics,” ECS Trans. 75, 121–139 (2016).
    [Crossref]
  14. IEEE P802.3 bs 200  Gb/s and 400  Gb/s Ethernet Task Force. http://www.ieee802.org/3/bs/ .
  15. OIF CEI-56G Application Note. https://www.oiforum.com/ .
  16. A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.
  17. R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
    [Crossref]
  18. R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
    [Crossref]
  19. S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
    [Crossref]
  20. H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.
  21. T. Kishi, M. Nagatani, S. Kanazawa, W. Kobayashi, H. Yamazaki, M. Ida, K. Kurishima, M. Nogawa, S. Kimura, and H. Nosaka, “56  Gb/s optical transmission performance of an InP HBT PAM-4 driver compensating for nonlinearity of extinction curve of EAM,” J. Lightwave Technol. 35, 75–81 (2017).
    [Crossref]

2019 (2)

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM-4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37, 110–115 (2019).
[Crossref]

2018 (2)

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

2017 (5)

M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
[Crossref]

T. Kishi, M. Nagatani, S. Kanazawa, W. Kobayashi, H. Yamazaki, M. Ida, K. Kurishima, M. Nogawa, S. Kimura, and H. Nosaka, “56  Gb/s optical transmission performance of an InP HBT PAM-4 driver compensating for nonlinearity of extinction curve of EAM,” J. Lightwave Technol. 35, 75–81 (2017).
[Crossref]

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

2016 (1)

D. Knoll, S. Lischke, A. Awny, and L. Zimmermann, “SiGe BiCMOS for optoelectronics,” ECS Trans. 75, 121–139 (2016).
[Crossref]

2015 (2)

2013 (1)

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Al Qubaisi, K.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Alloatti, L.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
[Crossref]

Atabaki, A. H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Awny, A.

D. Knoll, S. Lischke, A. Awny, and L. Zimmermann, “SiGe BiCMOS for optoelectronics,” ECS Trans. 75, 121–139 (2016).
[Crossref]

Baiocco, C. V.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Balamurugan, G.

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Ban, Y.

M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

J. Rhim, Y. Ban, B.-M. Yu, J.-M. Lee, and W.-Y. Choi, “Verilog-A behavioral model for resonance-modulated silicon micro-ring modulator,” Opt. Express 23, 8762–8772 (2015).
[Crossref]

Y. Ban, J. M. Lee, B. M. Yu, S. H. Cho, and W. Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in IEEE Optical Interconnects Conference (OI’14) (2014), pp. 47–48.

Beausoleil, R.

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

Bois, A.

Bucio, T. D.

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

Casper, B.

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Caverley, M.

Cho, S. H.

Y. Ban, J. M. Lee, B. M. Yu, S. H. Cho, and W. Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in IEEE Optical Interconnects Conference (OI’14) (2014), pp. 47–48.

Choi, W. Y.

M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

Y. Ban, J. M. Lee, B. M. Yu, S. H. Cho, and W. Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in IEEE Optical Interconnects Conference (OI’14) (2014), pp. 47–48.

Choi, W.-Y.

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

J. Rhim, Y. Ban, B.-M. Yu, J.-M. Lee, and W.-Y. Choi, “Verilog-A behavioral model for resonance-modulated silicon micro-ring modulator,” Opt. Express 23, 8762–8772 (2015).
[Crossref]

M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

Chrostowski, L.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Cunningham, J. E.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

Driscoll, J.

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Driscoll, J. B.

Dube-Demers, R.

El-Fiky, E.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Fiorentino, M.

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Gardes, F.

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

Gevorgyan, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Ida, M.

Jaussi, J.

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Jayatilleka, H.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM-4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37, 110–115 (2019).
[Crossref]

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Jo, Y.

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

Kanazawa, S.

Khilo, A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Kim, M.

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

Kim, M. H.

M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

Kim, M.-H.

M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

Kim, Y.

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

Kimura, S.

Kishi, T.

Knoll, D.

D. Knoll, S. Lischke, A. Awny, and L. Zimmermann, “SiGe BiCMOS for optoelectronics,” ECS Trans. 75, 121–139 (2016).
[Crossref]

Kobayashi, W.

Krishnamoorthy, A. V.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

Kruger, S. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Kumar, R.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM-4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37, 110–115 (2019).
[Crossref]

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Kurishima, K.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

LaRochelle, S.

Lee, J. M.

Y. Ban, J. M. Lee, B. M. Yu, S. H. Cho, and W. Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in IEEE Optical Interconnects Conference (OI’14) (2014), pp. 47–48.

Lee, J.-M.

Li, C.

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

Li, G.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

Li, H.

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Li, K.

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

Li, R.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Lin, S.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
[Crossref]

Lischke, S.

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

D. Knoll, S. Lischke, A. Awny, and L. Zimmermann, “SiGe BiCMOS for optoelectronics,” ECS Trans. 75, 121–139 (2016).
[Crossref]

M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[Crossref]

Luo, Y.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

Mai, C.

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

Meng, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Milosevic, B. M. M.

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

Moazeni, S.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
[Crossref]

Morsy-Osman, M.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Nagatani, M.

Nogawa, M.

Nosaka, H.

Notaros, J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Palermo, S.

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

Patel, D.

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

Pavanello, F.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Plant, D. V.

Popovic, M.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
[Crossref]

Popovic, M. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Raj, K.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

Ram, R. J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
[Crossref]

Reed, G. T.

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

Reynolds, S.

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

Rhim, J.

M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

J. Rhim, Y. Ban, B.-M. Yu, J.-M. Lee, and W.-Y. Choi, “Verilog-A behavioral model for resonance-modulated silicon micro-ring modulator,” Opt. Express 23, 8762–8772 (2015).
[Crossref]

Rong, H.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM-4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37, 110–115 (2019).
[Crossref]

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Roshan-Zamir, A.

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

Sakib, M.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM-4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37, 110–115 (2019).
[Crossref]

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Samani, A.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Seyedi, M. A.

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

Shi, W.

Shin, M.

M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

Shubin, I.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

Stankovic, S.

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

Stojanovic, V.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
[Crossref]

Stojanovic, V. M.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

St-Yves, J.

Sun, C.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Sun, J.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM-4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37, 110–115 (2019).
[Crossref]

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Telaprolu, S.

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

Thacker, H.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

Thomson, D. J.

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

Wade, M.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
[Crossref]

Wade, M. T.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Wang, B.

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

Wang, I.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Wang, Y.

Xing, Z.

R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, and D. V. Plant, “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express 25, 13222–13229 (2017).
[Crossref]

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

Yamazaki, H.

Yao, J.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

Yu, B. M.

M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

Y. Ban, J. M. Lee, B. M. Yu, S. H. Cho, and W. Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in IEEE Optical Interconnects Conference (OI’14) (2014), pp. 47–48.

Yu, B.-M.

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

J. Rhim, Y. Ban, B.-M. Yu, J.-M. Lee, and W.-Y. Choi, “Verilog-A behavioral model for resonance-modulated silicon micro-ring modulator,” Opt. Express 23, 8762–8772 (2015).
[Crossref]

M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

Yu, K.

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

Zhang, B.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Zheng, X.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

Zhong, Q.

Zimmermann, L.

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

D. Knoll, S. Lischke, A. Awny, and L. Zimmermann, “SiGe BiCMOS for optoelectronics,” ECS Trans. 75, 121–139 (2016).
[Crossref]

M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

ECS Trans. (1)

D. Knoll, S. Lischke, A. Awny, and L. Zimmermann, “SiGe BiCMOS for optoelectronics,” ECS Trans. 75, 121–139 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).
[Crossref]

IEEE J. Solid-State Circuits (1)

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, and V. Stojanovic, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52, 3503–3516 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, and D. V. Plant, “Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett. 29, 1046–1049 (2017).
[Crossref]

IEEE Trans. Electron Devices (1)

M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, and W. Y. Choi, “A linear equivalent circuit model for depletion-type silicon microring modulators,” IEEE Trans. Electron Devices 64, 1140–1145 (2017).
[Crossref]

J. Lightwave Technol. (4)

Jpn. J. Appl. Phys. (1)

Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “Parametric optimization of depletion-type Si micro-ring modulator performances,” Jpn. J. Appl. Phys. 58, 062006 (2019).
[Crossref]

Nature (1)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556, 349–354 (2018).
[Crossref]

Opt. Express (2)

Proc. IEEE (1)

B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, and G. T. Reed, “The emergence of silicon photonics as a flexible technology platform,” Proc. IEEE 106, 2101–2116 (2018).
[Crossref]

Other (7)

M. Kim, M. Shin, M.-H. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, and W.-Y. Choi, “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

Y. Ban, J. M. Lee, B. M. Yu, S. H. Cho, and W. Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in IEEE Optical Interconnects Conference (OI’14) (2014), pp. 47–48.

Optilab PR-23-M, 23  GHz Linear Photoreceiver Module, 2018, https://www.oequest.com/getDatasheet/id/10580-10580.pdf .

IEEE P802.3 bs 200  Gb/s and 400  Gb/s Ethernet Task Force. http://www.ieee802.org/3/bs/ .

OIF CEI-56G Application Note. https://www.oiforum.com/ .

A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M. A. Seyedi, M. Fiorentino, R. Beausoleil, and S. Palermo, “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9.

H. Li, G. Balamurugan, M. Sakib, J. Sun, J. Driscoll, R. Kumar, H. Jayatilleka, H. Rong, J. Jaussi, and B. Casper, “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Structure of the Si RM used; (b) TEM image of the cross-section of the coupling section; and (c) measured transmission curves with different bias voltages.
Fig. 2.
Fig. 2. (a) Three blocks for the Si RM model; (b) circuit representing RM electrical property; and (c) equivalent circuit representing RM optical property.
Fig. 3.
Fig. 3. Measured and simulated (red line) 25 Gb/s PRBS31 eye diagrams for different Dλ.
Fig. 4.
Fig. 4. (a) Schematic diagram for an integrated 25 Gb/s Si photonic transmitter based on Photonic BiCMOS technology; (b) vertical eye opening for various RL and Itail values; and (c) simulated eye diagrams at different RL and Itail combinations.
Fig. 5.
Fig. 5. PAM-4 eye diagram and level representation.
Fig. 6.
Fig. 6. (a) Schematic diagram of the PAM-4 Si photonic transmitter including driver circuit and the RM and (b) simulated RLMRM values for various combinations of Dλ and RLMDRV values.
Fig. 7.
Fig. 7. Simulated 25 GBaud PAM-4 eye diagrams at different combination of RLMDRV and Dλ.

Tables (3)

Tables Icon

Table 1. Extracted Si RM Parameters at Different Bias Voltages

Tables Icon

Table 2. Values for Si RM Equivalent Circuit Model Parameters for the Case of Dλ=40 and 70 pm

Tables Icon

Table 3. Operating Conditions and Simulated Results for Different Points in Fig. 6

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ddta(t)=(jωres1τ)a(t)j2τeEin(t),
Eout(t)=Ein(t)j2τea(t),
T=(EoutEin)2=[j(ωωres)+2τl1τj(ωωres)+1τ]2.
s+2τls2+2τs+Dω2+1τ2,
s+R2Ls2+(1CR1+R2L)s+1LC(R2R1+1),
RLM(%)=100×min(ΔVupper,ΔVmid,ΔVlower)avg(ΔVupper,ΔVmid,ΔVlower),